Liquid crystal gelators with photo-responsive and AIE properties

Xia Yu,^{a,†} Hui Chen,^{b,†} Xiang Shi,^c Pierre-Antoine Albouy,^c Jia Guo,^a Jun Hu^{*a} and Min-Hui Li^{*a,b}

^aBeijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China. Email: min-hui.li@chimieparistech.psl.eu; jhu@mail.buct.edu.cn

^bChimie ParisTech, PSL University Paris, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France. Email: min-hui.li@chimieparistech.psl.eu

^cUniversité Paris-Sud, CNRS, Laboratoire de Physique des Solides, UMR8502, 91405 Orsay Cedex, France.

[†]These authors contributed equally to this work.

Contents

1.	Synthesis of <i>trans</i> -C _n -Chol	S2
2.	Liquid crystal behavior	S 3
3.	Gelation	S7
	3.1 Gel ability	S7
	3.2 Morphologies	S 8
	3.3 Supramolecular chirality	S8
	3.4 Driving force of gelation	S 9
4.	AIE characteristics	S10
5.	Photo-responsiveness	S11
6.	MS, ¹ H and ¹³ C NMR spectra	S12

1. Synthesis of *trans*-C_n-chol

Scheme S1. Synthetic route of *trans*-C_n-Chol. Reaction conditions: a) i. n-butyllithium, 0 °C, 0.5 h, diphenylmethane, THF, rt, 6 h; ii. PTSA, toluene, 120 °C, 12 h; b) i. BBr₃, -20 °C, 4 h; ii. 1,6-dibromohexane, K₂CO₃, MeCN, 50 °C, 24 h; c) i. HCl, NaNO₂, methanol/H₂O, 0 °C, 0.5 h; ii. phenol, KOH, H₂O, rt, 24 h; d) Br-C_n-CO₂H (n = 1, 3, 5), EDCl, DMAP, DCM, rt, 12h; e) TPE-C₆-Br, K₂CO₃, MeCN, 85 °C, 24 h; f) R-C_n-Chol (R = Cl, n = 0; R = Br, n = 1, 3, 5), K₂CO₃, DMF, 50 °C, 24 h.

2. Liquid crystal behaviour

compounds	*	re-organization	Cr-Iso	SmA-LC2	Cr-SmA	SmA-Iso
	Heating	161.1			175.1	178.3
trans C. Chol		(1.4)	-	-	(46.0)	(5.9)
	Cooling				-	171.5
	Cooling	-	-	-		(4.0)
	Heating		164.2			
trans C. Chol		-	(76.8)	-	-	-
trans-c1-choi	Cooling		-		-	154.6
		-		-		(13.8)
	Heating				161.7	164.7
trans C. Chol		-	-	-	(38.3)	(0.7)
trans-c3-choi	Cooling				_	160.1
	Cooling	-	-	-	-	(11.7)
	Heating	146.2	171.5			
trans C. Chol	neating	(11.1)	(65.6)	-	-	-
<i>trans-</i> c5-Choi	Cooling	_	-	139.1	_	155.9
		-		(36.7)	-	(14.9)

Table S1. Phase transition temperatures (°C) and enthalpies (kJ mol⁻¹, in brackets) of *trans*-C_n-Chol upon first heating and first cooling cycle at a rate of 2 °C min⁻¹.

Fig. S1 DSC thermogram of *trans*-C₀-Chol at first heating and cooling (0.5 °C min⁻¹).

Fig. S2 SAXS (A) and WAXS (B) of trans-C₀-Chol.

Fig. S3 DSC thermograms of *trans*-C₀-Chol (green lines), *trans*-C₁-Chol (black lines), *trans*-C₃-Chol (red lines) and *trans*-C₅-Chol (blue lines) upon the second heating (4 upper curves) and second cooling (4 lower curves) cycle at a rate of 2 °C min⁻¹. Three samples, *trans*-C₀-Chol, *trans*-C₁-Chol and *trans*-C₃-Chol, exhibited hot-recrystallization upon the second and further heating at around 100 °C.

Fig. S4 Textures of *trans*-C₀-Chol observed by POM. (A) 179 °C upon first heating (obj x 10), (B) 173 °C upon first cooling (obj x 10), (C) 175 °C upon second heating (obj x 10).

Fig. S5 Diffraction patterns of SAXS (A) and WAXS (B) of aligned sample of *trans*-C₅-Chol taken at 25°C. (C) is the intensity profile of WAXS signals in (B) as a function of diffraction angle 2θ (obtained by circular intensity integration).

	peak	0	1	2	3	4	5	6	7	8	9	10
CAVE	20 (°)	1.45	2.9	4.35	5.81	-	-	-	-	-	-	
SAXS	d (nm)	6.09	3.05	2.03	1.52	-	-	-	-	-	-	
11/12/6	2θ (°)	-	2.81	4.46	5.74	7.35	9.23	10.21	10.79	11.67	16.68	21.19
WAXS	d (nm)	-	3.14	1.98	1.54	1.20	0.96	0.87	0.82	0.76	0.53	0.42

Table S2. Diffraction angles and periodic distances (nm) obtained from SAXS and WAXS of *trans*-C₅-Chol

Fig. S6 (A)-(D): Stretched lengthes of *trans*-C_n-Chol determined by Chem 3D. (E): A possible model of molecular organization of SmA_d.

