Adsorption Behavior and Structure Transformation of Mesoporous Metal-Organic Frameworks Towards Arsenates and Organic Pollutants in Aqueous Solution

Jianhua Cai,*^[a,b] Xuhui Mao*^[a] and Wei-Guo Song^[b]

^aSchool of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, P. R. China

^bKey Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

Table of Content

1, Energy dispersive spectroscopy analysis and reports of as obtained MIL-100(Fe	e,
AI).	00
Figure S1	S2
2, Nitrogen adsorption-desorption isotherms of MIL-100(Fe, AI) after adsorption.	00
Figure S2, Table S1	\$3
3, FI-IR spectra of MIL-100(Fe, AI) after adsorbing pollutants.	~ .
Figure S3	S4
4, Arsenates adsorption performances of MIL-100(Fe, AI) adsorbents under differe	ent
pH values.	
Table S2, Table S3	
S5	
5, Removal of Low-level arsenate by MIL-100(Fe, AI) adsorbents.	~ -
Figure S4	S5
4, Elements dispersion of TEM mapping images of MIL-100(Fe) after saturated	
adsorption in 100 ppm HAsO ₄ ²⁻ solution.	~~~
Figure S5	56
5, Elements dispersion of TEM mapping images of MIL-100(AI) after saturated	
adsorption in 100 ppm HAsO ₄ ²⁻ solution.	00
	56
6, Digital photo images of adsorbed MIL-100(Fe) and MIL-100(AI).	07
Figure S7	57
7, 1G curves of MIL-100(Fe, AI) under all ambience.	07
Figure S8	57
8, X-ray photoelectron spectroscopy (XPS) data of MIL-100(Fe, AI) and adsorbed	
samples.	00
Figure S9	58
	58
9, Mossbauer spectra of MIL-100(Fe) and adsorbed samples.	00
	59
I ADIE 55	S10

Supporting Information:

Figure S1. EDS analysis and reports: (a) MIL-100(Fe), (b) MIL-100(Al). (the other peaks not

indexed came from Pt which was used in preparation of the samples for characterization)

Figure S2. (a) Nitrogen adsorption-desorption isotherms of MIL-100(Fe) after adsorption in 100 ppm pollutants, (b) Nitrogen adsorption-desorption isotherms of MIL-100(Al) after adsorption in 100 ppm pollutants.

Samples	S _{BET} m²/g	V _{micro} cc/g	Pore Size/nm	Samples	S _{BET} m²/g	V _{micro} cc/g	Pore Size/nm
Fe	1369.6	0.710	1.107	Al	1370	0.665	0.969
Fe-As	1131	0.589	0.581	Al-As	1200	0.567	0.960
Fe-MB	1223	0.636	0.628	Al-MB	1084	0.547	0.960
Fe-RhB	1345	0.712	0.628	Al-RhB	1149	0.584	0.951
Fe-CBB	1223	0.553	0.452	Al-CBB	1082	0.565	0.951

Table S1. BET surface areas, pore size distribution and pore volume analysis.

Figure S3. (a) FT-IR spectra of MIL-100(Fe) and the corresponding adsorbed samples, (b) FT-IR spectra of MIL-100(A1) and the corresponding adsorbed samples, (c) FT-IR spectra of MB, RhB and CBB.

Complete	As(V) concentrations of solutions (ppm)					
Samples	рН 4	рН 7	pH 11			
Before adsorption	10	10	10			
MIL-100(Fe)	6.30	2.46	0.57			
MIL-100(Al)	2.95	1.04	0.11			

Table S2. Arsenates adsorption performances of MIL-100(Fe) and MIL-100(Al) under different pH values in 10 ppm arsenate solution (T = 25 °C; adsorbent doses = 0.4 g L^{-1}).

Table S3. The selectivity experiments of MIL-100(Fe, Al) in 10 ppm arsenate solution with 50 ppm disturbing ions (T = 25 °C; adsorbent doses = 0.4 g L^{-1}).

