Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supporting Information

NIR luminescence for the detection of metal ions and nitro explosives based on a grape-like nine-nuclear Nd(III) nanocluster

Hongfen Chen, Xiaoping Yang, Dongmei Jiang, Desmond Schipper and Richard A. Jones

Contents

1. Materials and methods	S2
2. Synthesis of the Schiff base ligand H_2L^1	S3
3. Powder XRD patterns of 1 and 2	S4
4. The IR spectra of H_2L^1 and 1-2.	S5
5. The thermogravimetric analysis of 1 and 2	S6
6. UV-Vis spectra of the mixture of H_2L^1 and H_2L^2 , and the clusters 1 and 2	S7
7. The excitation and visible emission spectra of H_2L^1 and 2	S8
8. The emission lifetimes of 1 and 2	S9
9. NIR luminescence sensing of 1 towards metal ions	S10
10. Visible emission response of 1 to metal ions and HMX	S13
11. UV-Vis spectra of 1 with the additional of Zn^{2+} ion and HMX	S14
12. The structures of explosives	S15
13. NIR luminescence sensing of 1 towards nitro explosives	S16
14. MS(ESI) spectrum of 1 before and after the addition of Cd ²⁺ ion	S18
15. X-Ray Crystallography	S19

<u>1. Materials and methods</u>

The reagents and solvents were purchased from standard commercial suppliers. ¹H (500 MHz) NMR spectra were recorded on a AVANCE III AV500 spectrometer at 298 K. Elemental analyses for C, H, and N were performed on a EURO EA3000 elemental analysis. Melting points were determined on a Büchi melting point apparatus and are uncorrected. Powder XRD spectra were obtained on a D8ADVANCE diffractometer. Infrared and electronic absorption spectra were carried out on a Nicolet IS10 spectrometer and UV-3600 spectrophotometer, respectively. Conductivity measurements were carried out with a DDS-11 conductivity bridge. Field emission scanning electron microscopy (FESEM) images and energy dispersive X-ray spectroscopy (EDX) spectra were acquired on a Nova NanoSEM 200 scanning electron microscope.

Photophysical Studies Visible and NIR luminescence spectra were recorded on a FLS 980 fluorimeter. The light source for the spectra was a 450 W xenon arc lamp with continuous spectral distribution from 190 to 2600 nm. Liquid nitrogen cooled Ge PIN diode detector was used to detect the NIR emissions from 800 nm to 1700 nm. The temporal decay curves of the fluorescence signals were stored by using the attached storage digital oscilloscope. The quantum yields (Φ_{em}) were obtained by using an integrating sphere, according to eqn $\Phi_{em} = N_{em} / N_{abs}$, where N_{em} and N_{abs} are the numbers of emitted and absorbed photons, respectively. Systematic errors have been deducted through the standard instrument corrections. All the measurements were carried out at room temperature.

<u>2. Synthesis of the Schiff base ligand H₂L¹</u>

2-Hydroxy-2-methoxybenzaldehyde (5.0 mmol, 0.7608 g) was dissolved in 10 mL EtOH, and a solution of 4-{3-[4-(2-amino-ethyl)-phenoxy]-phenoxy}-phenylamine (2.5 mmol, 0.8010 g) in 20 mL EtOH was then added drop by drop. The resulting solution was stirred and heated under reflux for 3.5 hours. It was allowed to cool and was then filtered. The solid was washed with EtOH (3×5 ml) and then dried in the air at room temperature to give orange product. Yield (based on 4-{3-[4-(2-amino-ethyl)-phenoxy]-phenoxy}-phenylamine): 1.4128 g (96%). m.p. = 139.2°C. Elemental analysis: Found: C, 73.50; H, 5.58; N, 4.80%. Calc. for C₃₆H₃₂N₂O₆: C, 73.45; H, 5.48; N, 4.76%. IR (CH₃CN, cm⁻¹): 1610 (m), 1447 (s), 1241 (s), 1170 (m), 1130 (w), 1092 (w), 950 (m), 836 (m), 772 (m), 730 (m), 686 (m). ¹H NMR (500 MHz, DMSO) δ = 13.20 (s, 2H), 8.96 (s, 2H), 7.49 (d, 2H), 7.42 (t, 3H), 7.22 (d, 2H), 7.15 (dd, 4H), 6.91 (t, 3H), 6.81 (dd, 2H), 6.71 (d, 2H), 3.82 (s, 6H), 1.34 (d, 4H).

Figure S1. ¹H NMR spectrum of H_2L^1 in DMSO.

3. Powder XRD patterns of 1 and 2

Figure S2. Powder XRD patterns of 1 and 2 (the insert pictures were obtained from experiments).

Figure S3. Infrared spectra of H_2L^1 and 1-2.

5. The thermogravimetric analysis of 1-2

Figure S4. The thermogravimetric analysis of 1-2.

6. UV-Vis spectra of the mixture of H_2L^1 and H_2L^2 , and the clusters 1 and 2

Figure S5. UV-Vis spectra of the mixture of H_2L^1 and H_2L^2 , and the clusters 1 and 2 in CH₃CN.

7. The excitation and visible emission spectra of H_2L^1 and 2

Figure S6. The excitation and visible emission spectra of H_2L^1 and 2 in CH_3CN .

8. The emission lifetimes of 1 and 2

Figure S7. The visible and NIR emission lifetimes of 1 and 2 in CH₃CN.

9. NIR luminescent sensing of 1 towards metal ions

Figure S8. NIR luminescent sensing of 1 (60 μ M) towards metal ions in DMF.

Figure S9. Visible emission response of 1 (60 μ M) to metal ions and HMX

Figure S10. UV-Vis spectra of 1 (3 μ M) with the additional of different concentrations of Zn²⁺ ion and HMX in DMF.

<u>12. The structures of explosives</u>

Scheme S1. The structures of explosives.

Figure S11. NIR luminescent sensing of 1 (60μ M) towards nitro explosives in CH₃CN.

14. MS(ESI) spectrum of 1 before and after the addition of Cd²⁺ ion

Figure S12. MS(ESI) spectra of 1 before (a) and after (b) the addition of Cd^{2+} ion.

