SUPPLEMENTARY MATERIAL FOR

Hyperfine Coupling and Slow Magnetic Relaxation in Isotopically Enriched Dy^{III} Mononuclear Single-Molecule Magnets

Jessica Flores Gonzalez,^a Fabrice Pointillart*^a and Olivier Cador,*^a

^{*a*} Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France

Corresponding author: olivier.cador@univ-rennes1.fr

Table of contents

Figures

S1 . ORTEP view of the asymmetric unit in ¹⁶² Dy
S2 . ORTEP view of the asymmetric unit in ¹⁶³ Dy
S3 . ORTEP view of the asymmetric unit in ¹⁶² Dy@Y4
S4 . ORTEP view of the asymmetric unit in ¹⁶³ Dy@ Y4
S5 . Crystal packing view of ¹⁶² Dy highlighting the formation of "head-to-tail" dimers5
S6 . Thermal variations of $\chi_M T$ of a solid-state samples of 162 Dy, 163 Dy, 162 Dy@Y and
¹⁶³ Dy@Y5
S7. Field variations of the magnetization at 2 K for ¹⁶² Dy, ¹⁶³ Dy, ¹⁶² Dy@Y and ¹⁶³ Dy@Y.6
Extended Debye model
S8 . Frequency dependence of the in-phase (χ_M) and out-of-phase (χ_M) components of the ac susceptibility measured on powder at 4 K in zero dc field with the best fitted curves (red lines) for ¹⁶³ Dy@Y
S9 . Frequency dependence of the in-phase component of the ac susceptibility measured in zero dc field for compound ¹⁶² Dy between 2 and 15 K7
S10 . Frequency dependence of the in-phase component of the ac susceptibility measured in
zero dc field for compound ¹⁶³ Dy between 2 and 15 K
S11. Normalized Cole-Cole plots in zero magnetic field for ¹⁶² Dy between 2 and 15 K8
S12 . Normalized Cole-Cole plots in zero magnetic field for ¹⁶³ Dy between 2 and 15 K9
S13 . Frequency dependence of the in-phase (top) and out-of-phase (bottom) components of the ac susceptibility measured in 1000 Oe dc field for compound ¹⁶² Dy between 2 and 15 K

S14. Frequency dependence of the in-phase (top) and out-of-phase (bottom) component	ts of
the ac susceptibility measured in 1000 Oe dc field for compound ¹⁶³ Dy between 2 and 1	15 K
	11
S15. Normalized Cole-Cole plots in 1000 Oe magnetic field for ¹⁶² Dy between 2 and 1	15 K
S16 . Normalized Cole-Cole plots in 1000 Oe magnetic field for ¹⁶³ Dy between 2 and 1	12 15 K
S17 Log scale plots of the temperature dependence of the relaxation time of and $\frac{10}{10}$	53 D V
measured in 1000 Oe magnetic field.	13
S18 . Frequency dependence of the in-phase component of the ac susceptibility measure	ed in
zero dc field for compound ¹⁶¹ Dy@Y between 2 and 15 K.	14
S19 . Frequency dependence of the in-phase component of the ac susceptibility measure	ed in
zero dc field for compound ¹⁶³ Dy@Y between 2 and 15 K.	15
S20 . Normalized Cole-Cole plots in zero dc field for ¹⁶¹ Dy@Y between 2 and 15 K	16
S21. Normalized Cole-Cole plots in zero dc field for ¹⁶³ Dy@Y between 2 and 15 K	16
S22. Magnetic hysteresis loops measured on ¹⁶¹ Dy@Y and ¹⁶³ Dy at 0.46 K	17
Tables	
S1. X-ray crystallographic data for the complexes ¹⁶² Dy, ¹⁶² Dy@Y, ¹⁶³ Dy and ¹⁶³ Dy@Y	Y .18
S2. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for compout ¹⁶² Dy at 0 Oe in the temperature range 2-15 K	nd 19
S3. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for compount ¹⁶³ Dy at 0 Oe in the temperature range 2-15 K	nd 20
S4. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for compo	ound
¹⁶² Dy at 1000 Oe in the temperature range 4.5-15 K	21
S5. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for compo	ound
¹⁶³ Dy at 1000 Oe in the temperature range 2-15 K	21
S6. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for compount ¹⁶² D y@ Y at 0 Oe in the temperature range 2-15 K	nd 22
S7. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for compo	ound
¹⁶³ Dy@Y at 0 Oe in the temperature range 2-15 K	23

Figure S1. ORTEP view of the asymmetric unit in 162 Dy. Thermal ellipsoids are drawn at 30% probability. Hydrogen atoms and *n*-hexane molecule of crystallization are omitted for clarity.

