Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2018

Supporting Information

Well-aligned metal-organic framework array-derived CoS₂ nanosheets toward robust electrochemical water splitting

Na Yao, Tan Tan, Fulin Yang, Gongzhen Cheng and Wei Luo*

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China.

Corresponding Author: E-mail: wluo@whu.edu.cn

Fig. S1 XRD patterns of Co(OH)F/CC;

Fig. S2 XRD patterns of ZIF-67/CC;

Fig. S3 SEM images of Co(OH)F/CC(a), and ZIF-67/CC (b)

Fig. S4 SEM images of ZIF-67/CC for vulcanization 30 min (a); 60 min (b);

90 min (c); 120 min (d).

Fig. S5 XRD pattern and SEM image of CoS₂ NR/CC.

Fig. S6 EDX spectrum of $CoS_2 NS/CC$

Fig. S7 (a) SEM images of NiS₂ NS/CC; (b) XRD pattern of NiS₂ NS/CC (PDF#11-0099) ; (c) SEM images of FeS₂ NS/CC; (e) XRD pattern of FeS₂ NS/CC (PDF#42-1340).

Fig. S8 (a) Cyclic voltammetries with for capacitive currents at 0.53 V as a function of scan rate in 1.0 M KOH for CoS_2 NS/CC and the Cdl of CoS_2 NS/CC by Linear fitting; (b) CoS_2 NR/CC;(c) ZIF-67/CC.

Fig. S9 (a) Cyclic voltammetries with for capacitive currents at -0.9 V as a function of scan rate in 1.0 M KOH and the C_{dl} of CoS_2 NS/CC, (b) CoS_2 NR /CC, (c) ZIF-67/CC.

Fig. S10 SEM images of $CoS_2 NS/CC$ after OER test.

Fig. S11 XPS pattern of CoS₂ NS/CC after OER

(a) Co 2p spectrum; (b) S 2p spectrum.

(b)

Fig. S12 (a) SEM images of CoS_2 without carbon cloth; (b) SEM images of CoS_2 NS/CC; (c-d) LSV curves of CoS_2 NS/CC and CoS_2 without carbon cloth.

Fig. S13 Faraday efficiency of H_2 and O_2 production.

Catalyst	j (mA cm ⁻²)	η (mV)	Reference
CoS ₂ SN/CC	10	85	
	100	248	- This work
CoS ₂ SL/CC	10	90	This work
CoS ₂ NTA / CC	10	193	1
P-Co-Ni-S/NF	100	284	2
N-CoS2 NW/CC	10	152	3
CoS2@NSC/CFP	10	95	- 4
	100	158	
Ni _{2.3%} -CoS ₂ /CC	100	231	5
NiCo ₂ S ₄ BHSs	1	90	6
Cu@CoSx/CF	10	134	- 7
	100	267	
NiCo ₂ S ₄ /Ni ₃ S ₂ /NF	10	119	8
Ni ₃ S ₂ nanorod/NF	10	200	9
Zn-Co-S/CFP	10	234	10
MoS ₂ -Ni ₃ S ₂ HNRs/NF	10	98	11
Ni ₃ S ₂ /NF	10	223	12
NiS/NF	20	158	13
CoP/CC	10	110	14
S-NiFe ₂ O ₄	10	138	21
CoS ₂ HNSs	10	193	15

 Table S1 Comparison of representative Co-based sulfide OER catalysts in alkaline electrolyte.

Catalyst	j (mA cm ⁻²)	η (mV)	Reference	
CoS ₂ SN/CC	10	220	This work	
	100	320		
CoS ₂ SL/CC	10	280	This work	
CoS ₂ NTA / CC	10	276	1	
Ni _{2.3%} -CoS ₂ /CC	100	370	5	
Cu@CoSx/CF	10	160	- 7	
	100	310		
CoS ₂ @NSC	10	470	16	
Co_3S_4 (2) MoS_2	10	330	17	
CuCo ₂ S ₄	10	310	18	
N-CoS ₂ /CC	10	240	19	
CoS ₂ HNSs	10	290	11	
Ni ₃ S ₂ /NF	10	260	12	
NiS/NF	50	335	13	
S-NiFe ₂ O ₄	10	260	21	
NiCo ₂ (SOH)x	10	290	20	

 Table S2 Comparison of representative Co-based sulfide OER catalysts in alkaline electrolyte.

 Table S3 Comparison of representative Co-based sulfide water splitting catalysts in alkaline
 electrolyte.

