# **Supporting Information**

## Chemoselective mechanochemical route toward a bright TADF-emitting Culcoordination polymer

Alexander V. Artem'ev,<sup>a,b</sup>\* Evgeniya P. Doronina,<sup>c</sup> Mariana I. Rakhmanova,<sup>a,b</sup> Olga A. Tarasova,<sup>c</sup> Irina Yu. Bagryanskaya<sup>b,d</sup> and Nina A. Nedolya<sup>c</sup>

<sup>a</sup> Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Akad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation

<sup>b</sup> Novosibirsk State University, 2, Pirogova Str., Novosibirsk 630090, Russian Federation

<sup>c</sup> A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russian Federation

<sup>d</sup> N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Akad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation

\*Author for correspondence: <a href="mailto:chemisufarm@yandex.ru">chemisufarm@yandex.ru</a> (Alexander V. Artem'ev)

#### **Table of Contents**

Pages

- S2–6 §1. X-Ray crystallography
- S6 §2. FT-IR spectra
- S7–8 §3. Photophysical data
- S8–14 §4. Computational details

# §1. X-Ray crystallography

|                                                                                  | 1                                      | 2                                      | 3                                         |
|----------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------|
| CCDC number                                                                      | 1866163                                | 1866162                                | 1585528                                   |
| Chemical formula                                                                 | $C_{16}H_{22}Cu_2I_2N_2S_2$            | $C_{16}H_{22}Cu_3I_3N_2S_2$            | $C_{16}H_{22}Cu_{3}I_{3}N_{2}S_{2}$       |
| <i>M</i> <sub>r</sub>                                                            | 687.35                                 | 877.79                                 | 877.79                                    |
| Crystal system, space group                                                      | Monoclinic, P2 <sub>1</sub> /n         | Monoclinic, P2/n                       | Monoclinic, C2/c                          |
| a, b, c (Å)                                                                      | 8.7276 (4), 14.4775 (7),<br>9.7601 (5) | 9.9190 (5), 9.0927 (6),<br>13.9818 (8) | 9.6005 (6), 17.2685 (15),<br>15.6571 (10) |
| β(°)                                                                             | 112.665 (2)                            | 95.811 (2)                             | 107.090 (2)                               |
| <i>V</i> (Å <sup>3</sup> )                                                       | 1137.99 (10)                           | 1254.55 (13)                           | 2481.1 (3)                                |
| Ζ                                                                                | 2                                      | 2                                      | 4                                         |
| $\mu$ (mm <sup>-1</sup> )                                                        | 4.77                                   | 6.38                                   | 6.45                                      |
| Crystal size (mm)                                                                | $0.70 \times 0.42 \times 0.15$         | $0.9 \times 0.8 \times 0.3$            | 0.90 × 0.20 × 0.06                        |
| T <sub>min</sub> , T <sub>max</sub>                                              | 0.509, 0.928                           | 0.581, 0.746                           | 0.431, 0.862                              |
| No. of measured, independent<br>and<br>observed [ $l > 2\sigma(l)$ ] reflections | 15030, 2545, 2221                      | 23069, 2651, 2130                      | 21846, 2845, 2492                         |
| R <sub>int</sub>                                                                 | 0.042                                  | 0.033                                  | 0.052                                     |
| (sin $\theta/\lambda$ ) <sub>max</sub> (Å <sup>-1</sup> )                        | 0.650                                  | 0.633                                  | 0.649                                     |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                              | 0.035, 0.087, 1.04                     | 0.025, 0.052, 1.08                     | 0.035, 0.098, 1.08                        |
| No. of reflections                                                               | 2545                                   | 2651                                   | 2845                                      |
| No. of parameters                                                                | 111                                    | 121                                    | 137                                       |
| No. of restraints                                                                | 0                                      | 0                                      | 4                                         |
| $\Delta \rangle_{max}, \Delta \rangle_{min} (e \text{ Å}^{-3})$                  | 2.01, -1.49                            | 0.71, -0.64                            | 1.03, -1.66                               |





Figure S1. Perspective view of crystal packing of 1 along *c* axis (the H atoms are omitted).



**Figure S2**. Perspective views of crystal packing of CP 2 along *a* (*left*) and *c* (*right*) axes (the H atoms are omitted).