Figure S2. ORTEP view of the asymmetric unit in 163 Dy. Thermal ellipsoids are drawn at 30% probability. Hydrogen atoms and *n*-hexane molecule of crystallization are omitted for clarity.

Figure S3. ORTEP view of the asymmetric unit in 162 Dy@Y. Thermal ellipsoids are drawn at 30% probability. Hydrogen atoms and *n*-hexane molecule of crystallization are omitted for clarity.

Figure S4. ORTEP view of the asymmetric unit in 163 Dy@Y. Thermal ellipsoids are drawn at 30% probability. Hydrogen atoms and *n*-hexane molecule of crystallization are omitted for clarity.

Figure S5. Crystal packing view of 162 **Dy** highlighting the formation of "head-to-tail" dimers. The ligand L and Dy(tta)₃ organometallic are respectively shown in "space fill" and "ball and sticks" representations.

Figure S6. Thermal variations of $\chi_M T$ of a solid-state samples of ¹⁶²**Dy** (full orange circles), ¹⁶³**Dy** (full green circles), ¹⁶²**Dy@Y** (open orange circles) and ¹⁶³**Dy@Y** (open green circles) between 2 and 300 K in applied magnetic field of 200 Oe for temperatures between 2 and 20 K, 2 kOe between 20 and 80 K and 10 kOe above.

Figure S7. Field variations of the magnetization at 2 K for ¹⁶²Dy (full orange circles), ¹⁶³Dy (full green circles), ¹⁶²Dy@Y (open orange circles) and ¹⁶³Dy@Y (open green circles). Extended Debye model.

$$\chi_{M}' = \chi_{S} + (\chi_{T} - \chi_{S}) \frac{1 + (\omega\tau)^{1-\alpha} \sin\left(\alpha \frac{\pi}{2}\right)}{1 + 2(\omega\tau)^{1-\alpha} \sin\left(\alpha \frac{\pi}{2}\right) + (\omega\tau)^{2-2\alpha}}$$
$$\chi_{M}'' = (\chi_{T} - \chi_{S}) \frac{(\omega\tau)^{1-\alpha} \cos\left(\alpha \frac{\pi}{2}\right)}{1 + 2(\omega\tau)^{1-\alpha} \sin\left(\alpha \frac{\pi}{2}\right) + (\omega\tau)^{2-2\alpha}}$$

With χ_T the isothermal susceptibility, χ_S the adiabatic susceptibility, τ the relaxation time and α an empiric parameter which describe the distribution of the relaxation time. For SMM with only one relaxing object α is close to zero. The extended Debye model was applied to fit simultaneously the experimental variations of χ_M ' and χ_M '' with the frequency ν of the oscillating field ($\omega = 2\pi\nu$). Typically, only the temperatures for which a maximum on the χ_M '' vs. ν curves, have been considered (see figure here below for an example). The best fitted parameters τ , α , χ_T , χ_S are listed in Table S2 to S7 with the coefficient of determination R².

Figure S8. Frequency dependence of the in-phase (χ_M) and out-of-phase (χ_M) components of the ac susceptibility measured on powder at 4 K in zero dc field with the best fitted curves (red lines) for ¹⁶³Dy@Y.

Figure S9. Frequency dependence of the in-phase component of the ac susceptibility measured in zero dc field for compound ¹⁶²Dy between 2 and 15 K.

Figure S10. Frequency dependence of the in-phase component of the ac susceptibility measured in zero dc field for compound ¹⁶³Dy between 2 and 15 K.

Figure S11. Normalized Cole-Cole plots in zero magnetic field for ¹⁶²Dy between 2 and 15 K.

Figure S12. Normalized Cole-Cole plots in zero magnetic field for ¹⁶³Dy between 2 and 15 K.

Figure S13. Frequency dependence of the in-phase (top) and out-of-phase (bottom) components of the ac susceptibility measured in 1000 Oe dc field for compound ¹⁶²Dy between 2 and 15 K.

Figure S14. Frequency dependence of the in-phase (top) and out-of-phase (bottom) components of the ac susceptibility measured in 1000 Oe dc field for compound ¹⁶³Dy between 2 and 15 K.

Figure S15. Normalized Cole-Cole plots in 1000 Oe magnetic field for ¹⁶²Dy between 2 and 15 K.

Figure S16. Normalized Cole-Cole plots in 1000 Oe magnetic field for ¹⁶³Dy between 2 and 15 K.