Catalyst	j (mA cm ⁻²)	E (mV)	Reference
CoS ₂ SN/CC-CoS ₂ SN/CC	10	1.58	This work
	100	1.86	
CoS ₂ NTA/CC-CoS ₂ NTA/CC	10	1.67	1
$Ni_{2.3\%}$ -CoS ₂ /CC-Ni _{2.3\%} -CoS ₂ /CC	10	1.66	5
Cu@CoSx/CF-Cu@CoSx/CF	100	1.80	7
NiS/NF- NiS/NF	10	1.64	13
$Ni_3S_2/NF-Ni_3S_2/NF$	10	1.76	12
S-NiFe ₂ O ₄₋ S-NiFe ₂ O ₄	10	1.65	21
NiMoO ₄ -x/MoO ₂ -NiMoO ₄ -x/MoO ₂	10	1.56	22
CP/CT/Co-S- CP/CT/Co-S	10	1.68	23
foil/NiCo ₂ O ₄ -foil/NiCo2O4	10	1.73	24
NiCo ₂ O ₄ HM/NF-NiCo ₂ O ₄ HM/NF	10	1.65	25

Reference

- S. Feng, X. Li, J. Huo, Q. Li, C. Xie, T. Liu, Z. Liu, Z. Wu and S. Wang, *ChemCatChem*, 2018, 10, 796;
- 2. F. Zhang, Y. Ge, H. Chu, P. Dong, R. Baines, Y. Pei, M. Ye and J. Shen, ACS Appl. Mater. Interfaces, 2018, 10, 7087;
- P. Chen, T. Zhou, M. Chen, Y. Tong, N. Zhang, X. Peng, W. Chu, X. Wu, C. Wu, and Y. Xie, ACS Catal., 2017, 7, 7405;
- S. Feng, X. Li, J. Huo, Q. Li, C. Xie, T. Liu, Z. Liu, Z. Wu and S. Wang, *ChemCatChem*, 2018, 10,796;
- 5. W. Fang, D. Liu, Q. Lu, X. Sun, A. M. Asiri, *Electrochemistry Communications*, 2016, 63, 60;
- 6. Y. Jiang, X. Qian, C. Zhu, H. Liu, and L. Hou, ACS Appl. Mater. Interfaces 2018, 10, 9379;
- 7. Y. Liu, Q. Li, Rui Si, G.-D. Li, W. Li, D.-P. Liu, D. Wang, L. Sun, Y. Zhang and X. Zou, *Adv. Mater.* 2017, **29**, 1606200;
- 8. H. Liu, X. Ma, Y. Rao, Yang Liu, J. Liu, L. Wang and M. Wu, *ACS Appl. Mater. Interfaces*, 2018, **10**, 10890;
- C. Ouyang, X.Wang, C. Wang, X. X. Zhang, J. H. Wu, Z. L. Ma, S. Dou, S. Y. Wang, *Electrochim. Acta*, 2015, **174**, 297;
- 10. X. Wu, X. Han, X. Ma, W. Zhang, Y. Deng, C. Zhong and W. Hu, *ACS Appl. Mater. Interfaces*, 2017, **9**, 12574;

- 11. Y. Yang, K. Zhang, H. Lin, X. Li, H. C. Chan, L. Yang and Q. Gao, ACS Catal., 2017, 7, 2357;
- 12. L. Feng, G. Yu, Y. Wu, G.-D. Li, Hui Li, Y. Sun, T. Asefa, W. Chen and X. Zou, *J. Am. Chem. Soc.*, 2015, **137**, 14023;
- 13. W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang and J. Wang, *Chem. Commun.*, 2016, **52**, 1486;
- 14. J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587;
- 15. X. Ma, W. Zhang, Y. Deng, C. Zhong, W. Hu and X. Han, Nanoscale, 2018, 10, 4816;
- 16. B. Chen, R. Li, G. Ma, X. Gou, Y. Zhu and Y. Xia, Nanoscale, 2015, 7, 20674;
- 17. Y. Guo, J. Tang, H. Qian, Z. Wang and Y. Yamauchi, Chem. Mater., 2017, 29, 5566;
- 18. M. Chauhan, K. P. Reddy, C. S. Gopinath and S. Deka, ACS Catal., 2017, 7, 5871;
- 19. J. Hao, W. Yang, Z. Peng, C. Zhang, Z. Huang and W. Shi, ACS Catal., 2017, 7, 4214;
- 20. L. Peng, J. Wang, Y. Nie, K. Xiong, Y. Wang, L. Zhang, K. Chen, W. Ding, L. Li and Z. Wei, *ACS Catal.*, 2017, **7**, 8184;
- 21. J. Liua, D. Zhua, T. Lingb, A. Vasileffa, S.-Z. Qiao, Nano Energy, 2017, 40, 264;
- 22. Z. Zhanga, X. Maa,b, and J. Tang, J. Mater. Chem. A, 2018, Accepted Manuscript.
- 23. J. Wang, H.-X. Zhong, Z.-L. Wang, F.-L. Meng and X.-b. Zhang, ACS Nano, 2016, 10, 2342;
- 24. Z. Peng, D. Jia, A. M. Al-Enizi, A. A. Elzatahry, G. Zheng, Adv. Energy Mater., 2015, 5, 1402031.
- 25. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, Z. Zhang, C. Liang, Z. Lin, Angew. Chem. Int. Ed. 2016, 55, 6290;