Supporting information

An AIE fluorescent switch with multi-stimuli responsive property

and application for quantitatively detecting pH value, sulfite anion

and hydrostatic pressure

Tingting Lin,^{‡a} Xing Su,^{‡a,b} Kai Wang, ^c Minjie Li,^b Hongwei Guo,^c Lulu Liu,^b Bo

Zou, *c Yu-Mo Zhang, b Yifei Liu*b and Sean Xiao-An Zhang b

^a College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130061, P. R. China

^b College of Chemistry, Jilin University, 2699 Qianjin street, Changchun 130012, P. R. China

^c State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, P. R. China

[‡]These authors contributed equally to this work.

*Corresponding Authors. E-mail: <u>liuyifei@jlu.edu.cn</u>; <u>zoubo@jlu.edu.cn</u>

Fig. S1 PL spectra of TPE-Sp-CN in acetonitrile solution $(1 \times 10^{-5} \text{ M})$ before and after different equivalent of acid addition then sufficient base treatment.

Fig. S2 Absorption spectra of TPE-Sp-CN (1×10^{-5} M) in different volume fraction of MeCN/H₂O mixture.

Fig. S3 (a), (c), (e) Absorption spectra and (b), (d), (f) PL spectra of TPE-Sp-CN (1×10^{-5} M) with 500 eq., 80 eq., 20 eq. HCl in different volume fraction of MeCN/H₂O mixture, respectively.

Fig. S4 The pictures of TPE-Sp-CN with 20 eq. HCl addition in different volume fraction of water/acetonitrile mixture. The pictures were taken under ambient light and the concentration of TPE-Sp-CN is 1×10^{-5} M.

Fig. S5 Absorption spectra of TPE-Sp-CN solution $(1 \times 10^{-4} \text{ M})$ added with 0.2 mL water sample of pH from 0 to 7. Inset: the amplified absorption spectra from 400 nm to 700 nm. The absorption at about 552 nm originated from TPE-MC-CN which was induced by water.

Fig. S6 (a) Absorption spectra (b) and PL spectra of TPE-Sp-CN solution $(1 \times 10^{-5} \text{ M})$ with 90% water with pH from 0 to 7. The obvious red shift of absorption spectra compared with that in Fig. S5 meant that aggregation process happened.

Fig. S7 The contrast of absorption spectra of TPE-Sp-CN and TPE-SO₃H-CN. Solution concentration were 1×10^{-5} M. The different absorption in UV range meant that the decolor of solution was due to addition reaction rather than ring-closing process.

Fig. S8 MS spectrum of TPE-SO₃H-CN. m/z: 715.2626 [M]⁺, calcd: 715.2625.

Fig. S9 ¹H NMR characterization of addition product TPE-SO₃H-CN. 1: ¹H NMR spectrum of TPE-SO₃H-CN. 2: ¹H NMR spectrum of TPE-MCH-CN. 3: ¹H NMR spectrum of TPE-Sp-CN. DMSO- d_6 were used as deuterated solvent. TPE-SO₃H-CN sample was obtained by centrifugation of the detection solution.

Fig. S10 PL spectra of low concentration TPE-MCH-CN in fourteen anions conditions. TPE-MCH-CN concentration: 1×10^{-5} M, HCl concentration: 5×10^{-3} M, anions concentration: 1×10^{-3} M.

Fig. S11 Absorption spectra of high concentration TPE-MCH-CN in fourteen anions conditions. TPE-MCH-CN concentration: 1×10^{-4} M, HCl concentration: 5×10^{-3} M, anions concentration: 1×10^{-3} M. Corresponding pictures were taken under ambient light.

Fig. S12 PL spectra of TPE-Sp-CN doped PMMA film (TPE-Sp-CN@PMMA) and TPE-MCH-CN doped PMMA film (TPE-MCH-CN@PMMA). TPE-MCH-CN@PMMA was obtained by treating TPE-Sp-CN@PMMA with HCl gas. Mass ratio: TPE-Sp-CN: PMMA=1/100.