15. X-Ray Crystallography

	Table S1. Selected bond lengths (Å) and angles (°) for 1.
--	---

Nd(1)-O(27)	2.341(11)	Nd(6)-O(24)	2.540(11)
Nd(1)-O(34)	2.389(9)	Nd(6)-O(44)	2.599(12)
Nd(1)-O(50)	2.398(9)	Nd(7)-O(36)	2.363(12)
Nd(1)-O(33)	2.402(9)	Nd(7)-O(30)	2.367(10)
Nd(1)-O(35)	2.411(11)	Nd(7)-O(50)	2.379(10)
Nd(1)-O(31)	2.421(9)	Nd(7)-O(35)	2.409(11)
Nd(1)-O(22)	2.421(10)	Nd(7)-O(51)	2.411(10)
Nd(1)-O(20)	2.462(9)	Nd(7)-O(46)	2.418(11)
Nd(2)-O(2)	2.343(10)	Nd(7)-O(49)	2.437(10)
Nd(2)-O(43)	2.349(10)	Nd(7)-O(11)	2.445(11)
Nd(2)-O(33)	2.370(10)	Nd(8)-O(51)	2.351(10)
Nd(2)-O(41)	2.402(10)	Nd(8)-O(47)	2.367(12)
Nd(2)-O(6)	2.405(10)	Nd(8)-O(13)	2.390(14)
Nd(2)-O(42)	2.442(11)	Nd(8)-O(8)	2.392(13)
Nd(2)-O(34)	2.493(9)	Nd(8)-O(9)	2.455(14)
Nd(2)-N(1)	2.592(14)	Nd(8)-O(45)	2.461(13)
Nd(2)-O(7)	2.727(11)	Nd(8)-O(10)	2.492(12)
Nd(3)-O(51)	2.334(10)	Nd(8)-O(11)	2.588(11)
Nd(3)-O(18)	2.340(12)	Nd(8)-O(14)	2.629(11)
Nd(3)-O(16)	2.371(11)	Nd(9)-O(3)	2.308(12)
Nd(3)-O(12)	2.394(13)	Nd(9)-O(48)	2.331(13)
Nd(3)-O(20)	2 437(9)	Nd(9)-O(31)	2335(10)
Nd(3)-O(14)	2 446(11)	Nd(9)-O(30)	2,400(11)
Nd(3)-O(22)	2 458(10)	Nd(9)-O(29)	2.408(17)
Nd(3)-O(21)	2 587(12)	Nd(9)-O(38)	2.409(13)
Nd(3)-O(13)	2 794(16)	Nd(9)-O(35)	2.426(11)
Nd(4)-O(15)	2.340(12)	Nd(9)-O(4)	2.575(11)
Nd(4) - O(20)	2 354(9)	O(27)-Nd(1)-O(34)	79 5(4)
Nd(4) - O(33)	2 373(9)	O(27)-Nd(1)-O(50)	141 5(4)
Nd(4) - O(2)	2432(10)	O(34)-Nd(1)-O(50)	79 5(3)
Nd(4) = O(2) Nd(4) = O(40)	2.432(10) 2 439(12)	O(27)-Nd(1)-O(33)	81 1(3)
Nd(4) - O(19)	2.439(12) 2 449(14)	O(24)-Nd(1)-O(33)	72 1(3)
Nd(4) O(19) Nd(4) O(18)	2.49(14) 2 481(12)	O(50)-Nd(1)-O(33)	1217(3)
Nd(4) = O(41)	2.542(12)	O(27)-Nd(1)-O(35)	121.7(3) 111 5(4)
Nd(4)-O(1)	2.542(11) 2 598(11)	O(24)-Nd(1)-O(35)	143 1(4)
Nd(4)=O(1) Nd(5)=O(37)	2.336(11) 2.337(12)	O(50)-Nd(1)-O(35)	70.5(4)
Nd(5) - O(57) Nd(5) - O(25)	2.337(12) 2.361(11)	O(33) Nd(1) $O(35)$	142.6(4)
Nd(5) - O(23) Nd(5) - O(21)	2.301(11) 2.374(0)	O(33)-Nd(1)- $O(33)$	142.0(4)
Nd(5) - O(31) Nd(5) - O(20)	2.374(9) 2.392(12)	O(24) Nd(1) $O(21)$	73.9(4) 81.7(2)
Nd(5) - O(59)	2.382(13) 2.420(10)	O(54)-Nu(1)- $O(51)$	61.7(3)
Nd(5) - O(30)	2.420(10) 2.424(10)	O(30)-IN $u(1)$ - $O(31)O(32)$ Nd (1) $O(21)$	1478(2)
Nd(5) = O(50)	2.424(10) 2.429(11)	O(33)-INU(1)- $O(31)O(25)$ Nd(1) $O(21)$	147.0(3)
Nd(3)=O(24)	2.430(11)	O(33)-INd(1)-O(31) O(27) NJ(1) O(22)	00.2(4)
Nd(5)-O(52)	2.440(11)	O(27)-Nd(1)- $O(22)$	$\delta 1.\delta(4)$
Nd(0)-O(34)	2.321(9)	O(54)-INd(1)- $O(22)$	144.3(3)
Na(0)-O(28)	2.309(11)	O(50)-Na(1)- $O(22)$	131.2(3)
Na(0)-O(3)	2.414(11)	O(33)-Na(1)- $O(22)$	/3.2(3) 72.2(4)
Na(0)-O(23)	2.418(11)	O(35)-Na(1)- $O(22)$	12.3(4)
Na(b)-O(b)	2.420(9)	O(31)-Nd(1)- $O(22)$	122.5(5)
Na(6)-O(26)	2.444(11)	O(27)-Nd(1)- $O(20)$	141.1(3)
Na(6)-O(43)	2.470(10)	O(34)-Na(1)- $O(20)$	110.8(3)

