## Supporting information for

## Borax promotes the facile formation of hollow structure in Cu single crystalline nanoparticles for multifunctional electrocatalysis

Baorui Jia,<sup>a,b</sup>\* Yongzhi Zhao,<sup>a</sup> Zili Zhang,<sup>a</sup> Luan Liu,<sup>a</sup> Mingli Qin,<sup>a,c</sup>\* Haoyang Wu,<sup>a</sup> Ye Liu,<sup>d</sup> Xuanhui Qu <sup>a,e</sup> and Genggeng Qi<sup>b</sup>

<sup>a</sup> Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.

<sup>b</sup> Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States

<sup>c</sup> Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK

<sup>d</sup> School of Material Science and Engineering, Xiangtan University, Hunan 411105, China.

<sup>e</sup> Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China

Corresponding authors: jiabaorui@ustb.edu.cn (B. Jia); qinml@mater.ustb.edu.cn (M. Qin)



Figure S1 The color change of the aqueous solution of ascorbic acid and borax upon adding copper dichloride



Figure S2 XPS survey spectra of the Cu/Cu<sub>2</sub>O.



Figure S3 The ascorbic acid solution after adding copper dichloride. The white color indicates the formation of CuCl.



Figure S4 The TEM image of the Cu<sub>2</sub>O solid product prepared using KOH instead of borax.



Figure S5 (a) Cyclic voltammograms of the glassy carbon electrode modified with hollow  $Cu_2O$  in 0.1 M NaOH aqueous solution with and without 10 mM glucose at a scan rate of 50 mV s<sup>-1</sup> in ambient atmosphere. (b) The current responses of the  $Cu_2O$  electrode at an applied potential of 0.65 V (vs. Hg/Hg<sub>2</sub>SO<sub>4</sub>) upon the successive addition of 0.143 mM glucose every 60 s. (c) The current responses of the  $Cu_2O$  electrode upon the successive addition of 2.145 mM glucose every 60 s.



Figure S6 Nyquist plots of electrochemical impedance spectroscopy of the glass carbon electrode modified with hollow  $Cu_2O$  or  $Cu/Cu_2O$  in 0.1 M NaOH aqueous solution.

| Electrode material                    | Sensitivity (µA                     | Detection  | Linear range (up | Ref.      |
|---------------------------------------|-------------------------------------|------------|------------------|-----------|
|                                       | mM <sup>-1</sup> cm <sup>-2</sup> ) | limit (µM) | to, mM)          |           |
| CuO nanowires                         | 648                                 | 2          | _                | [1]       |
| Cu/ZIF-8                              | 412                                 | 2.76       | 0.7              | [2]       |
| Cu nanoparticles / N-                 | 48                                  | 1.3        | 4.5              | [3]       |
| doped graphene                        |                                     |            |                  |           |
| CuO nanoparticles / S-                | 1298                                | 0.08       | 10.5             | [4]       |
| doped graphene                        |                                     |            |                  |           |
| Cu@Cu <sub>2</sub> O coaxial          | 1420                                | 0.04       | 2                | [5]       |
| nanowires mesh                        |                                     |            |                  |           |
| CuO/carbon-tubes                      | 2596                                | 0.2        | 1.2              | [6]       |
| Cu <sub>x</sub> O/Cu                  | 1620                                | 49         | 6                | [7]       |
| Cu <sub>2</sub> O nanocubes/ graphene | 285                                 | 3.3        | 3.3              | [8]       |
| Cu@Cu <sub>2</sub> O Aerogel          | -                                   | 15         | 8                | [9]       |
| CuO NWs                               | 3.4                                 | 0.01       | 0.639            | [10]      |
| N-doped-graphene/Cu                   | 1848                                | 0.014      | 5                | [11]      |
| Cu/Pd nanoparticles                   | 298                                 | 0.32       | 9.6              | [12]      |
| Cu/graphene                           | 11                                  | 1          | 11               | [13]      |
| Hollow Cu/Cu <sub>2</sub> O           | 453                                 | 20         | 14               | This work |

Table S1. Comparative performance data of our hollow Cu/Cu<sub>2</sub>O with other reported non-enzymatic glucose sensors.

## References

- Y. Zhang, Y. Liu, L. Su, Z. Zhang, D. Huo, C. Hou and Y. Lei, *Sensor. Actuat. B-Chem.*, 2014, 191, 86-93.
- 2. L. Shi, X. Zhu, T. Liu, H. Zhao and M. Lan, Sensor. Actuat. B-Chem., 2016, 227, 583-590.
- D. Jiang, Q. Liu, K. Wang, J. Qian, X. Dong, Z. Yang, X. Du and B. Qiu, *Biosens. Bioelectron.*, 2014, 54, 273-278.
- 4. Y. Tian, Y. Liu, W.-p. Wang, X. Zhang and W. Peng, *Electrochim. Acta*, 2015, **156**, 244-251.
- Y. Zhao, L. Fan, Y. Zhang, H. Zhao, X. Li, Y. Li, L. Wen, Z. Yan and Z. Huo, *ACS Appl. Mater*. *Interfaces*, 2015, 7, 16802-16812.
- 6. J. Yang, L.-C. Jiang, W.-D. Zhang and S. Gunasekaran, *Talanta*, 2010, 82, 25-33.
- 7. C. Li, Y. Su, S. Zhang, X. Lv, H. Xia and Y. Wang, *Biosens. Bioelectron.*, 2010, 26, 903-907.
- 8. M. Liu, R. Liu and W. Chen, *Biosens. Bioelectron.*, 2013, 45, 206-212.
- 9. P. Ling, Q. Zhang, T. Cao and F. Gao, Angew. Chem. Int. Ed., 2018, 57, 6819-6824.
- 10. S. Yang, G. Li, D. Wang, Z. Qiao and L. Qu, Sensor. Actuat. B-Chem., 2017, 238, 588-595.
- 11. N. Gowthaman, M. A. Raj and S. A. John, ACS Sustain. Chem. Eng., 2017, 5, 1648-1658.
- Z. H. Li, X. L. Zhao, X. C. Jiang, Y. H. Wu, C. Chen, Z. G. Zhu, J. L. Marty and Q. S. Chen, *Electroanal.*, 2018, 30, 1811-1819.
- 13. Y. He and J. Zheng, Anal. Methods, 2013, 5, 767-772.