Supporting Information

Peroxidase-like Fe₃O₄ Nanocomposite for Activatable

Reactive Oxygen Species Generation and Cancer

Theranostics

Kai Zhang,^{a,b} Zhou Yang^{*,b} Xiangdan Meng,^a Yu Cao,^a Yuedong Zhang,^a Wenhao Dai,^a Huiting Lu,^a Zhaofeng Yu, ^b Haifeng Dong,^{*, a} Xueji Zhang^a

^a Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083 People's Republic of China E-mail: <u>hfdong@ustu.edu.cn.</u>

^b Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, People's Republic of China E-mail: <u>yangz@ustb.edu.cn</u>

Scheme S 1. Synthesis of Porphyrin.

Fig. S 1. Mass Spectrometry of porphyrin.

Fig. S2. N_2 adsorption-desorption isotherms (inset: the pore diameter distribution) of Fe₃O₄@CS/CuS NPs

Fig. S3. a) Photothermal heating curves of different weight ratio of Fe_3O_4 @CS and CuS solutions under 980 nm NIR-laser irradiation for 10 min, b).Loading efficiency of different weight ratio of porphyrin and Fe_3O_4 @CS/CuS.

Fig. S4. (a) DLS of FCCP before and after mixing with serum. (b) Dispersity of FCCP at different buffer media (serum, PBS, DMEM)

Fig. S5. (a)UV-vis absorption spectra of porphyrin at different concentrations. (b) Linear fit of porphyrin absorbance at 410 nm

Fig. S6. Released profiles of porphyrin from FCCP with or without 980 nm NIR-laser irradiation at PBS buffer PH 5.0, 7.4 in PBS buffer.

Fig. S7. (a) The photothermal response of the Fe₃O₄@CS-CuS/porphyrin solution aqueous solution (100 µgmL-1) under the irradiation of an NIR laser (980 nm, 2.1 W cm⁻²) for 600 s and then the laser was shut off. (b) Plot of the cooling time versus $-\ln(\theta)$ obtained from the cooling stage as shown in

The singlet oxygen quantum yield was calculated by the following equation S1 with respect to the reference:

$$\Phi^{S}_{\Delta} = \Phi^{R}_{\Delta} \frac{F^{R} k^{S}}{F^{S} k^{R}}$$
(S1)

where S and R represent the sample and Ce6, In addition k is the slope of a plot of the difference in change in absorbance of DPBF with the irradiation time, and *F* is the absorption correction factor, which is calculated by $F = 1 - 10^{-00}$ (OD at the irradiation wavelength)

Fig. S8. In vitro cytotoxicity with different FCCP concentration of nanomaterials (10-200 μ g/mL) in DMEM.

Fig. S9. Biodistribution of Fe in various organs and tissues at cancer tumor-bearing mice. Error bars were based on the standard error of the mean of triplicate samples.