Supporting information

Bifunctional iron disulfide nanoellipsoid for high energy density supercapacitor and electrocatalytic oxygen evolution

Zhiqin Sun, Xue Yang, Huiming Lin, Feng Zhang, QianWang*ab, Fengyu Qu*ab

a Key Laboratory of Photochemical Biomaterials and Energy Storage Materials,

Heilongjiang Province, College of Chemistry and Chemical Engineering,

Harbin Normal University, Harbin 150025, China

b Laboratory for Photon and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, PR China

Fig.S1. (a) CV curves of Fe_2O_3 electrode at various scan rates. (b) Galvanostatic charge-discharge curves of Fe_2O_3 at different current densities.

Fig.S2. Cycling performance of the Fe_2O_3 and FeS_2 electrodes at 15 A g⁻¹.

Fig.S3. (a) SEM image of CoS_2 . (b) and (c) TEM images of CoS_2 . (d) HRTEM and SAED pattern image of CoS_2 .

Fig.S4. (a) XRD pattern of CoS_2 . XPS spectra of (b) Co 2p and (c) S 2p.

Fig.S5. (a) N_2 adsorption-desorption isotherms and (b) pore size distribution of CoS_2 sample.

Fig.S6. (a) CV curves of CoS_2 sample at various scan rates. (b) Galvanostatic chargedischarge curves of CoS_2 at different current densities. (c) Specific capacity of CoS_2 at various scan rates. (d) Nyquist plot of CoS_2 . (e) Cycling performance of CoS_2 electrode at the current density of 15 A g⁻¹.

Fig.S7. (a) CV and (b) GCD curves of all-solid-state FeS₂//FeS₂ symmetry supercapacitor device. (c) Specific capacitance of device at different current densities.
(d) Ragone plot of FeS₂//FeS₂ symmetry supercapacitor device.

Materials	Electrolyte	Highest capacitance	Ref.
C@CoO	6 M KOH	473 F g ⁻¹ (2 mA cm ⁻²)	38
Co_3O_4	3 M KOH	602.7 F g ⁻¹ (1.2 A g ⁻¹)	39
Bulk CoS ₂	2 M KOH	177 F g ⁻¹ (5 A g ⁻¹)	40
CoS_2	8 M KOH	568 F g ⁻¹ (0.5 A g ⁻¹)	41
Co ₉ S ₈	2 M KOH	308 F g ⁻¹ (1 A g ⁻¹)	28
Co_3S_4	6 M KOH	506 F g ⁻¹ (1 A g ⁻¹)	42
NiTe	3 M KOH	500 F g ⁻¹ (5 A g ⁻¹)	43
NiTe	3.5 M KOH	618 F g ⁻¹ (1 A g ⁻¹)	44
Se doped	3 M KOH	998 F g ⁻¹ (1 A g ⁻¹)	45
NiTe	3 MKOH	804 F g ⁻¹ (1 A g ⁻¹)	46
СоТе	3 M KOH	622.8 F g ⁻¹ (1 A g ⁻¹)	47
La_2Te_3	1 M KOH	469 F g ⁻¹ (2 mV s ⁻¹)	48
CdTe	2 M KOH	438 F g ⁻¹ (2 mA cm ⁻²)	49
CoS ₂	2 M KOH	522 F g ⁻¹ (1 A g ⁻¹)	This work

Table S1. Integration of electrochemical performance of other sulfides, tellurides and oxides reported recently.

Table S2. Integration of electrochemical performance of various supercapacitordevices reported recently.

Supercapacitor device	Electrolyte	Voltage (V)	Energy density (Wh kg ⁻¹)	Power density (W kg ⁻¹)	Ref.
Ni(OH) ₂ // FeS/RGO/FeS@Fe	2 M KOH	1.9	24.07	2666	50
SiC@Fe ₂ O ₃ // SiC@NiCo ₂ O ₄ @Ni(OH) ₂	2 M KOH	1.75	45	26.1	51
NiNTAs@MnO ₂ // NiNTAs@Fe ₂ O ₃	Na ₂ SO ₄ /PVA	1.6	34.1	32.2	9
$V_2O_5//Fe_2O_3$	1 M Na ₂ SO ₄	1.8	32.2	128.7	52
G-NiMoO ₄ //G-Fe ₂ O ₃ -QDs	2 M KOH	1.6	56	33.6	53
NiCo ₂ O ₄ //FeSe ₂	2 M KOH	1.5	10.4	1200	54
CPY//C-G/AFC	6 M KOH	1.4	18.3	351	55
Fe ₃ O ₄ /Fe/C//NPC	6 M KOH	1.6	17.496	388.8	56
CoNi ₂ S ₄ /CNT//Fe ₂ O ₃ /CNT	2 M KOH	1.7	50	847	57
Zn-Co-NWS//Fe ₂ O ₃ @rGO	KOH/PVA	1.8	81.6	559.2	58
$Co_3O_4//\gamma$ -Fe ₂ O ₃	KOH/PVA	1.7	38.1	8500	59
NiO//a-Fe ₂ O ₃	1 M KOH	1.25	12.4	951	60
MnO ₂ //Fe ₂ O ₃ /PPy	LiCl/PVA	1.6	0.22 mWh cm ⁻³	165.5 mW cm ⁻³	61
Ni/GF/H-CoMoO ₄ // Ni/GF/H- Fe ₂ O ₃	KOH/PVA	1.5	1.13 mW cm ⁻³	150 kW cm ⁻³	62
AC/MXene	Et ₄ NBF ₄ /AN	2	17.5	207000	5
siloxene SSC	0.5 M TEABF ₄	3	9.82 mJ cm ⁻²	272.5 mW cm ⁻²	63
PG-MSCs	BMIMPF ₆	3	11.6 mWh cm ⁻³	2.47 mWh cm ⁻³	64
V ₂ O ₅ /MWCNTsFSS-SSC	LiClO ₄ /PVA	1.8	72	2300	65
FeS ₂ //CoS ₂	PAAS/KOH	1.7	64	271.3	This work

Materials	Overpotential (mV vs.RHE)	Current density (mA cm ⁻²)	Electrolyte	Ref.
Fe ₃ O ₄ @Co ₉ S ₈ /rGo	340	10	0.1 M KOH	66
NiFe-NS	300	10	1 M KOH	67
NiCo-UMOFNs	250	10	1 M KOH	68
NiS _x	408	10	1 M KOH	69
Li _{0.7} Co _{0.75} Fe _{0.25} PO ₄ /rGo	470	10	0.1 M KOH	70
$Fe_1Co_1O_x$	350	10	1 M KOH	71
Co ₉ S ₈ /GNS	433	10	0.1 M KOH	72
CoS _x @MoS ₂	347	10	1 M KOH	73
NiS	350	10	1 M KOH	74
CoMoS ₃	320	10	1 M KOH	75
a-Ti-S/c-Fe-S	420	10	1 M KOH	76
FeCo-ONP	400	10	0.1 M KOH	77
FeS ₂	370	10	1 M KOH	This
CoS ₂	315	10	1 M KOH	work

Table S3 Comparisons of OER performance with other transition metal compound materials.