O(50)-Nd(1)-O(20)	76.9(3)	O(20)-Nd(3)-O(14)	75.7(3)
O(33)-Nd(1)-O(20)	67.9(3)	O(51)-Nd(3)-O(22)	106.3(3)
O(35)-Nd(1)-O(20)	83.1(3)	O(18)-Nd(3)-O(22)	78.1(4)
O(31)-Nd(1)-O(20)	141.3(3)	O(16)-Nd(3)-O(22)	76.2(4)
O(22)-Nd(1)-O(20)	68.3(3)	O(12)-Nd(3)-O(22)	131.3(4)
O(2)-Nd(2)-O(43)	142.9(4)	O(20)-Nd(3)-O(22)	68.1(3)
O(2)-Nd(2)-O(33)	71.2(3)	O(14)-Nd(3)-O(22)	142.8(3)
O(43)-Nd(2)-O(33)	140.9(3)	O(51)-Nd(3)-O(21)	139.8(4)
O(2)-Nd(2)-O(41)	73.1(4)	O(18)-Nd(3)-O(21)	72.0(4)
O(43)-Nd(2)-O(41)	99.2(4)	O(16)-Nd(3)-O(21)	72.8(4)
O(33)-Nd(2)-O(41)	68.5(3)	O(12)-Nd(3)-O(21)	80.1(4)
O(2)-Nd(2)-O(6)	140.2(4)	O(20)-Nd(3)-O(21)	113.8(3)
O(43)-Nd(2)-O(6)	68.4(3)	O(14)-Nd(3)-O(21)	147.5(4)
O(33)-Nd(2)-O(6)	95.4(3)	O(22)-Nd(3)-O(21)	51.3(3)
O(41)-Nd(2)-O(6)	137.9(4)	O(51)-Nd(3)-O(13)	64.1(4)
O(2)-Nd(2)-O(42)	73.7(4)	O(18)-Nd(3)-O(13)	126.1(5)
O(43)-Nd(2)-O(42)	69.6(4)	O(16)-Nd(3)-O(13)	76.0(4)
O(33)-Nd(2)-O(42)	132.4(4)	O(12)-Nd(3)-O(13)	49.0(4)
O(41)-Nd(2)-O(42)	71.3(4)	O(20)-Nd(3)-O(13)	128.2(4)
O(6)-Nd(2)-O(42)	131.9(4)	O(14)-Nd(3)-O(13)	62.0(4)
O(2)-Nd(2)-O(34)	133 4(3)	O(22)-Nd(3)-O(13)	1521(4)
O(43)-Nd(2)-O(34)	70 1(3)	O(21)-Nd(3)-O(13)	1180(4)
O(33)-Nd(2)-O(34)	70.8(3)	O(15)-Nd(4)-O(20)	81 3(4)
O(41)-Nd(2)-O(34)	68 6(3)	O(15) - Nd(4) - O(33)	1487(3)
O(6)-Nd(2)-O(34)	69 4(3)	O(20)-Nd(4)-O(33)	70.2(3)
O(42)-Nd(2)-O(34)	115 9(3)	O(15)-Nd(4)-O(2)	1413(4)
O(2)-Nd(2)-N(1)	742(4)	O(20) - Nd(4) - O(2)	1361(3)
O(43)-Nd(2)-N(1)	90 7(4)	O(33)-Nd(4)-O(2)	69 6(3)
O(33)-Nd(2)-N(1)	1241(4)	O(15) - Nd(4) - O(40)	73.8(4)
O(41)-Nd(2)-N(1)	127.1(1) 1374(4)	O(20)-Nd(4)-O(40)	89 8(4)
O(6)-Nd(2)-N(1)	84 3(4)	O(33)-Nd(4)-O(40)	1175(4)
O(42)-Nd(2)-N(1)	73.8(4)	O(2)-Nd(4)-O(40)	934(4)
O(34)-Nd(2)-N(1)	151 6(4)	O(15)-Nd(4)-O(19)	89 9(5)
O(2)-Nd(2)-O(7)	80 0(4)	O(20)-Nd(4)-O(19)	121.6(4)
O(43)-Nd(2)-O(7)	125 0(3)	O(33)-Nd(4)-O(19)	941(4)
O(33)-Nd(2)-O(7)	65 7(3)	O(2)-Nd(4)-O(19)	78 3(4)
O(41)-Nd(2)-O(7)	132 3(4)	O(40)-Nd(4)-O(19)	142 4(5)
O(6)-Nd(2)-O(7)	60 5(3)	O(15) - Nd(4) - O(18)	70.8(4)
O(42)-Nd(2)-O(7)	136 6(4)	O(20) - Nd(4) - O(18)	71.0(4)
O(34)-Nd(2)-O(7)	107 3(3)	O(33)-Nd(4)-O(18)	87 4(4)
N(1)-Nd(2)-O(7)	66 0(4)	O(2)-Nd(4)-O(18)	1235(4)
O(51)-Nd(3)-O(18)	142.8(4)	O(40)-Nd(4)-O(18)	123.3(1) 141 8(4)
O(51)-Nd(3)- $O(16)$	69 1(4)	O(19) - Nd(4) - O(18)	51.9(4)
O(18)-Nd(3)-O(16)	144 4(4)	O(15) - Nd(4) - O(41)	121.6(4)
O(51)-Nd(3)- $O(12)$	113 1(4)	O(20)-Nd(4)-O(41)	79.0(3)
O(18)-Nd(3)- $O(12)$	86 9(5)	O(23) - Nd(4) - O(41)	66.2(3)
O(16) - Nd(3) - O(12)	91 9(5)	O(2)-Nd(4)-O(41)	69.2(3)
O(10) Nd(3) O(12) O(51) Nd(3) O(20)	75 6(3)	O(40)-Nd(4)-O(41)	51.9(4)
O(18)-Nd(3)- $O(20)$	73.0(3)	O(19) - Nd(4) - O(41)	1461(4)
O(16)-Nd(3)-O(20)	1190(4)	O(18)-Nd(4)-O(41)	145.1(4)
O(12)-Nd(3)-O(20)	1483(A)	O(15)-Nd(4)-O(1)	78 6(4)
O(51)-Nd(3)-O(14)	71 8(4)	O(20)-Nd(4)-O(1)	157 A(A)
O(18)-Nd(3)-O(14)	82 8(4)	O(23)-Nd(4)- $O(1)$	131.4(4)
O(16)-Nd(3)- $O(14)$	$131 \ 8(\Delta)$	O(2)-Nd(4)-O(1)	62 8(4)
O(12)-Nd(3)-O(14)	78 4(4)	O(20) - Nd(4) - O(1)	$74 \ 0(4)$
$O(12)^{-1} O(14)$	/0.+(+)	$O(+0)^{-1}Nu(+)^{-}O(1)$	/ 7.7(4)

