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Fig. S1 (a) TEM and SEM (inset) images of neat non-porous carbon nanofibers (CNFs); and (b) TEM
and SEM (inset) images of porous carbon nanofibers (PCNFs) after carbonization at 750 C for 2 h.

Fig. S2 (a) TEM and SEM (inset) images of 0.5-MoOs/CNFs and (b) HRTEM images of
0.5-M0O3/CNFs.

Fig. S3 (a) TEM images of 0.25-MoOs/PCNFs and (b) 0.75-MoOs/PCNFs.
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Fig. S4 Nitrogen adsorption—desorption isotherms and the pore size distribution of 0.5-MoO3/PCNFs.
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Fig. S5 TG patterns of (a)PMMA particles, PCNFs, 0.5-M0O3/PCNFs and (b)MoOs/PCNFs composite

according to different precursor content.



Fig. S6 cyclic performance at a current density of 0.2
0.5-MoOs3/PCNFs and 0.5-MoO3/CNFs electrodes.
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Fig. S7 Charge/discharge profiles

0.5-M00O3/CNFs (d) PCNFs.
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of the (a) 0.25-MoOs/PCNFs; (b) 0.75-MoO3/PCNFs (c)
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Fig. S8 cyclic performance at a current density of 1 A g of 0.5-MoO3s/PCNFs and 0.25-MoO3s/PCNFs

electrodes.
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Fig. S9 E vs. t curves of 0.5-MoO3s/PCNFs electrode for a single GITT during discharge process.
By applying a constant discharge current of 100 mAg* for a limited period of time t, which

is 30 seconds, the voltage of the battery at the equilibrium potential (Eo) will decrease to a new



value due to the change in lithium content. The battery is then held at the open circuit voltage
(OCV) for 15 minutes to reach a new steady state potential (Es), which is determined by Fick's

second law of diffusion and is calculated based on Equation 1. (S1) is as follows!:

p= 2 (%)2 (S1)
Where 7 is the duration of the current pulse (s), and AEs is the steady-state potential change

(V) of the current pulse, which is the difference between Eo and Es. AEz is a potential change (V)

during the constant current pulse after the iR falls. L is the lithium ion diffusion length (cm); for a

dense electrode, it is equal to the thickness of the electrode.
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