Figure S17. Log scale plots of the temperature dependence of the relaxation time of ¹⁶²Dy (full orange circles) and ¹⁶³Dy (full green circles) measured in 1000 Oe magnetic field.

Figure S18. Frequency dependence of the in-phase component of the ac susceptibility measured in zero dc field for compound 161 Dy@Y between 2 and 15 K.

Figure S19. Frequency dependence of the in-phase component of the ac susceptibility measured in zero dc field for compound 163 Dy@Y between 2 and 15 K.

Figure S20. Normalized Cole-Cole plots in zero dc field for ¹⁶¹Dy@Y between 2 and 15 K.

Figure S21. Normalized Cole-Cole plots in zero dc field for ¹⁶³Dy@Y between 2 and 15 K.

Figure S22. Magnetic hysteresis loops measured on ¹⁶¹Dy@Y and ¹⁶³Dy at 0.46 K at a sweep rate of 16 Oe s⁻¹.

Compounds	$ \begin{array}{c} [^{162}\text{Dy}(\text{tta})_3(\mathbf{L})] \cdot (C_6\text{H}_{14}) \\ (^{162}\textbf{Dy}) \end{array} $	$ \begin{array}{c} [{}^{162}\text{Dy}_{0.05}\text{Y}_{0.95}(\text{tta})_3(\textbf{L})] \cdot (\text{C}_6\text{H}_{14}) \\ ({}^{162}\text{Dy}@\textbf{Y}) \end{array} $
Formula	C ₅₈ H ₅₂ DyF ₉ N ₄ O ₆ S ₉	$C_{58}H_{52}Dy_{0.05}Y_{0.95}F_9N_4O_6S_9$
$M / g.mol^{-1}$	1522.57	1452.19
Crystal system	triclinic	monoclinic
Space group	P-1 (N°2)	P-1 (N°2)
Space Broup	a = 153700(12) Å	a = 153310(11) Å
	h = 15.7135(13) Å	h = 15.6911(12) Å
Cell parameters	c = 16.7271(14) Å	c = 16.7368(13) Å
Cell parameters	$\alpha = 07.081(3)^{\circ}$	$\alpha = 08.060(3)^{\circ}$
	u = 97.981(3) $0 = 110.200(2)^{\circ}$	a = 98.000(5) $R = 110.104(2)^{\circ}$
	p = 110.300(3)	p = 110.194(2)
	$\gamma = 117.242(3)^{\circ}$	$\gamma = 11/.203(3)^{2}$
Volume / A ³	3146.7(5)	3139.3(4)
Cell formula units	2	2
T / K	150 (2)	150(2)
Diffraction reflection	$5.86 \le 2\theta \le 54.96$	$5.86 \le 2\theta \le 54.97$
$\rho_{calc}, g.cm^{-3}$	1.607	1.533
μ, mm ⁻¹	1.565	1.308
Number of reflections	67713	68306
Independent reflections	14397	14375
$Fo^2 > 2\sigma(Fo)^2$	12668	11375
Number of variables	783	771
$R_{int} R_1 W R_2$	0.0438 0.0547 0.1356	0.0527 0.0731 0.1962
Compounds	$[^{163}\text{Dy}(\text{tta})_3(\text{L})] \cdot (\text{C}_6\text{H}_{14})$	$[^{163}\text{Dy}_{0.05}\text{Y}_{0.95}(\text{tta})_{3}(\text{L})]\cdot(\text{C}_{6}\text{H}_{14})$
	(¹⁰⁵ Dy)	$\frac{(^{103}\text{Dy}(a)\text{Y})}{(a)}$
Formula	$C_{58}H_{52}DyF_9N_4O_6S_9$	$C_{58}H_{52}Dy_{0.05}Y_{0.95}F_9N_4O_6S_9$
M / g.mol ⁻¹	1523.57	1453.19
Crystal system	triclinic	triclinic
Space group	P-1 (N°2)	P-1 (N°2)
	a = 15.3548(22) Å	a = 15.3157(10) Å
	b = 15.7144(23) Å	b = 15.6570(10) Å
Cell parameters	c = 16.7281(23) Å	c = 16.7142(10) Å
	$\alpha = 98.032(5)^{\circ}$	$\alpha = 98.058(2)^{\circ}$
	$\beta = 110.191(5)^{\circ}$	$\beta = 110.199(2)^{\circ}$
	$\gamma = 117.221(5)^{\circ}$	$\gamma = 117.307(2)^{\circ}$
Volume / Å ³	3147.3(8)	3120.8(3)
Cell formula units	2	2
T / K	150(2)	150(2)
Diffraction reflection	4.46 < 20 < 55.03	5.88 < 20 < 54.97
\sim σ	1 607	1 543
$\mu_{calc}, g.cm^{-1}$	1 565	1 379
µ, IIIII - Number of reflections	1.303	1.320
number of reflections	66222	77501
	66322	77501
Independent reflections	66322 14444	77501 14299
Independent reflections $Fo^2 > 2\sigma(Fo)^2$	66322 14444 12519	77501 14299 9999
Independent reflections $Fo^2 > 2\sigma(Fo)^2$ Number of variables	66322 14444 12519 699	77501 14299 9999 783

