Efficient Ammonia Synthesis over a Core-shell Ru/CeO₂ Catalyst

with Tunable CeO₂ Size: DFT Calculation and XAS Spectroscopy

Studies

Xiuyun Wang^a, Xuanbei Peng^a, Yongfan Zhang^b, Jun Ni^a and Lilong Jiang^a*

^aNational Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian 350002, China. ^bCollege of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.

Corresponding author E-mail: jllfzu@sina.cn, jll@fzu.edu.cn.

Figure S1 SEM images of (A) CSs-7, (E) CSs-9, and (I) CSs-11; (B) CSs-7@CeO₂, (F) CSs-9@CeO₂ and (J) CSs-11@CeO₂; (C) CSs-7@Ru-CeO₂, (G) CSs-9@Ru-CeO₂ and (K) CSs-11@Ru-CeO₂; (D) Ru@CeO₂-7; (H) Ru@CeO₂-9 and (L) Ru@CeO₂-11 of core–shell structure. (Page 2)

Figure S2 TEM images of (A) Ru@CeO₂-7, (B) Ru@CeO₂-9 and (C) Ru@CeO₂-11. Particle distribution of Ru nanoparticles over (A) Ru@CeO₂-7, (B) Ru@CeO₂-9 and (C) Ru@CeO₂-11.

Figure S3 Raman spectra of (A) CeO₂ supports and (B) Ru@CeO₂ catalysts after activity test. (Page 2)

Figure S4 H₂-TPR profiles of (A) CeO₂ supports and (B) Ru@CeO₂ catalysts. (Page 3)

Figure S5 SEM images of Ru@CeO₂-9 after activity and thermal stability test of 72 h. (Page3)

Figure S6 XPS spectra: (A) Ce3d of CeO₂ supports, (B) Ru3d and (C) Ru3p of H₂-reduced Ru@CeO₂ catalysts. (Page4)

Figure S7 in situ DRIFTS experiment of Ru@CeO₂-9 at 400 °C with different time (test condition: 10%CO+Ar)

Mass Transfer Calculation for ammonia synthesis over the Ru@CeO₂-9 catalyst (Page5)

Figure S1 SEM images of (A) CSs-7, (E) CSs-9, and (I) CSs-11; (B) CSs-7@CeO₂, (F) CSs-9@CeO₂ and (J) CSs-11@CeO₂; (C) CSs-7@Ru-CeO₂, (G) CSs-9@Ru-CeO₂ and (K) CSs-11@Ru-CeO₂; (D) Ru@CeO₂-7; (H) Ru@CeO₂-9 and (L) Ru@CeO₂-11 of core-shell structure.

Figure S2 TEM images of (A) Ru@CeO₂-7, (B) Ru@CeO₂-9 and (C) Ru@CeO₂-11. Particle distribution of Ru nanoparticles over (A) Ru@CeO₂-7, (B) Ru@CeO₂-9 and (C) Ru@CeO₂-11.

Figure S3 Raman spectra of (A) CeO₂ supports; (B) Ru@CeO₂ catalysts after activity test and (C) Uv-vis spectra of CeO₂ supports.

Figure S4 H₂-TPR profiles of (A) CeO₂ supports and (B) Ru@CeO₂ catalysts.

H₂-TPR profiles of CeO₂ and Ru@CeO₂ are shown in Figure 7. For pure CeO₂-7, the peaks located at 236 °C and 469 °C are related to the reduction of surface oxygen, while the peak above 700 °C is associated with the reduction of lattice oxygen species. Unlike CeO₂-7, CeO₂-9 and CeO₂-11 show low-temperature reduction peaks at 218 and 209 °C, indicating that the surface oxygen species on CeO₂-9 and CeO₂-11 are more easily reduced. For all the Ru@CeO₂ catalysts generated using the CeO₂

supports, RuO₂ can be reduced below 150 °C. It is deduced that with the weakening of Ce–O bond by the strongly bound Ru species, the reduction of surface oxygen species on CeO₂-9 and CeO₂-11 becomes more facile. Furthermore, the strong Ce–O– Ru bonding causes electron transfer from Ru to the CeO₂ support, thus forming Ru^{$\delta+$}. We roughly estimated the relative number of Ru^{$\delta+$} and Ce–O–Ru bonds based on the area of the corresponding reduction peaks. It is observed that the relative number of Ru–O–Ce and Ru^{$\delta+$} follows the order of Ru@CeO₂-9 > Ru@CeO₂-11 > Ru@CeO₂-7.

Figure S5 SEM images of Ru@CeO₂-9 after activity and thermal stability test of 72 h.

Figure S6 XPS spectra: (A) Ce3d of CeO₂ supports, (B) Ru3d and (C) Ru3p of H₂-

reduced Ru@CeO₂ catalysts.

Figure S7 in situ DRIFTS experiment of Ru@CeO₂-9 at 400 °C with different time (test condition: 10%CO+Ar)

Mass Transfer Calculation for ammonia synthesis over the Ru@CeO₂-9 catalyst Mears Criterion for External Diffusion (Fogler, p841; Mears, 1971)

 $\frac{-r_{A}' \rho_{b} R_{A}}{k_{c} C_{Ab}} < 0.15, \text{ the external mass transfer effects can be neglected.}$ $= r_{A}' = \text{reaction rate of nitrogen, kmol/(kg·cat·s)}$ n = reaction order with respect to nitrogen gas. R = average radius of catalyst particles, m $\rho_{b} = \text{bulk density of catalyst bed, kg/m^{3}}$ $C_{Ab} = \text{bulk gas concentration of nitrogen, kmol/m^{3}}$ $k_{c} = \text{mass transfer coefficient, m/s}$

 $\frac{-r_{A} \cdot \rho_{\delta} R_{2}}{k_{c} C_{A\delta}} = [2x \ 10^{-7} \text{ kmol-N}_{2}/(\text{kg·cat·s}] \ [910 \ \text{kg/m}^{3}][2.5 \ \text{x} \ 10^{-4} \ \text{m}][1]/([1.7\text{m/s}]*[\ 0.04 \ \text{kmol/m}^{3}]) = 0.67 \text{x} 10^{-7} < 0.15 \quad \{\text{Mears for External Diffusion}\}$

Weisz-Prater Criterion for Internal Diffusion (Fogler, p839)

 $C_{WP} = \frac{-r'_{A(obs)} \rho_c R^2}{D_c C_{As}} < 1$ If $r'_{A(obs)} = \text{reaction rate of nitrogen, kmol/(kg·cat·s)}$ $\rho_c \text{ is solid catalyst density, kg/m^3}$ R = average radius of catalyst particles, m $\rho_b = \text{bulk density of catalyst bed, kg/m^3}$ $C_{Ab} = \text{bulk gas concentration of nitrogen, kmol/m^3}$ $D_e = \text{effective gas-phase diffusivity, m^2/s [Fogler, p815]}$ $C_{As} = \text{gas concentration of A at the catalyst surface, kmol-A/m^3}$

$$C_{WP} = \frac{-r_{A(obs)}^{*} \rho_{o} R^{2}}{D_{e} C_{As}} = [2 \times 10^{-7} \text{ kmol-N}_{2}/(\text{kg·cat·s})] [2.8*10^{3} \text{ kg-cat/m}^{3}] * [2.5 \times 10^{-4} \text{ m}]^{2}/([3.3 \times 10^{-6} \text{ m}^{2}/\text{s}]) * [0.04 \text{ kmol-N}_{2}/\text{m}^{3}]) = 2.65 \times 10^{-4} < 1$$

{Weisz-Prater Criterion for Internal Diffusion}