**Figure S3**. Side and end-on views of  $(-Cu-Hal-)_n$  chains in CPs **2** and **3** compared with those in known CPs. Iodine atoms are violet, and bromine atoms are brownish-colored ones.



**Figure S4**. Perspective views of crystal packing of CP **3** along *a* (*left*) and *b* (*right*) axes (the H atoms are omitted).



Figure S5. Experimental and simulated XRPD patters of complex 1.



Figure S6. Experimental and simulated XRPD patters of CP 2.



Figure S7. Experimental and simulated XRPD patters of CP 3.



**Figure S8**. PXRD patterns of: (*i*) crystalline complex **1**; (*ii*) ground powder of **1** (with several drops of MeCN). The simulated PXRD pattern for CP **3** is in the top of the picture.



**Figure S9**. PXRD patterns of: (*i*) crystalline CP **2**; (*ii*) ground powder of CP **2** (with several drops of MeCN). The simulated PXRD pattern for CP **3** is in the top of the picture.



## §2. FT-IR spectra

**Figure S10**. FT-IR spectra of 1-3 in the 400–3100 cm<sup>-1</sup> range.

#### §3. Photophysical data



**Figure S11**. An enhancement of the photoluminescence associated with  $2 \rightarrow 3$  isomerisation under solventassistant mechanochemical conditions (views under UV-lamp): (*a*) crystalline **2**; (*b*) ground **2**; (*c*–*d*) ground **2** with several drops of MeCN.



(*a*) (*b*) Figure S12. Photographs of the powder of CP 2 under ambient light (*left*) and UV-light (*right*).



Figure S13. Photographs of the powder of CP 3 under ambient light (*left*) and UV-light (*right*).



**Figure S14**. (*a*) Solid-state PLE spectra of CP **2** at 77 and 300 K ( $\lambda_{em}$  = 545 nm); (*b*) Solid-state PLE spectra of CP **3** at 77 and 300 K ( $\lambda_{em}$  = 515 nm).



**Figure S15**. Temperature dependence of emission lifetime for CP **2** ( $\lambda_{ex}$  = 420 nm and  $\lambda_{det}$  = 545 nm).

#### §4. Computational details





[Cu<sub>7</sub>I<sub>7</sub>L<sub>4</sub>] (3d)

**Figure S16.** Perspective view of the B3LYP/def2-TZVPP optimized molecular fragments **3a-d** of the polymeric structure  $[Cu_3I_3L_2]_n$  (**3**).



Figure S17. 3D images of CAM-B3LYP/def2-TZVPP MOs of the model fragment [Cu<sub>2</sub>I<sub>2</sub>L] (3a).



**Figure S18**. 3D images of CAM-B3LYP/def2-TZVPP MOs of the model fragment [Cu<sub>3</sub>I<sub>3</sub>L<sub>2</sub>] (**3b**).



Figure S19. 3D images of CAM-B3LYP/def2-TZVPP MOs of the model fragment [Cu<sub>7</sub>I<sub>7</sub>L<sub>4</sub>] (3d).

**Table S2.** The most significant singlet-singlet electronic transitions (wavelength,  $\lambda$ , and oscillator strength, f, f > 0.02) in the absorption spectra of the **3a-c**.

|    | method               | λ (nm)                  | f                                   |
|----|----------------------|-------------------------|-------------------------------------|
| За | B3LYP/def2-TZVPP     | 457/366/324/295         | 0.053/0.021/0.022/0.021             |
|    | CAM-B3LYP/def2-TZVPP | 356/342/326             | 0.040/0.031/0.026                   |
|    | LC-wPBE/def2-TZVPP   | 336/309/283             | 0.030/0.030/0.044                   |
| 3b | B3LYP/def2-TZVPP     | 403/378/361/322         | 0.023/0.023/0.072/0.022             |
|    | CAM-B3LYP/def2-TZVPP | 363/343/328/323/317/314 | 0.026/0.029/0.043/0.058/0.020/0.031 |
|    | LC-wPBE/def2-TZVPP   | 312/311/280             | 0.068/0.050/0.057                   |
| 3c | B3LYP/LANL2DZ        | 424/400                 | 0.029/0.036                         |
|    | B3LYP/def2-TZVPP     | 419/393                 | 0.025/0.027                         |
|    | CAM-B3LYP/LANL2DZ    | 324/319/295             | 0.073/0.022/0.025                   |
|    | CAM-B3LYP/def2-TZVPP | 353/326/324             | 0.028/0.051/0.029                   |
|    | LC-wPBE/LANL2DZ      | 299/295/287             | 0.046/0.037/0.043                   |
|    | LC-wPBE/def2-TZVPP   | 317/303/302             | 0.052/0.022/0.048                   |

