Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2018

Supplementary Information

Improved Efficiency in Fullerene and Non-fullerene Polymer Solar Cells having an Interdigitated Interface with the Electron Transport Layer

Yu Yan^{a,b}, Wei Li^{a,b}, Jinlong Cai^{a,b}, Mengxue Chen^{a,b}, Yuchao Mao^{a,b}, Xiaolong Chen^{a,b}, Robert S. Gurney^{a,b}, Dan Liu^{a,b}, Fei Huang^c, Tao Wang^{a,b*}

^aSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070,

China

^bState Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology,

Wuhan, 430070, China

^cInstitute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent

Materials and Devices, South China University of Technology, Guangzhou, 510641, China

*The corresponding author: twang@whut.edu.cn

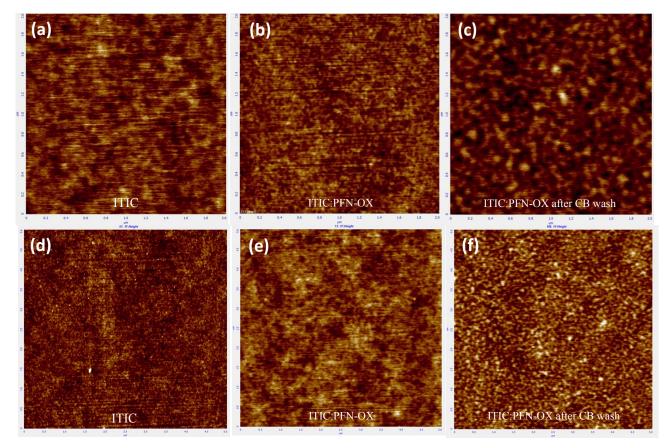


Figure S1. SPM topography images of (a and d) pristine ITIC, and ITIC:PFN-OX (92.5:7.5 wt.%) blend film (b and e) before and (c and f) after CB rinsing. Image size of (a-c) is 2 μ m×2 μ m, and image size of (d-f) 5 μ m×5 μ m.

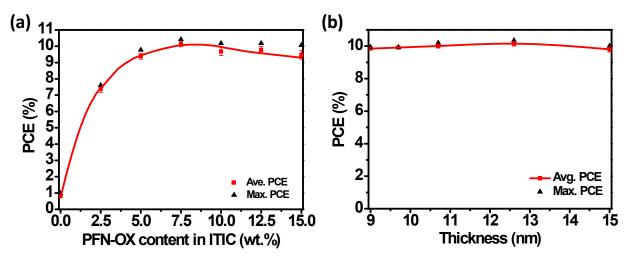


Figure S2. (a) Device PCE as a function of PFN-OX:ITIC ratio in the casting solution. (b) Device PCE as a function of thickness of the ITIC-templated PFN-OX ETL (with a fixed ratio of 7.5:92.5 wt.% in the casting solution).

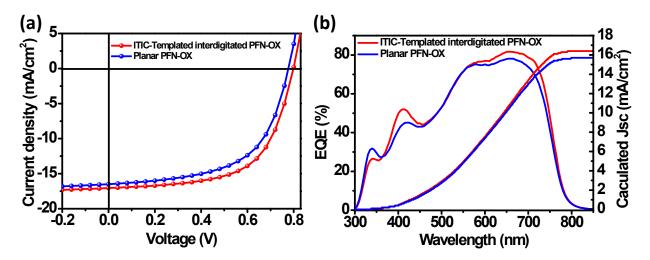


Figure S3. (a) champion J-V curves, (b) corresponding EQE spectra of inverted PTB7-Th:ITIC non-fullerene polymer solar cells employing planar and ITIC-templated interdigitated PFN-OX ETLs.