3. Gelation behavior

3.1 Gel ability

Table S3. Gelation properties of trans-Cn-Chol in organic solvents								
Entry	Solvents	<i>trans-</i> C₅-Chol (CGC)ª [mM]	<i>trans-</i> C₃-Chol (CGC) [mM]	<i>trans-</i> C ₁ -Chol (CGC) [mM]	<i>trans-</i> C ₀ -Chol (CGC) [mM]			
1	DMSO	I	I	I	I			
2	MeCN	I	I	I	I			
3	DMF	G (29)	G (16)	Р	Р			
4	Methanol	I	I	I	I			
5	Ethanol	I	I	I	I			
6	Acetone	G (48)	G (22)	Р	Р			
7	THF	S	S	S	S			
8	EA	G (46)	G (14)	Р	Р			
9	DCM	S	S	S	S			
10	Toluene	S	S	S	S			
11	DCM/ EA = 1/2	G (36)	G (25)	Р	Ρ			
12	THF/ EA = 1/2	Ρ	Ρ	Ρ	Ρ			
13	DCM/ n-hexane = 1/2	Ρ	Ρ	Ρ	Ρ			
14	Ethanol/ n-hexane	I	I	I	I			

^aThe values in parentheses are critical gelation concentration (CGC, mM) at room temperature, I = insoluble when heated to 110 °C, G = stable gel at room temperature, P = precipitation when cooled from hot solution, S = soluble at room temperature.

3.2 Morphologies

Fig. S7 SEM images of the gels of *trans*-C₃-Chol in (A) DMF, (B) acetone, (C) EA, and (D) DCM/EA (1/2, v/v).

3.3 Supramolecular chirality

Fig. S8 CD spectra of the gels of *trans*-C₃-Chol (A) and *trans*-C₅-Chol (B) in DMF before (black) and after (blue) UV irradiation at 365 nm. Their CD spectra in THF solution are curves in red (Conc. = 0.1 mM).

3.4 Driving force of gelation

Fig. S9 Temperature-dependent ¹H NMR spectra (400 MHz) of *trans*-C₅-Chol gel in DMF-*d*₇.

4. AIE characteristics

Fig. S10 (A) Fluorescence spectra of *trans*-C₃-chol in DCM/EA (conc. = 217 mM); (B) plots of I/l₀ of *trans*-C₃-Chol as a function of EA fraction in DCM/EA. I₀ = fluorescence peak intensity in DCM, I = fluorescence peak intensity in DCM/EA with different volume fractions; (C) temperature-dependent fluorescence spectra of *trans*-C₃-Chol gel in DMF (conc. = 20 mM); (D) plots of I/l₈₀ of *trans*-C₃-Chol gel as a function of temperature from 25 to 80 °C. I₈₀ = fluorescence peak intensity at 80 °C, I = fluorescence peak intensity at other temperature (25, 35, 45, 55, 65, and 75 °C). λ_{Ex} = 310 nm.

5. Photo-responsiveness

Fig. S11 (A) UV-Vis spectra of trans-C₃-Chol in DMF (conc. 0.084 mM) with different irradiation time of UV light; (B) enlarged 430-600 nm of in (A) (0.25 mW/cm², 365 nm).

Fig. S12 ¹H NMR (400 MHz) of *trans*-C₅-Chol gel in DMF- d_7 (c = 0.18 mM) under UV irradiation at 365 nm as a function of irradiation time (UV intensity: 0.25 mW/cm²).

Fig. S13 (A) and (B): SEM images of gels of (A) *trans*-C₃-Chol, (B) *trans*-C₅-Chol in DMF. (C) and (D): SEM images of the residues collected from collapsed gels of (C) *trans*-C₃-Chol, (D) *trans*-C₅-Chol after UV irradiation for 15 min (90 mW/cm², 365 nm).

Fig. S14 (A) POM photograph of *trans*-C₀-Chol film after UV irradiation under the mask (width of strip: 100 μ m; distance between two stripes: 200 μ m). (B) POM photograph of *trans*-C₁-Chol film after UV irradiation under the mask (width of strip: 50 μ m; distance between two stripes: 200 μ m). For both sample, UV wavelength: 365 nm; UV intensity: 70 mW/cm⁻²; duration: 60 min.

6. MS, ¹H and ¹³C NMR spectra

Fig. S16 ¹³C NMR spectra of TPE-OMe in CDCl₃ (100 MHz).

Fig. S18 ¹³C NMR spectra of TPE-C₆-Br in CDCl₃ (100 MHz).

Fig. S20¹³C NMR spectra of *trans*-azophenol in DMSO-*d*₆ (100 MHz).

Fig. S22 ¹³C NMR spectra of Br-C₁-Chol in CDCl₃ (100 MHz).

7.26 5.37 5.37 6.5.37 6.5.38 6.4.59 7.4.58 3.4.58 3.4.58 3.4.58 3.4.58 3.4.58 3.4.58 2.49 2.49 2.49 2.49 2.49 2.2.33 2.2.49 0.92 0.92 0.087 0.087 0.085

Fig. S24 ¹³C NMR spectra of Br-C₃-Chol in CDCl₃ (100 MHz).

7.26

Fig. S26 ¹³C NMR spectra of Br-C₅-Chol in CDCl₃ (100 MHz).

Fig. S28¹³C NMR spectra of *trans*-TPE-C₆-azohenol in CDCl₃ (100 MHz).

Fig. S30 ¹³C NMR spectra of *trans*-C₀-Chol in CDCl₃ (100 MHz).

Fig. S31 ESI-HRMS (+) of trans-Co-Chol

Fig. S32 ¹H NMR spectra of *trans*-C₁-Chol in CDCl₃ (400 MHz).

Fig. S34 ESI-HRMS (+) of trans-C1-Chol

Fig. S36 ¹³C NMR spectra of *trans*-C₃-Chol in CDCl₃ (100 MHz).

Fig. S37 ESI-HRMS (+) of trans-C₃-Chol

Fig. S38 ¹H NMR spectra of *trans*-C₅-Chol in CDCl₃ (400 MHz).

