Wavelength Dependent Nonlinear Optical Response of Tetraphenylethene

Aggregation-induced emission luminogens

Jianbo Xiong,^a Xinyue Li,^{c,d} Chunqing Yuan,^c Sergey Semin,^d Zhaoquan Yao,^a Jialiang Xu,^a* Theo Rasing,^d and Xian-He Bu^{a, b}*

^aSchool of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China. Email: <u>jialiang.xu@nankai.edu.cn</u>; <u>buxh@nankai.edu.cn</u>

^bState Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.

^cSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.

^dRadboud University, Institute for Molecules and Materials (IMM), Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands

Compound No.	ТРЕ	4Br-TPE	4I-TPE
Formula	$C_{26}H_{20}$	$C_{26}H_{16}Br_4$	C ₂₆ H ₁₆ I ₄
Formula mass	332.42	648.03	835.99
Temperature (K)	293(2)	293(2)	293(2)
Wavelength (Å)	1.54184	1.54184	1.54184
Crystal system	Monoclinic	Orthorhombic	Orthorhombic
Space group	$P2_1$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$
a (Å)	9.8250(2)	9.6034(2)	9.8155(2)
b (Å)	9.4992(2)	15.4711(2)	15.6764(2)
c (Å)	10.7097(2)	22.0743(3)	22.6588(2)
α (°)	90.00	90.00	90.00
β (°)	107.106(2)	90.00	90.00
γ (°)	90.00	90.00	90.00
V (Å ³)	955.32(3)	3279.69(9)	3486.55(9)
Ζ	2	4	4
$D_{\text{calcd.}}(g \cdot \text{cm}^{-3})$	1.156	1.312	1.593
μ (mm ⁻¹)	0.492	6.043	28.125
F (000)	352.0	1248	1536.0
heta (°)	4.32-74.14	3.49-73.42	4.82-73.19
GOF	1.063	1.134	1.077
R_I (I>2sigma(I))	0.0519	0.0327	0.0585
wR_2 (all data)	0.1344	0.0937	0.1914

Table S1. Crystal data and structure refinement for compounds TPE, 4Br-TPE and 4I-TPE

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. \ {}^{b}wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}.$

Fig. S1 Morphology (a) and fluorescent microscopy image (b) of TPE.

Fig. S2 The experimental and simulated PXRD patterns of compounds TPE, 4Br-TPE and 4I-TPE.

Fig. S3 TGA profiles of compounds TPE, 4Br-TPE and 4I-TPE.

Fig. S4 Crystal morphology and fluorescence images of TPE, 4Br-TPE and 4I-TPE.

Fig. S5 Photoluminescence spectra of 4Br-TPE (a) and 4I-TPE (b) in H_2O/THF mixtures with water fractions (f_w) from 0 to 100% excited at 365 nm. Variations of the relative intensity ($I/I_0 - 1$) with f_w of 4Br-TPE (c) and 4I-TPE (d). The inset shows the photograph of the target compounds in THF (f w = 0, left) and in the H_2O ($f_w = 100\%$, right) under 365 nm illumination, c = 0.2 mM.

Fig. S6 Fluorescence images of 4Br-TPE and 4I-TPE in diverse H₂O/THF mixtures (0.2 mM) under a UV excitation (365 nm). Photoluminescence spectra of 4Br-TPE (a) and 4I-TPE (b) at 77 and 298 (excited Κ in THF at 365 nm). The inset shows the photograph of target compounds at 77 and 298 K in THF (under 365 nm illumination), c = 0.2 mM.

Fig. S7 quantum yield Φ of 4Br-TPE

Fig. S8 quantum yield Φ of 4I-TPE

Fig. S9 a) C-H···C effect connected molecular chain along b-axis of TPE; b) doublechain structure connected by two C-H··· π effects of 4Br-TPE; c) double-chain structure connected by two C-H··· π effects of 4I-TPE; d) Br···Br interaction linking 4Br-TPE into a molecular chain along a-axis; e) I···I interaction linking 4I-TPE into molecular chain along b-axis.

Fig. S10 Molecular arrangement in a unit cell of 4Br-TPE (a) and 4I-TPE (b) from single crystal X-ray diffraction analysis refinement; the red arrows indicate the orientation of transition dipoles.

Fig. S11 The calculated transition dipole by Gaussian 09 software package.