O(19)-Nd(4)-O(1)	68.7(4)	O(23)-Nd(6)-O(24)	51.9(4)
O(18)-Nd(4)-O(1)	111.2(4)	O(6)-Nd(6)-O(24)	140.9(3)
O(41)-Nd(4)-O(1)	103.1(4)	O(26)-Nd(6)-O(24)	67.8(4)
O(37)-Nd(5)-O(25)	85.4(4)	O(43)-Nd(6)-O(24)	133.8(3)
O(37)-Nd(5)-O(31)	144.7(4)	O(34)-Nd(6)-O(44)	129.2(4)
O(25)-Nd(5)-O(31)	109.4(3)	O(28)-Nd(6)-O(44)	145.8(4)
O(37)-Nd(5)-O(39)	95.3(5)	O(5)-Nd(6)-O(44)	70.3(4)
O(25)-Nd(5)-O(39)	146.2(4)	O(23)-Nd(6)-O(44)	81.6(4)
O(31)-Nd(5)-O(39)	89.3(4)	O(6)-Nd(6)-O(44)	100.6(4)
O(37)-Nd(5)-O(50)	86.1(4)	O(26)-Nd(6)-O(44)	66.9(4)
O(25)-Nd(5)-O(50)	71.3(3)	O(43)-Nd(6)-O(44)	60.9(3)
O(31)-Nd(5)-O(50)	69.9(3)	O(24)-Nd(6)-O(44)	118.4(4)
O(39)-Nd(5)-O(50)	142.5(4)	O(36)-Nd(7)-O(30)	77.1(4)
O(37)-Nd(5)-O(30)	77.1(4)	O(36)-Nd(7)-O(50)	87.1(4)
O(25)-Nd(5)-O(30)	138.0(4)	O(30)-Nd(7)-O(50)	71.3(4)
O(31)-Nd(5)-O(30)	70.5(4)	O(36)-Nd(7)-O(35)	144.5(4)
O(39)-Nd(5)-O(30)	74.1(4)	O(30)-Nd(7)-O(35)	69.7(4)
O(50)-Nd(5)-O(30)	69.7(3)	O(50)-Nd(7)-O(35)	70.9(3)
O(37)-Nd(5)-O(24)	146.0(4)	O(36)-Nd(7)-O(51)	143.3(4)
O(25)-Nd(5)-O(24)	77.6(4)	O(30)-Nd(7)-O(51)	138.3(3)
O(31)-Nd(5)-O(24)	69.3(3)	O(50)-Nd(7)-O(51)	110.8(3)
O(39)-Nd(5)-O(24)	83.7(4)	O(35)-Nd(7)-O(51)	72.0(4)
O(50)-Nd(5)-O(24)	115.1(3)	O(36)-Nd(7)-O(46)	80.9(4)
O(30)-Nd(5)- $O(24)$	133.8(4)	O(30)-Nd(7)-O(46)	136.0(4)
O(37)-Nd(5)-O(32)	73.6(5)	O(50)-Nd(7)-O(46)	70.0(4)
O(25)-Nd(5)-O(32)	75.9(4)	O(35)-Nd(7)-O(46)	114.9(4)
O(31)-Nd(5)-O(32)	140 2(4)	O(51)-Nd(7)-O(46)	76 1(4)
O(39)-Nd(5)- $O(32)$	71 9(5)	O(36)-Nd(7)-O(49)	109 8(4)
O(50)-Nd(5)-O(32)	142 6(4)	O(30)-Nd(7)-O(49)	82 4(4)
O(30)-Nd(5)-O(32)	132 1(4)	O(50)-Nd(7)-O(49)	144 8(4)
O(24)-Nd(5)-O(32)	73 9(4)	O(35)-Nd(7)-O(49)	78 4(4)
O(34)-Nd(6)-O(28)	82 1(4)	O(51)-Nd(7)-O(49)	742(4)
O(34)-Nd(6)-O(5)	140 1(4)	O(46)-Nd(7)-O(49)	141.3(4)
O(28)-Nd(6)-O(5)	76 3(4)	O(36)-Nd(7)-O(11)	75 2(4)
O(34)-Nd(6)- $O(23)$	135 6(4)	O(30)-Nd(7)-O(11)	1331(4)
O(28)-Nd(6)- $O(23)$	82.6(4)	O(50)-Nd(7)-O(11)	142.6(4)
O(5)-Nd(6)-O(23)	74 4(4)	O(35)-Nd(7)-O(11)	1381(4)
O(34)-Nd(6)-O(6)	71.9(3)	O(51)-Nd(7)-O(11)	714(3)
O(28)-Nd(6)-O(6)	74.0(4)	O(46)-Nd(7)-O(11)	74.8(4)
O(5)-Nd(6)-O(6)	70 1(4)	O(49)-Nd(7)-O(11)	72.6(4)
O(23)-Nd(6)-O(6)	141 1(4)	O(51)-Nd(8)-O(47)	91.5(4)
O(34)-Nd(6)-O(26)	84 1(4)	O(51)-Nd(8)-O(13)	70.9(5)
O(28)-Nd(6)- $O(26)$	139 3(4)	O(47)-Nd(8)-O(13)	135 1(5)
O(5)-Nd(6)-O(26)	133.0(4)	O(51)-Nd(8)-O(8)	152.1(3) 152 3(4)
O(23)-Nd(6)- $O(26)$	80 9(4)	O(47)-Nd(8)-O(8)	82 1(5)
O(6)-Nd(6)- $O(26)$	1361(4)	O(13)-Nd(8)-O(8)	94.8(5)
O(34)-Nd(6)-O(43)	70 9(3)	O(51)-Nd(8)-O(9)	1397(4)
O(28)-Nd(6)- $O(43)$	136 9(3)	O(47)-Nd(8)-O(9)	139.7(4) 128.8(4)
O(5)-Nd(6)-O(43)	103.6(4)	O(13) - NA(8) - O(9)	78 1(5)
O(23)-Nd(6)-O(43)	139.7(4)	O(8)-Nd(8)-O(9)	52 9(5)
O(6)-Nd(6)-O(43)	66 1(3)	O(51)-Nd(8)-O(45)	760(4)
O(26)-Nd(6)-O(42)	71.6(4)	O(47) - Nd(8) - O(45)	130 2(5)
O(20)-Nd(6)- $O(24)$	83 7(3)	O(13) - Nd(8) - O(45)	139.2(3) 77 6(5)
O(28)-Nd(6)-O(24)	727(A)	O(8)-Nd(8) $O(45)$	125 3(5)
O(5) Nd(6) O(24)	120.0(4)	$O(0) \operatorname{Nd}(2) O(45)$	123.3(3) 72 6(4)
O(3) - Mu(0) - O(24)	120.0(4)	O(3) - 100(0) - O(43)	12.0(4)

