Supporting Information for:

Highly active copper catalyst obtained

through rapid MOF decomposition

Anh H. T. Nguyen-Sorenson,^a Clifton M. Anderson,^a Santosh K. Balijepalli, ^a Kyle A.

McDonald,^b Adam J. Matzger,^b and Kara J. Stowers^{*a}

Corresponding Author

*Address correspondence to kstowers@chem.byu.edu

Department of Chemistry and Biochemistry, Brigham Young University, C100 Benson Building, Provo, Utah, USA 84602

Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor MI, USA 48109-1055

Table of contents

Supplementary Figures and Tables

- Figure S1. TEM-EDX images of **a-Cu@C** (Ni peaks are from TEM grid)
- Table S1. Comparison of the catalytic activity for the aerobic oxidation of benzyl alcohol between different Cu-based catalysts
- Table S2. Comparison of the catalytic activity for the reduction of nitrobenzene between different catalysts
- Table S3. Comparison of the catalytic activity for the N-arylation between different Cu-based catalysts

Supplementary information

Energy dispersive X-ray (EDX) analysis indicates the presence of carbon and copper components in the Cu@C nanocomposite (Fig. S1).

30

20 Counts

10

Cu

Energy (keV)

15.42.40 Acquire EDX Acquire HAADF Area 2

(d)

Figure S1. TEM images of **a-Cu@C**; a) wide view of Cu features in anisotropic carbon matrix, b) magnification of **a-Cu@C** with inset STEM derived diffuse diffraction pattern, c) magnification of a-Cu@C d) TEM-EDX images of a-Cu@C (Ni peaks are from TEM sample holder).

The catalytic activity for aerobic oxidation with TEMPO and molecular oxygen is compared between different Cu-based catalysts.

	OH <u>5 mc</u> (1 mmol)	Cu-based catalysts bl% TEMPO, 0.2 equiv. CH ₃ CN (1 mL) O ₂ , 70 °C, 9 h	NMI O H	
Entry	Catalyst (mol%)	Yield ^b (%)	TON ^c	Reference
1	None	n.a.	n.a.	This work
2	Cu-C (5.0)	94	18.8	1
3	Cu(I/II)-Amp-CPG (5.0)	97	19.4	2
4	Cul + ^t Bu ₂ -bipy (5.0)	96	19.2	3
5	CuAAC-3a (5.0)	100	20	4

 Table S1. Cu-catalyzed aerobic oxidation of benzyl alcohol

^{*a*} Reaction conditions: benzyl alcohol (1 mmol), TEMPO (5 mol% to benzyl alcohol), NMI (0.2 equiv.), catalyst (0.5 – 5.0 mol% to benzyl alcohol), and CH₃CN (1 mL) under O₂ balloon, 70 °C, 9 h. ^{*b*} Determined by GC-MS using biphenyl as internal standard. ^{*c*} Turnover number (TON) = [moles of converted substrate (benzyl alcohol)] × (moles of Cu)⁻¹.

The catalytic activity for reduction of nitroaromatic molecules is compared between different catalysts.

		Cu-based catalysts NaBH ₄ (3 equiv)			
	O ₂ N (1 mmol)	THF/H ₂ O (1:2, 3 mL) 50 °C, 4 h	H ₂ N		
Entry	Catalyst (mol%)	Time (h)	Yield (%)	TON	Reference
1	a-Cu@C (10.0)	2	87	8.7	This work
2	Cu-C (50.0)	< 1 min	100	2	5
3	CuO (10.0)	2	79	7.9	6
4	Cu NPs (10.0)	2	98	9.8	6
5	CuNP/WS-1 (~2.12)	3	93	44	7

^{*a*} Reaction conditions: nitrobenzene (1 mmol), NaBH₄ (3 equiv. to nitrobenzene), catalyst (5.0 – 50.0 mol% to nitrobenzene), and THF/H₂O (1:2, 3 mL), 50 °C, 2-4 h. ^{*b*} Determined by GC-MS using biphenyl as internal standard. ^{*c*} Turnover number (TON) = [moles of converted substrate (nitrobenzene)] \times (moles of Cu)⁻¹.

The catalytic activity for N-arylation is compared between different Cu-based catalysts.

Table S3. (Cu-catalyzed	N-arylation	of imidazole	using	iodobenzene*
-------------	--------------	-------------	--------------	-------	--------------

	(1 mmol) (1.2 mmol)	Cu-based catalysts KOH (1.5 mmol) DMSO (1 mL) 110 °C, 24 h		N N	
Entry	Catalyst (mol%)	Conv. (%)	Yield ^b (%)	TON	Reference
1	None	n.a.	n.a.	n.a.	This work
6	HKUST-1 (10.0)	85	85	8.5	8
7	Cu(II)-Fe ₃ O ₄ @SiO ₂ (0.5)	81	81	162	9
8	Cu NPs-MCN (2.5)	98	98	39.2	10
9	Fe ₃ O ₄ @SiO ₂ /Salen-Cu(II) (0.4)	82	82	205	11

*See reference 15. ^{*a*} Reaction conditions: iodobenzene (1 mmol), imidazole (1.2 mmol), catalyst (0.5 - 10.0 mol% to iodobenzene), KOH (1.5 mmol), DMSO (1 mL), 110 °C, 24 h. ^{*b*} Determined by GC-MS using biphenyl as internal standard. ^{*c*} Turnover number (TON) = [moles of converted substrate (iodobenzene)] × (moles of Cu)⁻¹.

REFERENCES

- 1. B. R. Kim, J. S. Oh, J. Kim and C. Y. Lee, *Catal. Lett.*, 2016, **146**, 734–743.
- 2. I. Ibrahem, M. N. Iqbal, O. Verho, A. Eivazihollagh, P. Olsén, H. Edlund, C.-W. Tai, M. Norgren and E. V. Johnston, *ChemNanoMat*, 2018, **4**, 71-75.
- 3. L. Wang, Z. Bie, S. Shang, G. Li, J. Niu and S. Gao, *ChemistrySelect*, 2018, **3**, 3386-3390.
- 4. P. Chandra, A. M. Jonas and A. E. Fernandes, ACS Catal., 2018, 8, 6006-6011.
- 5. H. Niu, S. Liu, Y. Cai, F. Wu and X. Zhao, *Microporous and Mesoporous Materials*, 2016, **219**, 48–53.
- Z. Duan, G. Ma and W. Zhang, *Bull. Korean Chem. Soc.*, 2012, **33(12)**, 4003-4006.
- 7. A. Zamani, A. P. Marjani, A. Nikoo, M. Heidarpour and A. Dehghan, *Inorganic and Nano-metal chemistry*, 2018, **48(3)**, 176-181.
- 8. Z. Li, F. Meng, J. Zhang, J. Xie and B. Dai, *Org. Biomol. Chem.*, 2016, **14**, 10861-10865.
- 9. M. Esmaeilpour, A. R. Sardarian and H. Firouzabadi, *Appl. Organometal. Chem.*, 2018, **32(4)**, 4300.
- 10. S. K. Movahed, P. Salari, M. Kasmaei, M. Armaghan, M. Dabiri and M. M. Amini, *Appl. Organometal. Chem.*, 2018, **32**, 3914.
- 11. A. R. Sardarian, N. Zohourian-Mashmoul and M. Esmaeilpour, *Monatsh. Chem.*, 2018, **149**, 1101-1109.