Supporting Information

Using Lithium Chloride as a Media to Prepare N, P Co-Doped carbon

nanosheets for Oxygen Reduction and Evolution Reactions

Ping Li, ^{‡,a} Haeseong Jang, ^{‡,b} Bing Yuan, ^{‡,a} Zexing Wu, ^{*,a} Xien Liu^{*,a} and Jaephil Cho^{*,b}

- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China E-mail: splswzx@126.com; liuxien@qust.edu.cn
- b. Department of Energy Engineering School of Energy and Chemical, Engineering Ulsan National Institute of Science and Technology, (UNIST), Ulsan, 689-798, Korea E-mail: jpcho@unist.ac.kr

1. Experimental section

Sample preparation: Under the condition of continuous ultrasonic blending, different contents of Lithium Chloride (150mg, 250mg, 350mg) were added into 2 ml phytic acid (50wt%) to form a homogeneous solution. Under Ar atmosphere, the solution was annealed at different temperatures (750 °C, 800 °C, 850 °C) for 2 h. The sample was ground and transferred to a round-bottomed flask with HCl (2 M, 200 mL) to get rid of metal. After sonicated for 20 min, the solution was refluxed for 24 h at 95 °C. Finally, the sample was filtered and vacuum-dried at 50 °C for 2 h. The sample were annealed at 800 °C for 1 h In an atmosphere of argon and ammonia at a flow rate of 500ml/min and cooled to room temperature under Ar atmosphere. In the end, the catalysts NPC-"Li" were obtained. The reference NPC was synthesized by using the same procedure without LiCl.

2. Physical characterization

XRD was performed on Cu-Ka radiation (D/Max2000). SEM (FEI/Philips XL30 ESEM) and TEM (FEI/Philips XL30) were conducted to investigate the nanostructure of the prepared catalysts. XPS was measured on Escalab instrument.

3. Electrochemical characterization

All the electrochemical tests were conducted in a typical three-electrode setup with Pt wire, Ag/AgCl and glassy carbon electrode (GCE) as counter electrode, reference electrode and working electrode, respectively. Typically, 3 mg of the prepared catalysts were dispersered into a Nafion solution (60 mL 5 wt% Nafion diluted with 0.35 mL ethanol and 0.15 mL deionized water) and sonicated to form homogeneous ink. 5 μ L of the obtained ink was droped onto the GCE and dried naturally. High purity O₂ was used during electrochemical measurement for both ORR and OER. Linear sweep voltammetry (LSV) was obtained with a scanning rate of 5 mV s⁻¹. For zinc-air battery, PTFE and activated carbon with a weight ration of 3:7 was coated onto a nickel foam to prepare air cathode. Then, 230 μ L of the ink was dropped onto the air cathode and dried in vacuum oven. Zinc plate and 6 M KOH contained 0.2 M Zn(OAc)₂ 2H₂O were used as the anode and electrolyte, respectively.

4. Calculation of electron transfer number (n) and % HO_2^- for oxygen reduction reaction

On the basis of rotating disk electrode (RDE) measurements, the electron transfer numbers (n) per O₂ involved in ORR were calculated from the slopes of the Koutecky-Levich plots according to the following equations:^[1]

$$\frac{1}{j} = \frac{1}{j_k} + \frac{1}{j_l} = \frac{1}{B\omega^{1/2}} + \frac{1}{j_k}$$
(1)

Where *j* is the measured current density, j_k and j_l are the kinetic and diffusion-limiting current densities, ω is the rotating rate of electrode (rpm). *B* is determined from the slope of the Koutecky-Levich plots according to the Levich equation.

$$B = 0.2nFC_{O_2} D_{O_2}^{2/3} v^{-1/6}$$
⁽²⁾

Where n is electron transfer number per oxygen molecule, *F* is Faraday constant (96485 C mol⁻¹), C_{02} is the bulk concentration of O₂ (7.8 × 10⁻⁷ mol cm⁻³), υ is the kinetic viscosity of electrolyte (0.01 cm² S⁻¹). D_{02} is the diffusion coefficient of O₂ in 1 M KOH (1.8 × 10⁻⁵ cm² S⁻¹).

Hydrogen peroxide yields and the electron transfer number (n) were calculated by the following equations:^[2]

$$\%(HO_2^-) = 200 \times \frac{\frac{l_r}{N}}{l_d + \frac{l_r}{N}}$$
(3)

п

$$= 4$$

$$\times \frac{I_d}{I_d + \frac{I_r}{N}}$$
(4)

Where I_d is disk current, I_r is ring current, the collection efficiency (N) was determined to be 0.40 by using 10 mM K₃[Fe(CN)₆].

