Supporting Information

Cholesterol-Based Diazine Derivative: Selective Sensing of Ag⁺ and Fe³⁺ Ions through Gelation and the Performance of Metallogels in Dye and Picric Acid Adsorption from water

Atanu Panja and Kumaresh Ghosh*

Department of Chemistry, University of Kalyani, Kalyani-741235, India. Email: ghosh k2003@yahoo.co.in; kumareshchem18@klyuniv.ac.in

Solvent	1	
DMSO	PS	
DMF	PS	
CH ₃ CN	PS	
THF	S	
CH ₃ OH	Ι	
Toluene	G	
CHCl ₃	S	
Cyclohexane	S	
DMSO : H ₂ O(1:1,v/v)	Ι	
DMF : H ₂ O (1:1,v/v)	Ι	
CH ₃ CN : H ₂ O (1:1,v/v)	I	
THF: H ₂ O (1:1,v/v)	S	
CH ₃ OH : H ₂ O (1:1,v/v)	Ι	
$CHCl_3: CH_3OH(1:1, v/v)$	Р	
$CHCl_3$: $CH_3OH(1:2, v/v)$	Р	
CHCl ₃ : CH ₃ OH (3:1, v/v)	S	
Toluene : $CH_3OH(1:1, v/v)$	S	
Ethanol : $H_2O(1:1,v/v)$	Ι	
THF : $H_2O(1:1,v/v) + Cu^{2+}$	Р	
THF : $H_2O(1:1,v/v) + Hg^{2+}$	Р	
$THF: H_2O(1:1,v/v) + Ag^+$	Р	
$CHCl_3 : CH_3OH (3:1, v/v) + Ag^+$	G	
CHCl ₃ : CH ₃ OH (3:1, v/v) + Fe ³⁺	G	
S = solution; $G = gel$; PS = partially soluble; PG =		
partial gel; I = insoluble; P = Precipitation	n.	

 Table 1S. Results of gelation test for compound 1.

Fig. 1S. Pictorial representation of the effect of Ag^+ and Fe^{3+} ions on phase changes of **3** in $CHCl_3/CH_3OH(3:1, v/v)$. None of the said metal ions caused gelation of **3** under experimental conditions.

Fig. 2S. Comparison of (a) normalized UV–vis and (b) fluorescence spectra ($\lambda_{ex} = 330$ nm) of 1 in the sol and gel states. Inset of (b) signifies the expanded version.

Fig. 3S. Partial FTIR spectra of 1 in (a) amorphous state and gel state with (b) Fe³⁺and (c) Ag⁺ ions.

Fig. 4S. Change in absorbance of 1 ($c = 2.50 \times 10^{-5} \text{ M}$) upon addition of 40 equiv. amounts (a) Fe³⁺ and (b) Ag⁺ ions ($c = 1.0 \times 10^{-3} \text{ M}$) in CHCl₃/CH₃OH (3:1, v/v).

Fig. 5S. Comparative plots of absorption changes of 1 ($c = 2.50 \times 10^{-5}$ M) with (a) solvent and (b) different metal ions (40 equiv., $c = 1.0 \times 10^{-3}$ M) in CHCl₃/CH₃OH (3:1, v/v).

Fig. 6S. (a) Benesi–Hilderband plot and (b) detection limit for $1 (c = 2.5 \times 10^{-5} \text{ M})$ with Ag⁺ ion ($c = 1.0 \times 10^{-3} \text{ M}$) at 327 nm in CHCl₃/CH₃OH (3:1, v/v) from UV-vis titration.

Fig. 7S. (a) Benesi–Hilderband plot and (b) detection limit for 1 ($c = 2.5 \times 10^{-5} \text{ M}$) with Fe³⁺ ion ($c = 1.0 \times 10^{-3} \text{ M}$) at 434 nm in CHCl₃/CH₃OH (3:1, v/v) from fluorescence titration.

