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General information

Materials

Pd(PPh;),Cl,, PPh;, Cul, benzophenone hydrazone and other chemicals and solvents
were all purchased from Energy Chemical Company and used as received without
further purification. Compounds5-ethynylsalicylaldehyde, 9-fluorenone hydrazine and
(R)-methyl 2-(4-bromobenzamido)propanoate were prepared according to previous
papers.!

Instruments and methods

'H and 3C NMR spectra were recorded on a VNMRS 400 (Varian, USA) NMR
spectrometer. High resolution mass spectra (HR-MS) were recorded using a Thermo
Finnigan MAT TSQ 7000 spectrometer (USA). UV spectra were recorded using a
UV-2600 spectrometer (Shimadzu, Japan). CD spectra were recorded using a
Chirascan spectrometer (Applied Photophysics, England). Fluorescence spectra were
recorded using a F-7000 fluorescence spectrometer (Hitachi, Japan). The fluorescence

quantum yield (P¢) in solution was measured by a relative method using fluorescein

in 0.1 M NaOH (@ ¢= 95%) as a standard. CPL spectra were recorded using a CPL-

200 instrument (JASCO, Japan) at room temperature. The surface morphologies and
structures were characterized by scanning electron microscope (SEM, Hitachi FE-
SEM S-4800 operated at 1 kV) and transmission electron microscope (TEM, JEOL
JEM-2100F operated at 200 KV). Fluorescence images were captured using the
fluorescence microscope DHG-9070A (Olympus, Japan). The theoretical ground-state
geometry and electronic structure of molecules 1 and 2 were optimized using the
density functional theory (DFT) with B3LYP hybrid functional at the basis set level
of 6-31+G(d). All the theoretical calculations were performed using Gaussian 03
package.?
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Figure S1. Fluorescence images of fluorescent fibers of (a) 1 and (b) 2 upon the
evaporation of their THF solution. Solution concentration: 100 uM.
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Figure S2. Plots of (a) CPL and PL and (b) CPL dissymmetry factor g.,, of cast film
of 2 formed by evaporation of its THF solution.



15
[«F]
Q
5 1.0
Ke] ~°
s —
Py —
0
< 05
Mo 40 S0 &0 To0 800 O s i matiigasi 4 A
AheddtAsdst A AL 4
539553808k ¥EE 2k

Wavelength / nm

Figure S3. (a) Absorption spectra of 1 (10 uM) upon the addition of 1 equiv. of
various metal cations in THF/H,O (1/9, v/v); (b) Variation of the fluorescence
intensity at 635 nm (Aex = 395 nm) of 1 (10 uM) in THF/H,0 (1/9, v/v) in absence and
presence of 1 equiv. of various metal cations.
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Figure S4. Absorption spectra of 2 (10 uM) upon the addition of 0-12 uM Cu?* in
THF/H,0 (1/9, v/v).
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Figure S5. (a) Fluorescence spectra (A = 380 nm) of 2 (10 uM) upon the addition of
0-1.2 uM Cu?" in THF/H,O (1/9, v/v). (b) The plot of fluorescence intensity at 586 nm

versus Cu?* concentrations.

0.08
0.06 - " .
-
-
< 0.04] o
-

0.02 -

0.2 0.4 0.6 0.8 1.0

[Cu®]/[Cu*"+1]
Figure S6. Job’s plot of 2 with Cu?" in THF/H,O (1/9, v/v).
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Figure S7. Mass spectrum of 2 in the presence of 1 equiv. of Cu?" in THF/H,0O (1/9,
v/v).
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Figure S8. 'TH NMR of compound 3.
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Figure S9. 13C NMR of compound 3.
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Figure S10. HRMS of compound 3.
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Figure S11. 'H NMR of compound 2.

12.5 11.5 10.5 95 85

13.5

08'81T—

L9'8b~
LTS

v8'9L
oL}
8v'LL
L9218~
ob71P,
87811
12421
95'82T
L9821
9€'62T
66214
LETET
LITET”
£9'GET
99'SET
ET9€T

62°09T-
TEEIT~
61°99T~
9,691~
8rest’

S S

100

chemical shift (ppm)

Figure S12. 13C NMR of compound 2.

80 70 60 50 40 30 20 10

90

190 180 170 160 150 140 130 120 110

0



530.2075

530.2074

0.0484 ppm

Ca3H2s O4N3

miz

Figure S13. HRMS of compound 2.
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Figure S14. 'H NMR of compound 1.
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Figure S15. 3C NMR of compound 1.
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Figure S16. HRMS of compound 1.