Table S1. X-ray crystallographic data for the complexes ¹⁶²Dy, ¹⁶²Dy@Y, ¹⁶³Dy and ¹⁶³Dy@Y.

<i>T</i> / K	χ_T / cm ³ mol ⁻¹	χ_S / cm ³ mol ⁻¹	α	au / s	R ²
15	0.76651	0.34054	0.07877	0.00013	0.99997
14	0.82041	0.29118	0.10072	0.00017	0.99996
13	0.88221	0.25056	0.11371	0.00022	0.99991
12	0.95395	0.20491	0.12714	0.00030	0.99982
11	1.04771	0.15944	0.13615	0.00043	0.99969
10	1.15525	0.12596	0.14186	0.00066	0.99952
9	1.28144	0.11612	0.13763	0.00105	0.99946
8	1.44212	0.12053	0.13587	0.00169	0.99937
7	1.65172	0.13272	0.14278	0.00266	0.99911
6	1.93405	0.15273	0.15961	0.00396	0.99872
5.5	2.11595	0.16535	0.17112	0.00471	0.99850
5	2.33470	0.17688	0.18439	0.00545	0.99827
4.5	2.59873	0.19113	0.19574	0.00615	0.99814
4	2.92940	0.20890	0.20472	0.00675	0.99805
3.5	3.35070	0.23031	0.21098	0.00720	0.99798
3	3.90719	0.26058	0.21324	0.00756	0.99796
2.8	4.18384	0.27999	0.21247	0.00770	0.99800
2.4	4.88459	0.31994	0.21220	0.00792	0.99801
2	5.83351	0.37376	0.21157	0.00811	0.99798

Table S2. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for compound ¹⁶²Dy at 0 Oe in the temperature range 2-15 K.

<i>T</i> / K	χ_T / cm ³ mol ⁻¹	χ_S / cm ³ mol ⁻¹	α	au / s	R ²
15	0.80669	0.35287	0.10102	0.00010	0.99997
14	0.86240	0.32644	0.10376	0.00014	0.99995
13	0.92650	0.27661	0.13364	0.00016	0.99995
12	1.00140	0.22560	0.14916	0.00020	0.99989
11	1.09990	0.20614	0.15542	0.00027	0.99986
10	1.20898	0.18310	0.16554	0.00036	0.99982
9	1.34358	0.18310	0.17573	0.00048	0.99975
8	1.51242	0.19077	0.19139	0.00060	0.99965
7	1.72893	0.21156	0.20908	0.00072	0.99959
6	2.01690	0.22844	0.23185	0.00080	0.99955
5.5	2.20004	0.24306	0.24020	0.00084	0.99954
5	2.41820	0.25295	0.24938	0.00086	0.99958
4.5	2.67923	0.30046	0.24777	0.00090	0.99955
4	3.01828	0.29785	0.26169	0.00090	0.99963
3.5	3.44736	0.32953	0.26560	0.00092	0.99964
3	4.01898	0.36854	0.27018	0.00093	0.99965
2.8	4.30593	0.38356	0.27225	0.00094	0.99965
2.4	5.02994	0.44492	0.27339	0.00096	0.99966
2	6.01177	0.51840	0.27485	0.00097	0.99967

Table S3. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for compound ¹⁶³Dy at 0 Oe in the temperature range 2-15 K.

r					
T/K	$\chi_T / \mathrm{cm}^3 \mathrm{mol}^{-1}$	χ_S / cm ³ mol ⁻¹	α	au / s	R ²
15	0.76719	0.32071	0.12145	0.00019	0.99995
14	0.82236	0.27867	0.14585	0.00031	0.99983
13	0.88586	0.23913	0.16845	0.00050	0.99957
12	0.96188	0.18809	0.20113	0.00079	0.99904
11	1.06264	0.12504	0.23161	0.00131	0.99835
10	1.17644	0.07533	0.24780	0.00221	0.99823
9	1.31353	0.04491	0.25163	0.00406	0.99853
8	1.48767	0.03073	0.25326	0.00813	0.99893
7	1.71732	0.02299	0.25832	0.01788	0.99935
6	2.01831	0.02277	0.26492	0.04450	0.99954
5.5	2.17559	0.02730	0.26109	0.07280	0.99942
5	2.31044	0.03361	0.25035	0.11947	0.99938
4.5	2.40781	0.04207	0.23336	0.19762	0.99953

Table S4. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for compound ¹⁶²Dy at 1000 Oe in the temperature range 4.5-15 K.