Fig S1. The XRD pattern of NPC-"Li" catalyst.

Fig S2. The XPS survey spectrum of the obtained NPC-"Li" catalyst.

Fig S3. Snapshots for NPC-"Li" catalyst.

Fig. S4. a) High-resolution of XPS spectra of P2p for NPC. b) High-resolution of XPS spectra of N1s for NPC. c) High-resolution of XPS spectra of O1s for NPC. d) High-resolution of XPS spectra of C1s for NPC.

Fig S5. Retention current - time (I - t) curves for NPC-"Li", NPC and Pt/C at 0.6 V versus RHE.

Fig S6. a) LSV of NPC-"Li" for ORR with various content in O₂-saturated 0.1 M KOH. b) LSV of NPC-"Li" for ORR with various temperature in O₂-saturated 0.1 M KOH. c) LSV of NPC-"Li" for OER with various content in O₂-saturated 1 M KOH. d) LSV of NPC-"Li" with various temperature in O₂-saturated 1 M KOH.

Fig S7. (a) LSVs for ORR of NPC-"Li" and PC-"Li". (b) LSVs for OER of NPC-"Li" and PC-"Li".

Fig S8. LSVs for ORR of NPC-"Li" and NPC-"Li"-No acid treatment. (b) LSVs for OER of NPC-"Li" and NPC-"Li"-No acid treatment.

Catalysts	Loading (mg cm ⁻²)	E _{1/2} (V vs. RHE)	Onset potentials (V vs. RHE)	References
NPC-"Li"	0.21	0.83	1.00	This work
GC-NLS	0.41	0.72	0.85	1
N-doped graphene	0.02	0.79	0.97	2
P-doped ordered	0.16	0.77	0.88	3
Carbon nanotube-	0.49	0.76	0.92	4
N-holey graphitic	0.10	0.78	0.9	5
Fe-PANI/C- Mela	0.51	0.78	0.98	6
NCNF	0.10	0.82	0.97	7
P-g-C ₃ N ₄ grown on	0.20	0.67	0.94	8
P-doped graphite	0.10	0.65	0.82	9
Graphitic C ₃ N ₄ /Carbon	0.09	0.67	0.84	10
N,P-CGHNs	0.30	0.82	0.94	11
S-graphene nanoplatelets	0.08	0.62	0.88	12
C ₃ N ₄ @carbon	0.28	0.75	0.87	13
B,N-graphene	0.28	0.68	0.86	14
N-graphene quantum dots	0.28	0.65	0.76	15
Porous carbon	0.10	0.79	0.881	16
CNTHb-700	0.30	0.80	0.92	17

Table S1. Comparation ORR performance of NPC-"Li" with reported metal-free catalysts in alkaline electrolyte

Catalysts	Catalyst loading	Specific capacity	Energy density (Wh	Cyclability	Ref.
Cuturysts	(mg cm ⁻²)	(mAh g ⁻¹)	kgZn ⁻¹)	Cyclubility	Ren
NPC-"Li"	0.70	733@20	908@20	10 min/cycle for 150 cycles; the sum of charge and discharge potentials become smaller	This work
NPMC-1000	0.5	735@5	835@5	10 min/cycle for 180 cycles at 2 mA cm ⁻² ; voltage gap increased ~0.7 V	18
NCNF-1000	0.5	660 @5	838 @5	10 min/cycle for 500 cycles ; voltage gap increased ~0.13 V	7
PS-CNFs	1.0	698@5	785@5	12 min/cycle for 600 cycles; negligible change	19
Fe-N/C-700	0.50	703@5	947@5	28h at 25 mA/cm ² no significant voltage change	20
La ₂ O ₃ /Co ₃ O ₄ / MnO2–CNTs	2.0	810	970@15	10 min /cycle for 543 cycles; voltage gap increased ~0.10 V	21
FeHis-700	0.5	813@25	960@20	1 h /cycle for 50 cycles; voltage gap increased ~0.15 V	22
Co-doped TiO ₂	2.0	785.9@20	911.3@20	20 min / cycle for 3150 cycles, negligible change	23
CNF@Zn/Co NC	0.5	666.7@20	808.2@20	excellent cyclic stability over 150 h, no overt increase of voltage gap	24
FeCo-DHO/ NCNTs	2.00	793.0@20	930.6@20	10min/cycle for 1800 cycles at 5 mA cm ⁻² ; no significant voltage change	25
CuS/NiS ₂	2.0	775@5	695@25	500 cycles at 25 mA cm ⁻² ; the negligible	26

Table S2. The performance of rechargeable zinc-air batteries with various electrocatalysts

Reference:

- 1. D. C. Higgins, M. A. Hoque, F. Hassan, J. Y. Choi, B. Kim and Z. Chen, *Acs Catalysis*, 2014, **4**, 2734-2740.
- 2. X. H. Yan, G. R. Zhang and B. Q. Xu, *Chinese Journal of Catalysis*, 2013, **34**, 1992-1997.
- 3. M. Lefevre, E. Proietti, F. Jaouen and J. P. Dodelet, Science, 2009, 324, 71-74.
- 4. G. Wu, K. L. More, C. M. Johnston and P. Zelenay, *Science*, 2011, **332**, 443-447.
- Z. Xiang, D. Cao, L. Huang, J. Shui, M. Wang and L. Dai, *Advanced Materials*, 2014, 26, 3315-3320.
- 6. H. Peng, Z. Mo, S. Liao, H. Liang, L. Yang, L. Fan, H. Song, Y. Zhong and B. Zhang, *Scientific Reports*, 2013, **3**, 1765.
- 7. Q. Liu, Y. Wang, L. Dai and J. Yao, *Advanced Materials*, 2016, **28**, 3000-3006.
- 8. T. Y. Ma, J. Ran, S. Dai, M. Jaroniec and S. Z. Qiao, *Angewandte Chemie, International Edition in English*, 2015, **54**, 4646-4650.
- 9. D. S. Yang, D. Bhattacharjya, S. Inamdar, J. Park and J. S. Yu, *Journal of the American Chemical Society*, 2012, **134**, 16127-16130.
- M. S. Thorum, J. M. Hankett and A. A. Gewirth, *The Journal of Physical Chemistry Letters*, 2011, 2, 295-298.
- 11. J. Yang, H. Sun, H. Liang, H. Ji, L. Song, C. Gao and H. Xu, *Advanced Materials*, 2016, **28**, 4606-4613.
- 12. I. Y. Jeon, S. Zhang, L. Zhang, H. J. Choi, J. M. Seo, Z. Xia, L. Dai and J. B. Baek, *Advanced Materials*, 2013, **25**, 6138-6145.
- 13. Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. Zhang, Z. Zhu, S. C. Smith, M. Jaroniec, G. Q. Lu and S. Z. Qiao, *Journal of the American Chemical Society*, 2011, **133**, 20116-20119.
- 14. Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec and S. Z. Qiao, *Angewandte Chemie, International Edition in English*, 2013, **52**, 3110-3116.
- 15. M. Ye, J. Gong, Y. Lai, C. Lin and Z. Lin, *Journal of the American Chemical Society*, 2012, **134**, 15720-15723.
- W. Zhang, Z. Y. Wu, H. L. Jiang and S. H. Yu, *Journal of the American Chemical Society*, 2014, 136, 14385-14388.
- 17. V. Vij, J. N. Tiwari, W. G. Lee, T. Yoon and K. S. Kim, *Scientific Reports*, 2016, **6**, 20132.
- 18. J. Zhang, Z. Zhao, Z. Xia and L. Dai, *Nature Nanotechnology*, 2015, **10**, 444-452.
- 19. S. S. Shinde, J.-Y. Yu, J.-W. Song, Y.-H. Nam, D.-H. Kim and J.-H. Lee, *Nanoscale Horiz.*, 2017, **2**, 333-341.
- 20. Z. K. Yang, C. Z. Yuan and A. W. Xu, *Nanoscale*, 2018, **10**, 16145-16152.
- 21. N. Xu, J. Qiao, X. Zhang, C. Ma, S. Jian, Y. Liu and P. Pei, *Applied Energy*, 2016, **175**, 495-504.
- 22. Y. Ding, Y. Niu, J. Yang, L. Ma, J. Liu, Y. Xiong and H. Xu, *Small*, 2016, **12**, 5414-5421.
- 23. L.-N. Han, L.-B. Lv, Q.-C. Zhu, X. Wei, X.-H. Li and J.-S. Chen, *Journal of Materials Chemistry A*, 2016, **4**, 7841-7847.
- 24. Y. Zhao, Q. Lai, J. Zhu, J. Zhong, Z. Tang, Y. Luo and Y. Liang, *Small*, 2018, **14**, e1704207.
- M. Wu, Q. Wei, G. Zhang, J. Qiao, M. Wu, J. Zhang, Q. Gong and S. Sun, *Advanced Energy Materials*, 2018, DOI: 10.1002/aenm.201801836, 1801836.
- 26. L. An, Y. Li, M. Luo, J. Yin, Y. Q. Zhao, C. Xu, F. Cheng, Y. Yang, P. Xi and S. Guo, *Advanced Functional Materials*, 2017, **27**, 1703779.