O(51)-Nd(8)-O(10)	119.9(4)	O(3)-Nd(9)-O(30)	130.1(4)
O(47)-Nd(8)-O(10)	74.7(5)	O(48)-Nd(9)-O(30)	80.2(4)
O(13)-Nd(8)-O(10)	150.0(5)	O(31)-Nd(9)-O(30)	71.6(3)
O(8)-Nd(8)-O(10)	84.5(5)	O(3)-Nd(9)-O(29)	80.9(6)
O(9)-Nd(8)-O(10)	77.7(5)	O(48)-Nd(9)-O(29)	86.2(6)
O(45)-Nd(8)-O(10)	78.5(5)	O(31)-Nd(9)-O(29)	103.5(5)
O(51)-Nd(8)-O(11)	69.9(3)	O(30)-Nd(9)-O(29)	141.8(5)
O(47)-Nd(8)-O(11)	72.5(4)	O(3)-Nd(9)-O(38)	79.0(5)
O(13)-Nd(8)-O(11)	131.8(4)	O(48)-Nd(9)-O(38)	89.4(5)
O(8)-Nd(8)-O(11)	132.0(4)	O(31)-Nd(9)-O(38)	101.5(4)
O(9)-Nd(8)-O(11)	117.9(4)	O(30)-Nd(9)-O(38)	73.8(4)
O(45)-Nd(8)-O(11)	66.7(4)	O(29)-Nd(9)-O(38)	142.0(5)
O(10)-Nd(8)-O(11)	50.1(4)	O(3)-Nd(9)-O(35)	128.4(4)
O(51)-Nd(8)-O(14)	68.3(3)	O(48)-Nd(9)-O(35)	81.8(4)
O(47)-Nd(8)-O(14)	69.8(4)	O(31)-Nd(9)-O(35)	69.4(3)
O(13)-Nd(8)-O(14)	65.3(4)	O(30)-Nd(9)-O(35)	68.9(4)
O(8)-Nd(8)-O(14)	84.3(4)	O(29)-Nd(9)-O(35)	73.9(5)
O(9)-Nd(8)-O(14)	120.5(4)	O(38)-Nd(9)-O(35)	142.6(4)
O(45)-Nd(8)-O(14)	134.8(4)	O(3)-Nd(9)-O(4)	64.5(4)
O(10)-Nd(8)-O(14)	143.8(4)	O(48)-Nd(9)-O(4)	76.3(4)
O(11)-Nd(8)-O(14)	121.5(3)	O(31)-Nd(9)-O(4)	138.5(4)
O(3)-Nd(9)-O(48)	140.8(4)	O(30)-Nd(9)-O(4)	136.7(4)
O(3)-Nd(9)-O(31)	74.0(4)	O(29)-Nd(9)-O(4)	72.2(5)
O(48)-Nd(9)-O(31)	145.2(4)	O(38)-Nd(9)-O(4)	70.1(4)

Gd(1)-O(27)	2.275(11)	Gd(7)-O(35)	2.294(9)
Gd(1)-O(50)	2.309(10)	Gd(7)-O(36)	2.323(12)
Gd(1)-O(35)	2.341(10)	Gd(7)-O(50)	2.323(10)
Gd(1)-O(22)	2.364(12)	Gd(7)-O(30)	2.331(11)
Gd(1)-O(34)	2.373(11)	Gd(7)-O(46)	2.354(12)
Gd(1)-O(33)	2.390(11)	Gd(7)-O(51)	2.358(11)
Gd(1)-O(20)	2.405(10)	Gd(7)-O(49)	2.396(12)
Gd(1)-O(31)	2.415(10)	Gd(7)-O(11)	2.421(11)
Gd(2)-O(2)	2.288(12)	Gd(8)-O(51)	2.301(10)
Gd(2)-O(43)	2.306(11)	Gd(8)-O(13)	2.305(14)
Gd(2)-O(41)	2.329(10)	Gd(8)-O(8)	2.347(14)
Gd(2)-O(33)	2.340(11)	Gd(8)-O(47)	2.355(13)
Gd(2)-O(6)	2.372(12)	Gd(8)-O(10)	2.398(12)
Gd(2)-O(42)	2.412(12)	Gd(8)-O(45)	2.429(13)
Gd(2)-O(34)	2.431(10)	Gd(8)-O(9)	2.474(14)
Gd(2)-N(1)	2.592(14)	Gd(8)-O(11)	2.505(13)
Gd(2)-O(7)	2.694(14)	Gd(8)-O(14)	2.624(11)
Gd(3)-O(18)	2.268(12)	Gd(9)-O(3)	2.246(14)
Gd(3)-O(16)	2.304(14)	Gd(9)-O(48)	2.282(12)
Gd(3)-O(12)	2.329(13)	Gd(9)-O(31)	2.294(10)
Gd(3)-O(51)	2.348(10)	Gd(9)-O(30)	2.340(10)
Gd(3)-O(20)	2.393(11)	Gd(9)-O(38)	2.343(13)
Gd(3)-O(14)	2.419(12)	Gd(9)-O(29)	2.394(14)
Gd(3)-O(22)	2.442(13)	Gd(9)-O(35)	2.398(10)
Gd(3)-O(21)	2.472(14)	Gd(9)-O(4)	2.568(13)
Gd(3)-O(13)	2.924(15)	O(27)-Gd(1)-O(50)	141.5(4)
Gd(4)-O(15)	2.294(13)	O(27)-Gd(1)-O(35)	112.1(4)
Gd(4)-O(20)	2.319(11)	O(50)-Gd(1)-O(35)	67.2(4)
Gd(4)-O(33)	2.341(11)	O(27)-Gd(1)-O(22)	80.4(4)
Gd(4)-O(40)	2.372(12)	O(50)-Gd(1)-O(22)	131.2(4)
Gd(4)-O(2)	2.390(12)	O(35)-Gd(1)-O(22)	74.4(4)
Gd(4)-O(18)	2.444(12)	O(27)-Gd(1)-O(34)	80.3(4)
Gd(4)-O(19)	2.483(13)	O(50)-Gd(1)-O(34)	80.8(4)
Gd(4)-O(41)	2.505(12)	O(35)-Gd(1)-O(34)	142.0(4)
Gd(4)-O(1)	2.579(12)	O(22)-Gd(1)-O(34)	143.5(4)
Gd(5)-O(31)	2.255(10)	O(27)-Gd(1)-O(33)	81.2(4)
Gd(5)-O(37)	2.278(11)	O(50)-Gd(1)-O(33)	123.6(4)
Gd(5)-O(39)	2.312(13)	O(35)-Gd(1)-O(33)	143.4(4)
Gd(5)-O(25)	2.361(12)	O(22)-Gd(1)-O(33)	74.6(4)
Gd(5)-O(30)	2.374(12)	O(34)- $Gd(1)$ - $O(33)$	71.9(4)
Gd(5)-O(50)	2.378(10)	O(27)- $Gd(1)$ - $O(20)$	141.1(4)
Gd(5)-O(24)	2.400(11)	O(50)- $Gd(1)$ - $O(20)$	77.3(3)
Gd(5)-O(32)	2.409(13)	O(35)-Gd(1)-O(20)	82.2(4)
Gd(6)-O(34)	2.280(10)	O(22)-Gd(1)-O(20)	68.7(4)
Gd(6)-O(26)	2.338(13)	O(34)- $Gd(1)$ - $O(20)$	111.1(4)
Gd(6)-O(28)	2.343(11)	O(33)- $Gd(1)$ - $O(20)$	68.6(4)
Gd(6)-O(23)	2.388(12)	O(27)- $Gd(1)$ - $O(31)$	77.0(4)
Gd(6)-O(5)	2.396(11)	O(50)-Gd(1)-O(31)	67.2(4)
Gd(6)-O(43)	2.397(11)	O(35)-Gd(1)-O(31)	67.7(4)
Gd(6)-O(6)	2.429(13)	O(22)-Gd(1)-O(31)	123.4(4)
Gd(6)-O(24)	2.514(12)	O(34)-Gd(1)-O(31)	81.6(3)
Gd(6)-O(44)	2.615(13)	O(33)-Gd(1)-O(31)	148.0(4)