Samples	Concentrations of As(V) and disturbing ions (ppm)						
	As(V) Cl ⁻	As(V) SO_4^{2-}	As(V) NO ₃ -	As(V) HCO3 ⁻			
Before adsorption	10 50	10 50	10 50	10 50			
MIL-100(Fe)	3.77	2.51	3.75	0.191			
MIL-100(Al)	1.33	1.55	1.53	0.122			

Figure S4. (a) The residual arsenate concentrations exploiting MIL-100(Fe) as the adsorbent for low-level arsenate removal. (b) The residual arsenate concentrations exploiting MIL-100(Al) as

the adsorbent for low-level arsenate removal (T = 25 °C; adsorbent doses = 0.5 g L^{-1}).

Figure S5. STEM images and elements dispersion of the arsenate adsorbed MIL-100(Fe).

Figure S6. STEM images and elements dispersion of the arsenate adsorbed MIL-100(Al).

Figure S7. Digital photo images of the adsorbed MIL-100(Fe) and MIL-100(Al).

Figure S8. TG curve of iron and aluminum trimesate under air ambience (5 ° C/min to 600 ° C, hold at 50 ° C for 30 min).

Figure S9. (a) XPS spectra of MIL-100(Fe) and adsorbed samples, (b) XPS spectra of MIL-100(Al) and adsorbed samples.

Elements Contents (%)	С	Ν	0	Fe/Al	F	As	Na
Fe	68.18	0.93	25.09	1.94	3.87		
Fe-As	61.92	1.46	29.11	2.91	0.77	3.36	0.47
Fe-MB	79.62		19.09	0.75	0.54		
Fe-RhB	79.96	0.62	18.43	0.67	0.31		
Fe-CBB	80.86	0.5	16.99	0.28	1.54		
Al	68.45	1.89	24.98	4.68			
Al-As	71.47		22.86	4.39		1.28	
Al-MB	71.2	2.33	22.46	4.01			
Al-RhB	74.22	2.19	20.62	2.97			
Al-CBB	70.65	1.76	23.52	4.07			

Table S4. Elements contents (atomic %) of XPS analysis.

Figure S10. Mössbauer spectra of MIL-100(Fe) and adsorbed samples (a) before adsorption^[1] (b) As(V)-adsorbed^[1] (c) MB-adsorbed (d) RhB-adsorbed (e) CBB-adsorbed.

MIL-100(Fe)	δ (mm/s) ^a	Qs (mm/s) ^b	FWHM (mm/s) ^c	Area Ratio (%)
Fe1	0.41	0.27	0.56	36.0
Fe2	0.39	0.59	0.57	39.0
Fe3	0.68	0.77	0.58	25.0
Fe-As	δ(mm/s)	Qs (mm/s)	FWHM (mm/s)	Area Ratio (%)
Fe1	0.36	0.32	0.40	36.2
Fe2	0.31	0.77	0.43	34.8
Fe3	0.65	0.77	0.58	29.0
Fe-MB	δ(mm/s)	Qs (mm/s)	FWHM (mm/s)	Area Ratio (%)
Fe1	0.41	0.20	0.35	35.0
Fe2	0.38	0.78	0.40	37.0
Fe3	0.65	0.77	0.58	28.0
Fe-RhB	δ(mm/s)	<i>Qs</i> (mm/s)	FWHM (mm/s)	Area Ratio (%)
Fe1	0.36	0.19	0.42	35.0
Fe2	0.35	0.76	0.41	36.0
Fe3	0.60	0.77	0.58	29.0
Fe-CBB	δ(mm/s)	Qs (mm/s)	FWHM (mm/s)	Area Ratio (%)
Fe1	0.36	0.21	0.39	40.0
Fe2	0.35	0.78	0.43	34.0
Fe3	0.70	0.77	0.58	26.0

Table S5. Summary of Mössbauer parameters and assignment to iron species.

[a] Isomer shift or chemical shift (δ) ,

[b] Quadrupole splitting (Qs),

[c] Full width at half maximum (FWHM)

Reference:

[1] J. Cai, X. Wang, Y. Zhou, L. Jiang, C. Wang, Phys. Chem. Chem. Phys. 2016, 18, 10864-10867.