Table S5. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for compound ¹⁶³Dy at 1000 Oe in the temperature range 2-15 K.

<i>T /</i> K	$\chi_T / \mathrm{cm}^3 \mathrm{mol}^{-1}$	$\chi_S / \mathrm{cm}^3 \mathrm{mol}^{-1}$	α	au / s	R ²
15	0.80654	0.34223	0.12206	0.00019	0.99993
14	0.86428	0.31084	0.14007	0.00032	0.99986
13	0.93138	0.26156	0.16920	0.00050	0.99955
12	1.01084	0.20786	0.20423	0.00077	0.99906
11	1.11718	0.14261	0.23420	0.00127	0.98380
10	1.23610	0.09500	0.24952	0.00215	0.99830
9	1.37988	0.06937	0.25254	0.00399	0.99851
8	1.56291	0.05649	0.25437	0.00792	0.99903
7	1.80577	0.05423	0.26088	0.01743	0.99939
6	2.12412	0.05833	0.26931	0.04324	0.99964
5.5	2.30272	0.06653	0.26968	0.07127	0.99962
5	2.46570	0.07743	0.26335	0.11832	0.99954
4.5	2.63172	0.09178	0.25527	0.20356	0.99956

		I	1		1
T/K	χ_T / cm ³ mol ⁻¹	χ_S / cm ³ mol ⁻¹	α	au / s	R ²
15	0.04344	0.01002	0.21240	0.00012	0.99930
14	0.04652	0.01166	0.20149	0.00022	0.99915
13	0.05006	0.01167	0.19627	0.00039	0.99906
12	0.05437	0.00788	0.24203	0.00053	0.99841
11	0.05993	0.00547	0.25397	0.00086	0.99858
10	0.06618	0.00420	0.25272	0.00144	0.99864
9	0.07385	0.00313	0.25730	0.00254	0.99850
8	0.08345	0.00306	0.25115	0.00488	0.99912
7	0.09634	0.00305	0.26149	0.00988	0.99935
6	0.10950	0.00447	0.24614	0.02090	0.99930
5.5	0.12013	0.00469	0.25991	0.03292	0.99920
5	0.13318	0.00550	0.27632	0.05523	0.99928
4.5	0.14995	0.00613	0.30435	0.09874	0.99929

Table S6. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for compound ¹⁶²Dy@Y at 0 Oe in the temperature range 2-15 K.

T/K	χ_T / cm ³ mol ⁻¹	χ_S / cm ³ mol ⁻¹	α	au / s	R ²
15	0.05009	0.01744	0.17803	0.00012	0.99966
14	0.05391	0.01388	0.21544	0.00018	0.99933
13	0.05803	0.01340	0.21551	0.00030	0.99928
12	0.06305	0.01095	0.24195	0.00045	0.99877
11	0.06958	0.00758	0.26459	0.00071	0.99825
10	0.07666	0.00632	0.26212	0.00120	0.99830
9	0.08541	0.00572	0.25452	0.00208	0.99885
8	0.09644	0.00609	0.24782	0.00380	0.99912
7	0.11065	0.00754	0.24229	0.00721	0.99892
6	0.12638	0.00841	0.23603	0.01308	0.99910
5.5	0.13818	0.00923	0.24212	0.01843	0.99917
5	0.15267	0.00988	0.25747	0.02608	0.99905
4.5	0.17087	0.01020	0.28085	0.03699	0.99828
4	0.19361	0.01174	0.30258	0.05268	0.99894
3.5	0.22354	0.01249	0.33594	0.07390	0.99898
3	0.26433	0.01266	0.37648	0.10238	0.99905
2.8	0.28480	0.01268	0.39339	0.11641	0.99908
2.6	0.30811	0.01291	0.40900	0.13214	0.99928
2.4	0.33561	0.01314	0.42576	0.15063	0.99936
2.2	0.37028	0.01290	0.44485	0.17270	0.99935
2	0.40254	0.01341	0.45805	0.19260	0.99947

Table S7. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for compound ¹⁶³Dy@Y at 0 Oe in the temperature range 2-15 K.