## Cartesian coordinates of the optimized $\left[Cu_{2}I_{2}L\right]$ (3a) molecular fragment

| Cu | -0.05013274286577 | 0.03822450961300  | 0.06718619454815  |
|----|-------------------|-------------------|-------------------|
| I  | 2.53319998879460  | 0.0000000365462   | 0.0000000210932   |
| I  | -1.27465299908827 | 2.15540636264373  | -0.0000001034849  |
| Cu | 1.94431808458256  | -1.20214914621577 | -2.22611348616516 |
| Ν  | -0.87234294807430 | -1.79865512757134 | 0.09929625221813  |
| С  | -1.01889377509920 | -2.50506383728887 | -1.02718093629166 |
| С  | -1.64258968676766 | -3.74132841093728 | -1.08223988339880 |
| С  | -2.15118257832232 | -4.25460751364894 | 0.10358367922865  |
| С  | -2.01261483795663 | -3.52969720739793 | 1.27559533316602  |
| С  | -1.36297269001245 | -2.29833447842180 | 1.25366105125729  |
| S  | -0.33173372431604 | -1.63423957517211 | -2.44359848231444 |
| С  | -0.49023014841441 | -2.83563455254285 | -3.76902761090098 |
| С  | -1.86533989184824 | -2.86596397335996 | -4.43313858283640 |
| Н  | 0.25793523530807  | -2.52684177500413 | -4.49943768903525 |
| Η  | -0.18021649532987 | -3.81473523640142 | -3.40645071034758 |
| Η  | -1.86831328780281 | -3.59439052880025 | -5.24556284527177 |
| Н  | -2.11181677084189 | -1.89050990712352 | -4.85030404250643 |
| Η  | -2.65575302575139 | -3.13565603633764 | -3.73478270972337 |
| Η  | -1.74047218921395 | -4.29226147774200 | -2.00239451549695 |
| Η  | -2.65122299079539 | -5.21361931335800 | 0.10574645448076  |
| Η  | -2.40292958101163 | -3.90810737686122 | 2.20910679325744  |
| С  | -1.17860767956817 | -1.47359990416915 | 2.48688593619166  |
| Η  | -1.64591617343246 | -1.94375062550280 | 3.34970017733241  |
| Н  | -0.11609686143856 | -1.33523344669581 | 2.69590899947729  |
| Н  | -1.60574562681480 | -0.47878524827670 | 2.34119998816227  |