Table S2. Selected bond lengths (Å) and angles (°) for 2.

O(20)-Gd(1)-O(31)	140.0(3)	O(51)-Gd(3)-O(22)	107.4(4)
O(2)-Gd(2)-O(43)	144.9(4)	O(20)-Gd(3)-O(22)	67.6(4)
O(2)-Gd(2)-O(41)	74.5(4)	O(14)-Gd(3)-O(22)	143.2(4)
O(43)-Gd(2)-O(41)	100.1(4)	O(18)-Gd(3)-O(21)	72.7(4)
O(2)-Gd(2)-O(33)	69.9(4)	O(16)-Gd(3)-O(21)	72.8(5)
O(43)-Gd(2)-O(33)	141.4(4)	O(12)-Gd(3)-O(21)	79.9(5)
O(41)-Gd(2)-O(33)	68.8(4)	O(51)-Gd(3)-O(21)	140.0(4)
O(2)-Gd(2)-O(6)	137.2(5)	O(20)-Gd(3)-O(21)	114.2(4)
O(43)-Gd(2)-O(6)	68.8(4)	O(14)-Gd(3)-O(21)	146.8(4)
O(41)-Gd(2)-O(6)	137.9(4)	O(22)-Gd(3)-O(21)	52.1(4)
O(33)-Gd(2)-O(6)	94.3(4)	O(18)-Gd(3)-O(13)	125.6(4)
O(2)-Gd(2)-O(42)	74.2(5)	O(16)-Gd(3)-O(13)	75.7(4)
O(43)-Gd(2)-O(42)	71.1(4)	O(12)-Gd(3)-O(13)	48.0(4)
O(41)-Gd(2)-O(42)	73.0(4)	O(51)-Gd(3)-O(13)	62.5(4)
O(33)-Gd(2)-O(42)	132.9(4)	O(20)-Gd(3)-O(13)	127.7(4)
O(6)-Gd(2)-O(42)	132.7(4)	O(14)-Gd(3)-O(13)	60.7(4)
O(2)-Gd(2)-O(34)	133.5(4)	O(22)-Gd(3)-O(13)	153.0(4)
O(43)- $Gd(2)$ - $O(34)$	69.9(4)	O(21)-Gd(3)-O(13)	118.1(4)
O(41)-Gd(2)-O(34)	67.7(4)	C(87)-Gd(3)-O(13)	140.0(5)
O(33)-Gd(2)-O(34)	71.8(4)	O(15)-Gd(4)-O(20)	82.8(4)
O(6)-Gd(2)-O(34)	70.4(4)	O(15)-Gd(4)-O(33)	150.0(4)
O(42)- $Gd(2)$ - $O(34)$	117.2(4)	O(20)-Gd(4)-O(33)	70.9(4)
O(2)-Gd(2)-N(1)	75.2(4)	O(15)-Gd(4)-O(40)	74.4(5)
O(43)- $Gd(2)$ - $N(1)$	89.3(4)	O(20)-Gd(4)-O(40)	90.5(4)
O(41)-Gd(2)-N(1)	139.1(4)	O(33)-Gd(4)-O(40)	118.7(4)
O(33)-Gd(2)-N(1)	123.8(4)	O(15)-Gd(4)-O(2)	140.8(4)
O(6)-Gd(2)-N(1)	82.6(4)	O(20)-Gd(4)-O(2)	135.6(4)
O(42)-Gd(2)-N(1)	72.7(5)	O(33)-Gd(4)-O(2)	68.2(4)
O(34)-Gd(2)-N(1)	150.4(4)	O(40)-Gd(4)-O(2)	94.4(5)
O(2)-Gd(2)-O(7)	76.7(4)	O(15)-Gd(4)-O(18)	70.0(4)
O(43)-Gd(2)-O(7)	126.1(4)	O(20)-Gd(4)-O(18)	69.9(4)
O(41)-Gd(2)-O(7)	129.9(4)	O(33)-Gd(4)-O(18)	87.3(4)
O(33)-Gd(2)-O(7)	63.2(4)	O(40)-Gd(4)-O(18)	140.9(4)
O(6)-Gd(2)-O(7)	60.9(4)	O(2)-Gd(4)-O(18)	123.5(4)
O(42)- $Gd(2)$ - $O(7)$	134.9(4)	O(15)-Gd(4)-O(19)	89.6(5)
O(34)-Gd(2)-O(7)	107.9(4)	O(20)-Gd(4)-O(19)	121.2(4)
N(1)-Gd(2)-O(7)	66.9(4)	O(33)-Gd(4)-O(19)	92.1(4)
O(18)-Gd(3)-O(16)	145.3(5)	O(40)-Gd(4)-O(19)	142.7(5)
O(18)-Gd(3)-O(12)	88.7(5)	O(2)-Gd(4)-O(19)	77.0(4)
O(16)-Gd(3)-O(12)	89.5(5)	O(18)-Gd(4)-O(19)	53.0(4)
O(18)-Gd(3)-O(51)	143.1(4)	O(15)-Gd(4)-O(41)	123.5(4)
O(16)-Gd(3)-O(51)	68.8(4)	O(20)-Gd(4)-O(41)	78.7(4)
O(12)-Gd(3)-O(51)	110.4(4)	O(33)-Gd(4)-O(41)	65.9(4)
O(18)-Gd(3)-O(20)	71.7(4)	O(40)- $Gd(4)$ - $O(41)$	53.1(4)
O(16)-Gd(3)-O(20)	119.8(4)	O(2)-Gd(4)-O(41)	69.6(4)
O(12)-Gd(3)-O(20)	149.7(4)	O(18)-Gd(4)-O(41)	144.1(4)
O(51)-Gd(3)-O(20)	76.9(4)	O(19)-Gd(4)-O(41)	144.8(4)
O(18)-Gd(3)-O(14)	82.3(4)	O(15)-Gd(4)-O(1)	76.1(4)
O(16)-Gd(3)-O(14)	131.0(4)	O(20)-Gd(4)-O(1)	156.8(4)
O(12)-Gd(3)-O(14)	78.0(5)	O(33)-Gd(4)-O(1)	131.9(4)
O(51)-Gd(3)-O(14)	71.8(4)	O(40)- $Gd(4)$ - $O(1)$	75.0(4)
O(20)-Gd(3)-O(14)	76.8(4)	O(2)-Gd(4)-O(1)	64.8(4)
O(18)-Gd(3)-O(22)	78.3(4)	O(18)-Gd(4)-O(1)	110.4(4)
O(16)-Gd(3)-O(22)	77.4(4)	O(19)-Gd(4)-O(1)	68.5(4)
O(12)-Gd(3)-O(22)	131.9(5)	O(41)-Gd(4)-O(1)	105.3(4)
	× /		· · · ·

