Electronic Supplementary Information

A robust CdS/In₂O₃ hierarchical heterostructure derived from a metal-organic framework for efficient visible-light photocatalytic hydrogen production

Jia-Tong Ren, Kun Yuan, Ke Wu, Liang Zhou and Ya-Wen Zhang *

Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China. Fax: +86-10-62756787; Tel: +86-10-62756787; Email: <u>ywzhang@pku.edu.cn</u>

Figure S1. XRD patterns of (a) MIL-68 hexagonal prisms and In₂O₃ hierarchical nanotubes, and (b) CdS nanoparticle aggregates.

Figure S2. (a, b) SEM images of MIL-68 hexagonal prisms.

Figure S3. Zeta potential of In₂O₃ hierarchical nanotubes.

Figure S4. SEM images of (a, b) CdS/In₂O₃-1 and (c, d) CdS/In₂O₃-3.

Figure S5. SEM images of CdS/In₂O₃-2 at (a) 10 min, (b) 30 min, (c) 60 min and (d) 120 min in the growth process of CdS.

Figure S6. (a, b) SEM, (c) TEM and (d) HRTEM images of CdS nanoparticle aggregates.

Figure S7. SAED pattern of CdS/In₂O₃-2.

Figure S8. XPS survey-scan spectrum of CdS/In₂O₃-2.

Figure S9. Tauc plots of (a) CdS nanoparticles, (b) CdS/In₂O₃-1, (c) CdS/In₂O₃-2 and (d) CdS/In₂O₃-3.

Figure S10. Wavelength-dependent hydrogen generation activity of CdS/In₂O₃-2.

Catalyst	Light source	Sacrificial agent	Cocatalyst	Amount of H ₂ (μmol g ⁻¹ h ⁻¹)	AQE ^a	Ref.
CdS/In ₂ O ₃ -2	300 W Xe lamp (λ > 400 nm)	10 vol% TEOA	/	235.05	0.2 % at 420 nm	This work
Cr-Doped Ba ₂ In ₂ O ₅ /In ₂ O ₃	300 W Xe lamp ($\lambda > 420 \text{ nm}$)	18.5 vol% methanol	0.5 wt % Pt	15.8	0.3 % at 420 nm	1
$In_2O_3/La_2Ti_2O_7$	500 W Xe lamp	25 vol% methanol	1 wt % Pt	68.14	0.41 %	2
Gd2Ti2O7/In2O3	125 W Hg lamp $(\lambda > 400 \text{ nm})$	10 vol% methanol	/	5798	/	3
In ₂ O ₃ /ZnO	125 W Hg lamp $(\lambda > 400 \text{ nm})$	10 vol% methanol	/	1760	/	4
In2O3/g-C3N4	300 W Xe lamp $(\lambda > 420 \text{ nm})$	0.1 M L-ascorbic acid	0.5 wt % Pt	197.5	/	5
In ₂ S ₃ /CdIn ₂ S ₄ /In ₂ O ₃	225 W Xe lamp	0.35 M Na ₂ S + 0.25 M Na ₂ SO ₃	1 wt % Pt	2004	/	6
In2S3/In2O3	300 W Xe lamp	10 vol% methanol	1 wt % Pt	61.4	/	7
CdS/In ₂ O ₃	300 W Xe lamp ($\lambda > 420 \text{ nm}$)	20 vol % lactic acid	1 wt % Pt	573.6	/	8
CdS/WO ₃	500 W Xe lamp ($\lambda > 400 \text{ nm}$)	lactic acid	/	369	/	9

Table S1. Comparison of activity for photocatalytic H₂ generation between CdS/In₂O₃-2 and some other photocatalysts.

^aAQE: Apparent quantum efficiency.

Figure S11. (a, b) SEM and (c, d) TEM images of In₂O₃ nanorods.

Figure S12. XRD patterns of the as-prepared In₂O₃ nanorods and CdS/In₂O₃ nanorods.

Figure S13. (a, b) SEM and (c, d) TEM images of CdS/In₂O₃ nanorods.

Figure S14. Photocatalytic activities of CdS/In₂O₃-2 (CI-2) and CdS/In₂O₃ nanorods (CIR-2) towards visible-light hydrogen production from water.

Figure S15. Nitrogen adsorption-desorption isotherms of (a) In_2O_3 nanotubes, (b) CdS nanoparticles, (c) CdS/In₂O₃-1 and (d) CdS/In₂O₃-3. Insets in (a-d) are the pore size distributions of corresponding samples.

Figure S16. SEM images of CdS/In₂O₃-2 (a) before and (b) after the photocatalytic cyclic test.

Supplementary references

- 1 D. F. Wang, Z. G. Zou and J. H. Ye, Chem. Mater., 2005, 17, 3255-3261.
- 2 S. J. Hu, B. Chi, J. Pu and L. Jian, J. Mater. Chem. A, 2014, 2, 19260–19267.
- 3 A. Nashim, S. Martha and K. M. Parida, ChemCatChem, 2013, 5, 2352–2359.
- 4 S. Martha, K. H. Reddy and K. M. Parida, J. Mater. Chem. A, 2014, 2, 3621–3631.

5 S. W. Cao, X. F. Liu, Y. P. Yuan, Z. Y. Zhang, Y. S. Liao, J. Fang, S. C. J. Loo, T. C. Sum and C. Xue, *Appl. Catal. B: Environ.*, 2014, **147**, 940–946.

D. D. Ma, J. W. Shi, Y. J. Zou, Z. Y. Fan, J. W. Shi, L. H. Cheng, D. K. Sun, Z. Y. Wang and C. M. Niu, *Nanoscale*, 2018, **10**, 7860–7870.

7 X. Yang, J. Xu, T. L. Wong, Q. D. Yang and C. S. Lee, *Phys. Chem. Chem. Phys.*, 2013, **15**, 12688–12693.

8 Y. X. Pan, H. Q. Zhuang, J. D. Hong, Z. Fang, H. Liu, B. Liu, Y. Z. Huang and R. Xu, *ChemSusChem*, 2014, 7, 2537–2544.

9 L. J. Zhang, S. Li, B. K. Liu, D. J. Wang and T. F. Xie, ACS Catal., 2014, 4, 3724–3729.