## Cartesian coordinates of the optimized $[{\rm Cu}_4 {\rm I}_4 {\rm L}_2]$ (3c) molecular fragment

| Cu | -0.03260089799062 | 0.02639373928809  | 0.07501791711328  |
|----|-------------------|-------------------|-------------------|
| I  | 2.53319998958146  | 0.0000001753800   | -0.0000001755495  |
| I  | -1.27465295700959 | 2.15540629200973  | 0.0000003784846   |
| Cu | 1.94431812330943  | -1.20214917264442 | -2.22611349453988 |
| Cu | -3.70471213612340 | 1.55237565721168  | -0.04103083462467 |
| I  | -5.48184864719261 | 3.35741476359778  | -0.01418144746493 |
| Cu | -5.94891500034109 | 2.03857400374491  | 2.17443318518761  |
| I  | -5.36017835981544 | 3.24058939783804  | 4.40065741495039  |
| Ν  | -0.87234318292404 | -1.79865500886436 | 0.09929625302681  |
| С  | -1.01889352535138 | -2.50506394480338 | -1.02718094903137 |
| С  | -1.55840041029930 | -3.78053476473129 | -1.06393831799662 |
| С  | -1.95065014437608 | -4.34408768449426 | 0.14265107720847  |
| С  | -1.77676473395000 | -3.63322584515582 | 1.31776317529764  |
| С  | -1.22971875079176 | -2.35366344558392 | 1.27644030990382  |
| S  | -0.36104160057204 | -1.62273360048547 | -2.45016008962272 |
| С  | -0.49023022319337 | -2.83563452237566 | -3.76902759676158 |
| С  | -1.86564656144943 | -2.92975667573282 | -4.42439365395596 |
| Н  | 0.23976375399363  | -2.50109996936629 | -4.50674999701548 |
| Н  | -0.13778909150572 | -3.79839598303228 | -3.40182287607618 |
| Н  | -1.83960054701860 | -3.66704732537459 | -5.22815653846226 |
| Н  | -2.15461961167268 | -1.97137166211260 | -4.85312044066070 |
| Н  | -2.63948312968008 | -3.22660587599839 | -3.71857381607409 |
| Н  | -1.66959213509808 | -4.32877980767516 | -1.98408239556539 |
| Н  | -2.37783240733110 | -5.33751927781843 | 0.15938773163673  |
| Н  | -2.05540043359612 | -4.06122471137771 | 2.26950668238606  |
| С  | -0.97910869887448 | -1.55262994208261 | 2.51380245532830  |
| Н  | -1.33097858644129 | -2.07533871764682 | 3.39993197808855  |
| Η  | 0.09029087435961  | -1.36185315300494 | 2.62510220844209  |
| Н  | -1.47887779829541 | -0.58457058111896 | 2.45532506866374  |
| Ν  | -4.39906745478495 | -0.34892302154418 | -0.22221440987864 |
| С  | -4.78558734127126 | -0.95616482550429 | 0.91160991705726  |
| С  | -5.38224490403862 | -2.21976514947131 | 0.89326923883530  |
| С  | -5.60174451336505 | -2.82947273976776 | -0.32909808090736 |

| С | -5.23129203753318 | -2.17811698848531 | -1.49897607245892 |
|---|-------------------|-------------------|-------------------|
| С | -4.62612249466791 | -0.92983066348403 | -1.41474715491849 |
| S | -4.60004625167088 | 0.06237885618214  | 2.33650405527780  |
| С | -5.42058011764853 | -0.88081346682682 | 3.64978298819129  |
| С | -4.57472188448344 | -1.96003384868644 | 4.31404960859602  |
| Н | -5.66063290978568 | -0.09495830198706 | 4.36775142779948  |
| Н | -6.36555001185813 | -1.26321975991127 | 3.26692181375481  |
| Н | -3.67227619105486 | -1.52801087213644 | 4.74471517751445  |
| Н | -4.27941401340131 | -2.74668473248294 | 3.61924252711491  |
| Н | -5.14214365395199 | -2.42354377297679 | 5.12329784896537  |
| Н | -5.68394301399494 | -2.70804521355910 | 1.80506171430546  |
| Н | -6.07559595951258 | -3.80166111582067 | -0.36995045200423 |
| Н | -5.42456643082849 | -2.61830450776124 | -2.46677821322431 |
| С | -4.24512687793548 | -0.14292238152995 | -2.63106821765068 |
| Н | -3.19921360321657 | 0.16358155098880  | -2.58401962803548 |
| Н | -4.41289251001554 | -0.71537535412854 | -3.54170648388144 |
| Η | -4.83951704656892 | 0.77202445791526  | -2.67897717333769 |
|   |                   |                   |                   |