O(31)-Gd(5)-O(37)	145.9(4)	O(6)-Gd(6)-O(24)	139.9(4)
O(31)-Gd(5)-O(39)	87.7(4)	O(34)-Gd(6)-O(44)	129.8(4)
O(37)-Gd(5)-O(39)	96.9(5)	O(26)-Gd(6)-O(44)	65.5(4)
O(31)-Gd(5)-O(25)	110.4(4)	O(28)-Gd(6)-O(44)	145.7(4)
O(37)-Gd(5)-O(25)	84.0(5)	O(23)-Gd(6)-O(44)	79.0(4)
O(39)-Gd(5)-O(25)	146.2(5)	O(5)-Gd(6)-O(44)	70.6(4)
O(31)-Gd(5)-O(30)	69.5(3)	O(43)-Gd(6)-O(44)	61.9(4)
O(37)-Gd(5)-O(30)	79.2(4)	O(6)-Gd(6)-O(44)	102.3(4)
O(39)-Gd(5)-O(30)	74.4(4)	O(24)-Gd(6)-O(44)	117.7(4)
O(25)-Gd(5)-O(30)	138.1(4)	O(35)-Gd(7)-O(36)	143.8(4)
O(31)-Gd(5)-O(50)	68.7(4)	O(35)-Gd(7)-O(50)	67.7(4)
O(37)-Gd(5)-O(50)	87.7(4)	O(36)-Gd(7)-O(50)	88.4(4)
O(39)-Gd(5)-O(50)	140.8(4)	O(35)-Gd(7)-O(30)	68.5(4)
O(25)-Gd(5)-O(50)	73.0(4)	O(36)-Gd(7)-O(30)	78.1(4)
O(30)-Gd(5)-O(50)	68.2(4)	O(50)-Gd(7)-O(30)	69.9(4)
O(31)-Gd(5)-O(24)	69.3(4)	O(35)-Gd(7)-O(46)	113.4(4)
O(37)-Gd(5)-O(24)	144.7(4)	O(36)-Gd(7)-O(46)	80.7(5)
O(39)-Gd(5)-O(24)	83.0(5)	O(50)-Gd(7)-O(46)	69.9(4)
O(25)-Gd(5)-O(24)	77.5(4)	O(30)-Gd(7)-O(46)	134.6(4)
O(30)-Gd(5)-O(24)	133 3(4)	O(35)-Gd(7)-O(51)	74 0(4)
O(50)-Gd(5)-O(24)	114 5(4)	O(36)-Gd(7)-O(51)	142.0(4)
O(31)-Gd(5)-O(32)	140 9(4)	O(50) - Gd(7) - O(51)	112.2(3)
O(37)-Gd(5)-O(32)	71 6(5)	O(30)-Gd(7)-O(51)	138.1(4)
O(39)-Gd(5)-O(32)	72.8(5)	O(46)-Gd(7)-O(51)	77 5(4)
O(25)-Gd(5)-O(32)	75 5(4)	O(35)-Gd(7)-O(49)	81 0(4)
O(30)-Gd(5)-O(32)	1324(4)	O(36)-Gd(7)-O(49)	1091(5)
O(50)-Gd(5)-O(32)	143.8(4)	O(50) - Gd(7) - O(49)	1445(4)
O(24)-Gd(5)-O(32)	74 8(4)	O(30) - Gd(7) - O(49)	834(4)
O(24) Od(5) O(52) O(34)-Gd(6)-O(26)	84 6(4)	O(46)-Gd(7)-O(49)	1417(4)
O(34)-Gd(6)-O(28)	82 3(4)	O(51)-Gd(7)-O(49)	727(4)
O(26)-Gd(6)-O(28)	1397(4)	O(35)-Gd(7)-O(11)	1393(4)
O(20) Od(0) O(20) O(34)-Gd(6)-O(23)	135.7(4) 135.9(4)	O(36)-Gd(7)-O(11)	752(4)
O(26)-Gd(6)-O(23)	79 3(4)	O(50) - Gd(7) - O(11)	143.9(4)
O(28)-Gd(6)- $O(23)$	84 1(4)	O(30) - Gd(7) - O(11)	1345(4)
O(20) Od(0) O(20) O(34)-Gd(6)-O(5)	1403(4)	O(46)-Gd(7)-O(11)	757(4)
O(26)-Gd(6)-O(5)	1323(4)	O(51)-Gd(7)-O(11)	69.4(4)
O(28)-Gd(6)-O(5)	76 2(4)	O(49)-Gd(7)-O(11)	71.6(4)
O(23)-Gd(6)-O(5)	70.2(4) 74 7(4)	O(51)-Gd(8)-O(10)	1211(4)
O(23) Od(0) O(3) O(34)-Gd(6)-O(43)	71.0(4)	O(13)-Gd(8)-O(10)	121.1(4) 148 7(5)
O(26)-Gd(6)-O(43)	71.5(4)	O(8)-Gd(8)-O(10)	83 1(5)
O(28)-Gd(6)-O(43)	137.0(4)	O(47)-Gd(8)-O(10)	733(5)
O(23)-Gd(6)-O(43)	137.0(4) 138 1(4)	O(51)-Gd(8)-O(45)	75.3(3) 75.3(4)
O(23)-O((0)-O(43)	103 6(4)	O(13)-Gd(8)-O(45)	77.7(5)
O(34)-Gd(6)-O(6)	72 0(4)	O(8)-Gd(8)-O(45)	125.8(5)
O(34)- $O(0)$ - $O(0)$	12.0(4)	O(8)- $O(8)$ - $O(45)$	123.6(5)
O(20)- $O(0)$ - $O(0)$	73.7(4)	O(10) Gd(8) O(45)	138.0(3)
O(28)- $O(0)$ - $O(0)$	1/3.7(4) 1/1.9(4)	O(10)-O((8)-O(43)) O(51)-Gd(8)-O(9)	140.8(4)
O(23)- $O(0)$ - $O(0)$	70.1(4)	O(13) Gd(8) O(9)	765(5)
O(3)-Ou(0)-O(0)	70.1(4) 66 5(4)	O(13)-O((8)-O(9)	70.3(3)
O(34)-Gd(6)-O(0)	83 0(4)	O(0) - O(0) - O(3)	32.3(3) 127 6(5)
O(26) - Gd(6) - O(24)	68 5(4)	O(10) Gd(8) O(9)	127.0(3) 76.0(5)
O(20) - Ou(0) - O(24) O(28) - Cd(6) O(24)	72 2(4)	O(10) - O((0) - O(3)) O(45) Cd(8) O(0)	70.0(3)
O(23) - Ou(0) - O(24)	72.2(4) 52 $9(4)$	O(51) Cd(0) O(5)	680(4)
O(23)-Ou(0)-O(24)	32.7(4) 120.2(4)	O(31) - Ou(0) - O(11) O(12) Cd(9) O(11)	121 0(5)
O(3) - Ou(0) - O(24) O(43) - Cd(6) - O(24)	120.2(4) 122.9(4)	O(13) - O(10) - O(11) O(2) - O(2) - O(11)	134.0(3) 122.9(5)
O(43) - Ou(0) - O(24)	133.8(4)	O(o)- $O(11)$	152.0(3)

