Supplementary Information

A novel layered Ni-rich cathode hierarchical architecture of densely integrating hydroxide nanoflakes onto oxide microspheres with superior lithium storage property Yan Li,^a Xinhai Li,^a Zhixing Wang,^a Huajun Guo,^a Tao Li,^a Kui Meng,^a and Jiexi Wang^{*a,b} ^a School of Metallurgy and Environment, Central South University, Changsha 410083, P.R. China. ^b State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P.R. China.

* Corresponding author. Tel: +86-731-88836633, Fax: +86-731-88836633

Email address: wangjiexikeen@csu.edu.cn

1. Chemical composition of the precursors and the as-prepared cathodes

Table S1 Chemical composition of the precursors and the as-prepared cathodes

Samples	Li	Ni	Со	Mn
$Ni_{0.8}Co_{0.1}Mn_{0.1}(OH)_2 @Ni_{0.8}Co_{0.1}Mn_{0.1}O_x \\$	/	0.803	0.095	0.102
$LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$	1.000	0.809	0.101	0.106

2. Particle morphology of the spray pyrolyzed $Ni_{0.8}Co_{0.1}Mn_{0.1}O_x$ microspheres

Fig.S1. SEM of the spray pyrolyzed $Ni_{0.8}Co_{0.1}Mn_{0.1}O_x$ microspheres

3. Particle size distribution of the precursors and cathodes

Ni_{0.8}Co_{0.1}Mn_{0.1}(OH)₂@Ni_{0.8}Co_{0.1}Mn_{0.1}O_x.precursors and (b) cathodes prepared from the two precursors.

Fig.S3. SEM of the $LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$ prepared from the precursors obtained at different time intervals during the co-precipitation reaction: (a,c,e,g) 1.5 h; (b,d,f,h) 2 h.

4. Performance comparison of LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ cathode in this work and the previous reported works

Fig. S4. (a) SEM of the $Ni_{0.8}Co_{0.1}Mn_{0.1}O_x$ precursors obtained from spray pyrolysis; (b)SEM of $LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$ cathodes prepared from $Ni_{0.8}Co_{0.1}Mn_{0.1}O_x$; (c) XRD patterns of the asprepared $LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$ cathodes; (d) Cycle performance of the as-prepared $LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$ cathodes.

Fig. S5. (a) SEM of the $Ni_{0.8}Co_{0.1}Mn_{0.1}(OH)_2$ precursors obtained from co-precipitation reaction; (b)SEM of $LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$ cathodes prepared from $Ni_{0.8}Co_{0.1}Mn_{0.1}(OH)_2$; (c) XRD patterns of the as-prepared $LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$ cathodes; (d) Cycle performance of the as-prepared $LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$ cathodes.