# Cartesian coordinates of the optimized $[Cu_7I_7L_4]$ (3d) molecular fragment

| Cu      | 0.04173683799466  | -0.01124511678274 | -0.07966754538227 |
|---------|-------------------|-------------------|-------------------|
| I       | 2.50409997121847  | 0.0000000929062   | 0.0000000282215   |
| I       | -1.28946566947447 | 2.18045423779052  | -0.0000001524622  |
| Сц      | -2.02446021393174 | 1.06164793670473  | 2.22611351216684  |
| Cu      | 3.22200485518724  | -2.39863418762317 | 0.04103077818828  |
| Т       | 5 68030348659382  | -3 00949352414910 | 0 01418145873624  |
| <br>    | 4 78285927724890  | -4 08284598677863 | -2 17443320445327 |
| т       | 5 51781250137405  | -2 96423289024331 | -1 10065710883152 |
| <br>    | 6 80714700111141  | -5 14476467951107 | -1 10057113177796 |
| т       | 9 31124690728792  | -5.14470407951107 | -4.40057445477790 |
| <br>    | 10 02000070605111 | 7 54250002915021  | 4.40009000195550  |
| cu<br>T | 10.02900970695111 | -7.54559003815021 | -4.55954042602656 |
| 1       | 12.48/2/003/2/140 | -8.15459895834674 | -4.38646876701367 |
| cu      | 11.58965437194204 | -9.22804389863064 | -6.5/496//5049969 |
| 1       | 12.32456641548977 | -8.10962395482790 | -8.80130273947426 |
| N       | -1.10414946825679 | -1.66643201323255 | -0.09930085692254 |
| С       | -1.37134232590542 | -2.28837508016643 | -1.26432511393901 |
| С       | -2.32168/16/69833 | -3.30372838563573 | -1.32938203691932 |
| С       | -3.02843833086105 | -3.65370823809356 | -0.19240396529248 |
| С       | -2.77133851234816 | -2.99131535529137 | 0.99977449511371  |
| С       | -1.79223528619202 | -2.00936499030354 | 0.99413945100221  |
| S       | -1.29038393644066 | -1.08918954710583 | 2.45074241687449  |
| С       | -2.20675464113966 | -1.88738607327965 | 3.77653341642112  |
| С       | -1.64191806130221 | -3.22654497156681 | 4.23689332174389  |
| Н       | -3.25850672847822 | -1.95051438558167 | 3.50284081573979  |
| Н       | -2.14809933826135 | -1.16517348497199 | 4.59182790266962  |
| Н       | -2.24660034150180 | -3.61269895890001 | 5.05859961795211  |
| Н       | -1.64102868456727 | -3.96817299309626 | 3.44029370049020  |
| Н       | -0.62016732071388 | -3.11112036487419 | 4.59433693448946  |
| Н       | -3.32499397235104 | -3.24117985799487 | 1.88895333796538  |
| Н       | -3.78354755029155 | -4.42714734683341 | -0.22848014180021 |
| Н       | -2.51316124564893 | -3.79166520874394 | -2.27367880978532 |
| С       | -0.66516725059388 | -1.78462101690730 | -2.48265837529114 |
| Н       | -1.00918163201895 | -0.77363620668653 | -2.71359088017328 |
| Н       | -0.86349950816352 | -2.41658249021431 | -3.34454659114350 |
| Н       | 0.41090488761547  | -1.73279081379430 | -2.32086848478296 |
| N       | 1.85921193251679  | -4.02076286840966 | 0.14493184230443  |
| С       | 1.44389200122536  | -4.33961122324828 | 1.37769872322058  |
| C       | 0 62027708890348  | -5 43418893292772 | 1 62267838527274  |
| C       | 0 21316893911201  | -6 22158245669215 | 0 55806731654568  |
| C       | 0 64725065251426  | -5 90/3750089/596 | -0 71580959294108 |
| C       | 1 /8129737271785  | -1 796886785/1952 | -0 88/22377651275 |
| q       | 2 170273/36326/5  | -1 29387253305505 | -2 /22/2//2770075 |
| с<br>С  | 1 506220202040    |                   | -2 5515510/102070 |
| C       |                   |                   |                   |
| C       | 0.19084688989775  | -2.41019580349901 | -4.10838911591209 |

