Supporting Information

Metal chelate induced in-situ wrapping of Ni₃S₂ nanoparticles into N, S-codoped carbon networks for highly efficient sodium storage

Jiabao Li^a, Jinliang Li^b, Taiqiang Chen^c, Ting Lu^{a, d}, Wenjie Mai^b, Likun Pan^{*a}

^aShanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China

^bSiyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China.

^cState Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China

^dDepartment of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China

*Corresponding author. Tel.: +8621 62234132; fax: +8621 62234321;

E-mail address: <u>lkpan@phy.ecnu.edu.cn</u>

Fig. S1 High-resolution XPS spectra of Ni 2p (a), S 2p (b), C 1s (c) and N 1s (d) for $Ni_3S_2@NSC-1$, $Ni_3S_2@NSC-2$ and $Ni_3S_2@NSC-3$.

Fig. S2 High resolution C 1s (a), S 2p (b) and N 1s (c) spectra of NSC.

Fig. S3 XRD pattern of Ni_3S_2 @NSC-1 after TG measurement from room temperature to 1000 °C with a heating rate of 10 °C min⁻¹, demonstrating the conversion of Ni_3S_2 @NSC to NiO (JCPDS No. 47-1049).

The NSC contents in Ni_3S_2 @NSC can be calculated based on the following formula:

$$a = \left[1 - \left(\frac{b}{M_1} \div 3 \times M_2\right)\right] \times 100\%$$

where a is the NSC content; b represents the percentage of original mass maintained after TG test; M_1 and M_2 correspond to the mole molecular mass of NiO and Ni₃S₂, respectively.

The NSC content in Ni₃S₂@NSC-1:

$$a_1 = \left[1 - \left(\frac{0.713}{74.68} \div 3 \times 240.19\right)\right] \times 100\% = 23.5 \text{ wt.\%}$$

The NSC content in Ni₃S₂@NSC-2:

$$a_2 = \left[1 - \left(\frac{0.619}{74.68} \div 3 \times 240.19\right)\right] \times 100\% = 33.6 \text{ wt.\%}$$

The NSC content in Ni₃S₂@NSC-3:

$$a_3 = \left[1 - \left(\frac{0.542}{74.68} \div 3 \times 240.19\right)\right] \times 100\% = 41.9 \text{ wt.\%}$$

Fig. S4 FESEM images of Ni-MDC-1 (a), Ni-MDC-2 (b), Ni-MDC-3 (c) and DTO

(d).

Fig. S5 Coulombic efficiencies of NSC at 0.1 A g^{-1} (a) and different rates (b).

Fig. S6 Rate profiles of NSC.

Fig. S7 $i/v^{1/2}$ versus $v^{1/2}$ plots for Ni₃S₂@NSC-1 (a), Ni₃S₂@NSC-2 (b) and

 Ni_3S_2 @NSC-3 (c) to calculate k_1 and k_2 .

Fig. S8 Rate profiles of $Ni_3S_2@NSC-1$ (a), $Ni_3S_2@NSC-2$ (b) and $Ni_3S_2@NSC-3$ (c).

Discharge/charge profiles of Ni_3S_2 @NSC-1 (d), Ni_3S_2 @NSC-2 (e) and Ni_3S_2 @NSC-3

(f) at 0.5 A g⁻¹.

Sample	Voltage range (V)	Initial Coulombic efficiency	Cycling performance at low current density	Cycling performance at high current density	Ref.
NiS hollow spheres	0.01-3.0	54.7%	499.9 mAh g ⁻ ¹ after 50 cycles at 0.1 A g ⁻¹	/	1
NiS nanorods/graphene	e 0.005-3.0	74.7%	160 mAh g ⁻¹ after 20 cycles at 0.2 A g ⁻¹	/	2
NiS nanoplates	0.005-3.0	49.9%	166 mAh g ⁻¹ after 100 cycles at 1A g ⁻¹	/	3
NiS ₂ /graphene	0.01-2.8	65%	313.3 mAh g ⁻¹ at 0.1 A g ⁻¹ after 200 cycles	/	4
Ni ₃ S ₂ nanoparticles/carbon networks	0.01-3.0	59%	453 and 430 mAh g ⁻¹ after 100 cycles at 0.1 and 0.4 A g ⁻¹	408 mAh g ⁻¹ after 200 cycles at 2 A g ⁻¹	5
NiS _x /graphene	0-3.0	about 40 %	516 mAh g ⁻¹ after 200 cycles at 0.2 A g ⁻¹	/	6
Ni ₃ S ₂ /Ni composite	es 0.1-3.0	about 75%	338 mAh g ⁻¹ after 100 cycles at 0.17 A g ⁻¹	/	7
Layered nickel sulfide/graphene	0.005-3.0	77.1%	391.6 mAh g^{-1} after 50 cycles at 0.1 A g ⁻¹	/	8

Table S1 Comparison of sodium storage performance of $\rm Ni_3S_2@NSC-3$ in this work

and nickel sulfide based electrodes reported in the literatures.

Durian-like NiS ₂	0.01-3.0	76.2%	280.6 mAh g ⁻¹ after 60 cycles at 0.1 A g ⁻¹ ; 142.4 mAh g ⁻¹ after 100 cycles at 0.5 A g ⁻¹	/	9
NiS _x /carbon nanotube@carbon	0.01-3.0	59.2%	340 mAh g ⁻¹ after 200 cycles at 0.1 A g ⁻¹	/	10
Ni ₃ S ₂ @NSC-3	0.005-3.0	78.8%	458.1 mAh g ⁻ ¹ after 100 cycles at 0.1 A g ⁻¹	392.6 mAh g ⁻¹ after 300 cycles at 0.5 A g ⁻¹	This work

Reference

- D. Zhang, W. Sun, Y. Zhang, Y. Dou, Y. Jiang and S. X. Dou, *Adv. Funct. Mater.*, 2016, 26, 7479-7485.
- Q. Pan, J. Xie, T. Zhu, G. Cao, X. Zhao and S. Zhang, *Inorg. Chem.*, 2014, 53, 3511-3518.
- 3. H. Fan, H. Yu, X. L. Wu, Y. Zhang, Z. Z. Luo, H. Wang, Y. Guo, S. Madhavi and Q. Yan, *ACS Appl. Mater. Interfaces*, 2016, **8**, 25261-25267.
- T. Wang, P. Hu, C. Zhang, H. Du, Z. Zhang, X. Wang, S. Chen, J. Xiong and G. Cui, ACS Appl. Mater. Interfaces, 2016, 8, 7811-7817.
- X. Zhao, H.-E. Wang, R. C. Massé, J. Cao, J. Sui, J. Li, W. Cai and G. Cao, J. Mater. Chem. A, 2017, 5, 7394-7402.
- H. Tao, M. Zhou, K. Wang, S. Cheng and K. Jiang, J. Mater. Chem. A, 2017, 5, 9322-9328.
- C.-W. Su, J.-M. Li, W. Yang and J.-M. Guo, J. Phys. Chem. C, 2013, 118, 767-773.
- W. Qin, T. Chen, T. Lu, D. H. C. Chua and L. Pan, J. Power Sources, 2016, 302, 202-209.

- K. J. Zhu, G. Liu, Y. J. Wang, J. Liu, S. T. Li, L. Y. Yang, S. L. Liu, H. Wang and T. Xie, *Mater. Lett.*, 2017, 197, 180-183.
- F. Zhao, Q. Gong, B. Traynor, D. Zhang, J. Li, H. Ye, F. Chen, N. Han, Y. Wang, X. Sun and Y. Li, *Nano Res.*, 2016, 9, 3162-3170.