O(47)-Gd(8)-O(11)	71.4(4)	O(31)-Gd(9)-O(38)	100.9(4)
O(10)-Gd(8)-O(11)	52.3(4)	O(30)-Gd(9)-O(38)	74.6(4)
O(45)-Gd(8)-O(11)	67.3(4)	O(3)-Gd(9)-O(29)	80.2(5)
O(9)-Gd(8)-O(11)	118.2(4)	O(48)-Gd(9)-O(29)	88.2(5)
O(51)-Gd(8)-O(14)	68.8(4)	O(31)-Gd(9)-O(29)	103.7(5)
O(13)-Gd(8)-O(14)	67.0(4)	O(30)-Gd(9)-O(29)	142.5(4)
O(8)-Gd(8)-O(14)	83.8(4)	O(38)-Gd(9)-O(29)	141.3(5)
O(47)-Gd(8)-O(14)	69.8(4)	O(3)-Gd(9)-O(35)	130.0(4)
O(10)-Gd(8)-O(14)	142.1(4)	O(48)-Gd(9)-O(35)	82.6(4)
O(45)-Gd(8)-O(14)	134.8(4)	O(31)-Gd(9)-O(35)	68.7(4)
O(9)-Gd(8)-O(14)	121.3(4)	O(30)-Gd(9)-O(35)	66.6(3)
O(11)-Gd(8)-O(14)	120.3(4)	O(38)-Gd(9)-O(35)	141.0(4)
O(3)-Gd(9)-O(48)	140.1(5)	O(29)-Gd(9)-O(35)	76.5(4)
O(3)-Gd(9)-O(31)	75.0(4)	O(3)-Gd(9)-O(4)	65.4(5)
O(48)-Gd(9)-O(31)	144.9(4)	O(48)-Gd(9)-O(4)	74.7(5)
O(3)-Gd(9)-O(30)	129.1(5)	O(31)-Gd(9)-O(4)	140.2(4)
O(48)-Gd(9)-O(30)	81.0(4)	O(30)-Gd(9)-O(4)	136.1(4)
O(31)-Gd(9)-O(30)	69.4(4)	O(38)-Gd(9)-O(4)	68.9(5)
O(3)-Gd(9)-O(38)	77.9(5)	O(29)-Gd(9)-O(4)	73.1(5)
O(48)-Gd(9)-O(38)	88.6(5)	O(35)-Gd(9)-O(4)	142.3(4)