| Н | 1.73518545553257  | -6.56998178414905  | -3.07026986582800 |
|---|-------------------|--------------------|-------------------|
| Н | 2.32451694063706  | -5.55790095080304  | -4.36164845054263 |
| Н | -0.04079376131550 | -6.22619540324504  | -4.80264707380034 |
| Н | 0.11780549838766  | -4.47718221747786  | -4.65502583157572 |
| Н | -0.56904395107929 | -5.41602052474887  | -3.32760910799187 |
| Н | 0.34296592092973  | -6.50809546947297  | -1.55327333115867 |
| Н | -0.42737737307036 | -7.07937524121134  | 0.71603870977885  |
| Н | 0.32587950664564  | -5.66688104557097  | 2.63546028644913  |
| С | 1.95828688624148  | -3.49937277918200  | 2.50870252309597  |
| Н | 1.70271961402570  | -2.44866971706371  | 2.36490013777823  |
| Н | 1.56038815214088  | -3.83669034695638  | 3.46381573355607  |
| Н | 3.04825801630928  | -3.55685164824050  | 2.54873703638305  |
| Ν | 5.60944183368814  | -6.89397928327943  | -4.45037790502790 |
| С | 5.43560540014586  | -7.43314192326568  | -5.66467948835079 |
| С | 4.64016920318075  | -8.55833369314528  | -5.86512368512742 |
| С | 4.01684928540433  | -9.14569759171130  | -4.77914418208545 |
| С | 4.19147248665397  | -8.59109886896356  | -3.52263264300085 |
| C | 4.99425129199226  | -7.45793189343642  | -3.40225678665771 |
| S | 5.29760407217025  | -6.60744050160329  | -1.88593865370772 |
| C | 4.26089392784319  | -7.54045589214565  | -0.71189876437718 |
| С | 4.90167821845302  | -8.80796073400976  | -0.15880345744731 |
| H | 3.28807956061031  | -7.72398556029114  | -1.16291576419125 |
| Н | 4.10046635409956  | -6.82515871951427  | 0.09528088498284  |
| Н | 5.12607383581281  | -9.53238511635839  | -0.93978254706866 |
| Н | 4.22744787432906  | -9.28031086292711  | 0.55890740233318  |
| Н | 5.83129144884377  | -8.57245271314288  | 0.35664135672348  |
| Н | 3.72397422083711  | -9.04486791512325  | -2.66599620920717 |
| Н | 3.40334871892841  | -10.02847151209877 | -4.90288923992120 |
| Н | 4.52324560995057  | -8.95693920838872  | -6.86177112860634 |
| С | 6.10049458675679  | -6.74645407971048  | -6.81842997598368 |
| Н | 5.77067983433548  | -5.70710396667716  | -6.87758354966820 |
| Н | 5.86719195435930  | -7.24003473053735  | -7.75920316886333 |
| Н | 7.18366972225192  | -6.73260011056482  | -6.68947424841307 |
| Ν | 8.71979951552664  | -9.10783820283982  | -4.21501548267249 |
| С | 8.25084510792262  | -9.48437056961718  | -3.02265579264754 |
| С | 7.50873953876653  | -10.65518712805555 | -2.87936274792742 |
| С | 7.26603692774296  | -11.44687438281578 | -3.99306614341362 |
| С | 7.75706125459813  | -11.05591892676270 | -5.22775040327423 |
| С | 8.47999433442023  | -9.86789016151764  | -5.29548799947327 |
| S | 9.24502270948295  | -9.17113373735041  | -6.71718037670123 |
| С | 8.79132160904233  | -10.28080165597262 | -8.05676807666830 |
| С | 7.38346351995310  | -10.10079617623639 | -8.61235345982021 |
| Н | 9.53464070394579  | -10.03540047897560 | -8.81738531212979 |
| Н | 8.98562546101058  | -11.30889080690094 | -7.75170919670275 |
| Н | 6.61583373723735  | -10.30335142108597 | -7.86532673759465 |
| Н | 7.24359926103899  | -9.08517611867809  | -8.98015772441114 |
| Н | 7.22805867092338  | -10.78488914856228 | -9.44890251006423 |
| Η | 7.58984122845832  | -11.66003179484239 | -6.10488594704379 |
| Η | 6.70623807784845  | -12.36854718559401 | -3.90034914740960 |
| Η | 7.15544554728815  | -10.94852908057461 | -1.90140008787611 |
| С | 8.63285421895625  | -8.64465099626979  | -1.84219118575563 |
| Η | 8.37454087466114  | -7.59847225651258  | -2.00438824109982 |
| Η | 8.15022829574543  | -8.99627706998922  | -0.93244430317245 |
| Н | 9.71507662406204  | -8.68653980010488  | -1.69990451977760 |