Fig. 8S. (a) Benesi–Hilderband plot and (b) detection limit for 1 ($c = 2.5 \times 10^{-5} \text{ M}$) with Fe³⁺ ion ($c = 1.0 \times 10^{-3} \text{ M}$) at 400 nm in CHCl₃/CH₃OH (3:1, v/v) from UV-vis titration.

Metal-ligand complex	Binding constant values (M^{-1})			
	From UV-vis titration	From fluorescence titration		
1 – Ag+	$K = 8.16 \times 10^2$	-		
1 – Fe ³⁺	$K = 2.78 \times 10^3$	$K = 2.24 \times 10^3$		
[
Metal-ligand	Detection limit values (M)			
complex	From UV-vis	From fluorescence		
		i i oni nuorescence		
	titration	titration		
1 – Ag ⁺	9.35 x 10 ⁻⁶	-		
1 – Fe ³⁺	4.10 x 10 ⁻⁶	5.85 x 10 ⁻⁵		

Table 2S. Binding constant and detection limit values of the metal-1 complexes.

Fig. 98. Photograph showing the chemical responsiveness of the Ag^+ -induced (left) and Fe^{3+} -induced (right) gel of 1 toward different halides.

Fig. 10S. (A) Partial FTIR spectra of (a) **1**, (b) **1**-Fe³⁺ gel, (c) Uranine and (d) Uranine adsorbed **1**-Fe³⁺ gel. (B) Partial FTIR spectra of (a) **1**, (b) **1**-Ag⁺ gel, (c) Uranine and (d) Uranine adsorbed **1**-Ag⁺ gel.

Fig. 11S. Comparision of normalized UV-vis spectra of Uranine in absence and presence of Fe^{3+} and Ag^+ ions in CHCl₃/CH₃OH (3:1, v/v) containing 1% H₂O.

Fig. 12S. Photograph representing the gel formation of 1 in $CHCl_3/CH_3OH(3:1, v/v)$ upon simultaneous addition of (a) Fe^{3+} and PA and (b) Ag^+ and PA.

Fig. 13S. Change in absorbance of (a) 2,4-dinitrotoluene, (b) *m*-dinitrobenzene and (c) *p*-nitrophenol during adsorption by -Fe³⁺ and (b) 1-Ag⁺ gels [For *m*-dinitrobenzene, $c = 1 \ge 10^{-4}$ M; for other cases, $c = 2 \ge 10^{-4}$ M; for all the compounds, 3 mL of aqueous solution containing 0.01% CH₃CN was used for the experiment. The gels were initially prepared by adding equiv. amount of respective metal salts to 1 (25 mg/mL) in CHCl₃/CH₃OH (3:1, v/v)].

Fig. 10S. (A) Partial FTIR spectra of (a) **1**, (b) -Ag⁺ gel, (c) PA and (d) PA adsorbed 1-Ag⁺ gel. (B) Partial FTIR spectra of (a) **1**, (b) 1-Fe³⁺ gel, (c) PA and (d) PA adsorbed 1-Fe³⁺ gel.

Fig. 15S. Comparison of normalized UV–vis spectra of (a) -Fe³⁺ gel and (b) 1-Ag⁺ gel, before and after adsorption of PA.

Fig. 16S. Photograph showing the recyclability of the PA adsorption process.

Entry	Gelator structure	Gelation	Sensing mechanism	solvent	Interference from other metal ions	Ref ·
1		No gelation	Colorimetric sensing	MeOH– buffer solution (9 : 1, v/v, 10 mM, bis- tris, pH 7.0)	Fe ²⁺	1c
2	HO HO HO HO HO HO HO HO HO HO HO HO HO H	No gelation	Colorimetric sensing	MeOH aqueous HEPES buffer at pH 7.2	Fe ²⁺ , Cu ²⁺ Fe ²⁺ , Cu ²⁺	1d
3		No gelation	Fluorescence OFF	THF	Fe ²⁺	1e
4		Gelation	Sol to gel transition	Water	Fe ²⁺	1a
5	ОН	No gelation	Fluorescence ON	THF	Fe ²⁺	1f
6	$\begin{array}{c} \begin{array}{c} -0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	Gelation	Fluorescence OFF Gel-to-Gel state	H ₂ O	-	1b
7		Gelation	Visual detection through gel-to- sol transition	CH ₃ CN/ H ₂ O (1:1)	Cu ²⁺	1g
8		Gelation	Visual detection through gel-to- sol transition	CH ₃ CN/ H ₂ O (1:1)	-	1g
9		Gelation	Visual detection through color change	DMSO/ H ₂ O (1:1)	-	1g
This work	$\begin{array}{c} O \\ O \\ O \\ R \\ R \\ R \\ -\frac{5}{2} \\ \end{array} \begin{pmatrix} H \\ H \\ H \\ H \\ H \\ \end{array} \begin{pmatrix} R \\ -\frac{5}{2} \\ -\frac{5}{2} \\ H \\ H \\ H \\ \end{array} \begin{pmatrix} R \\ -\frac{5}{2} \\ -\frac{5}$	Gelation	Visual detection through sol-to- gel transition	CHCl ₃ /CH ₃ OH (3:1, v/v)	Ag ⁺ (No interference from Fe ²⁺)	-

Table 3S. Reported structures for Fe³⁺ sensing in solution and gel phase

Entry	Adsorbent	Removal efficiency for PA (%)	Ref.
1		56.86 (from absorption spectroscopic study)	2a
	Low molecular weight gelator (LMWG)		
2	carbon nanotubes	83.2	2b
3	active carbon	>99	2c
4	Amberlite IRA-67	96	2d
5	Mesoporous MCM-41	>82	2e
6	iron oxide nanoparticles	99	2f
This work	$R = -\frac{1}{2} \left(\frac{H}{H} \right) + \frac{1}{H}$	83% (by 1-Fe ³⁺ gel) 74% (by 1-Ag ⁺ gel)	-
	gelator (LMWG)		

Table 4S. Adsorption of Picric acid (PA) by different adsorbents

1. (a) J. –L. Zhong, X. –J. Jia, H. –J. Liu, X. –Z. Luo, S. –G. Hong, N. Zhanga and J. –B. Huang, *SoftMatter*, 2016, **12**, 191; (b) J. –F. Chen, Q. Lin, H. Yao, Y. –M. Zhang and T. –B. Wei, *Mater. Chem. Front.*, 2018, **2**, 999; (c) Y. S. Kim, G. J. Park, J. J. Lee, S. Y. Lee, S. Y. Lee and C. Kim, *RSC Adv.*, 2015, **5**, 11229; (d) A. Mitra, B. Ramanujam and C. P. Rao, *Tetrahedron Lett.*, 2009, **50**, 776; (e) P. Kumar, V. Kumar and R. Gupta, *RSC Adv.*, 2015, **5**, 97874; (f) S. Sen, S. Sarkar, B. Chattopadhyay, A. Moirangthem, A. Basu, K. Dhara and P. Chattopadhyay, *Analyst*, 2012, **137**, 3335; (g) A. Panja and K. Ghosh, *Mater. Chem. Front.*, 2018, DOI: 10.1039/c8qm00257f.

2. (a) X. Cao, N. Zhao, H. Lv, Q. Ding, A. Gao, Q. Jing and T. Yi, *Langmuir*, 2017, **33**, 7788; (b) S. Gholitabar and H. Tahermansouri, *Carbon Lett.*, 2017, **22**, 14; (c) R. Qadeer and A. H. Rehan, *Turk. J. Chem.*, 2002, 26, 557; (d) H. Uslu, and G. Demir, *J. Chem. Eng. Data*, 2010, **55**, 3290; (e) H. Sepehrian, J. Fasihi and M. K. Mahani, *Ind. Eng. Chem. Res.*, 2009, **48**, 6772; (f) H. Parham, B. Zargar and M. Rezazadeh, *Mater. Sci. Eng. C.*, 2012, **32**, 2109.

¹³C NMR (CDCl₃, 100 MHz)

Mass spectrum of 3.

¹³C NMR (CDCl₃, 100 MHz)

Mass spectrum of 1.