Fig. S13 Absorption spectra of TPE-MCH-CN solution with different HSO_3^- concentrations. TPE-MCH-CN concentration: 1×10^{-4} M, HCl concentration: 5×10^{-3} M, HSO_3^- concentration: $0 \text{ M} \sim 4 \times 10^{-3}$ M. Corresponding pictures were taken under ambient light.

Fig. S14 The normalized absorption spectrum of TPE-MCH-CN solution (black dash line), normalized PL spectrum of TPE-Sp-CN aggregates (red dash line), and PL spectrum (blue solid line) of anion detection solution (TPE-Sp-CN: 1×10^{-4} M, HCl: 5×10^{-3} M, KF: 1×10^{-3} M).

Fig. S15 (a) The structure of protonated ring-open form of SPTPE. (b) The images of SPTPE in fourteen anions detection solution under visible light (up) and 365 nm UV light (down). (c) Absorption spectra and (d) PL spectra of SPTPE in fourteen anions detection solution. Detection solution: 1×10^{-5} M SPTPE, 5×10^{-3} M HCl and 1×10^{-3} M anions.

Fig. S16 (a) The structure of protonated ring-open form of TPE-Sp. (b) The images of TPE-Sp in fourteen anions detection solution under visible light (up) and 365 nm UV light (down). (c) Absorption spectra and (d) PL spectra of TPE-Sp in fourteen anions detection solution. Detection solution: 1×10^{-5} M TPE-Sp, 5×10^{-3} M HCl and 1×10^{-3} M anions.

Fig. S17 Time-resolved decay spectra of cTPE-Sp-CN, single crystal TPE-Sp-CN, aTPE-Sp-CN and cTPE-MCH-CN.

Table S1. The quantum yields, lifetimes, irradiation rate and non-irradiationrates of cTPE-Sp-CN, single crystal TPE-Sp-CN, aTPE-Sp-CN and cTPE-MCH-CN.

Sample	φ _F (%)	τ ₁	τ2	k _r	K _{nr}
cTPE-Sp-CN	2.76%	0.80 ns(50.91%)	2.30 ns(49.09%)	$1.7965 \times 10^{7} s^{-1}$	$6.329 \times 10^{8} s^{-1}$
Single crystal TPE-Sp-CN	6.15%	1.40 ns(34.02%)	3.04ns(65.98%)	$2.477 \times 10^{7} s^{-1}$	3.781×10 ⁸ s ⁻¹
aTPE-Sp-CN	34.62%	1.47ns(41.29%)	3.61ns(58.71%)	$1.2698 \times 10^8 s^{-1}$	$2.398 \times 10^{8} s^{-1}$
cTPE-MCH-CN	4.52%	0.41ns(84.94%)	1.14ns(15.06%)	$8.694 \times 10^{7} \mathrm{s}^{-1}$	$1.8365 \times 10^{9} s^{-1}$

Fig. S18 (a) The unit cell of single crystal TPE-Sp-CN, and the packing patterns viewed down (b) a axis, (c) b axis and (d) c axis, respectively.

Fig. S19 (a) The CIE graph of single crystal of TPE-Sp-CN emission under pressure from 0.00 GPa to 3.99 GPa; (b) The CIE graph of cTPE-MCH-CN emission under pressure from 0.00 GPa to 6.05 GPa.

Fig. S20 The insitu absorption spectra of cTPE-MCH-CN in pressure releasing process.

Fig. S21 The insitu IR spectra of cTPE-MCH-CN in pressurization and depressurization process.

Fig. S22 ¹H NMR spectrum of M4 in CDCl₃.

Fig. S23 ¹³C NMR spectrum of M4 in CDCl₃.

Fig. S25 ¹³C NMR spectrum of M5 in CDCl₃.

Fig. S27 ¹³C NMR spectrum of TPE-Sp-CN in DMSO-*d*₆.

Fig. S28 MS spectrum of M4.

Fig. S29 MS spectrum of M5.

Fig. S30 MS spectrum of TPE-Sp-CN.

Identification code			
Empirical formula			
Formula weight			
Temperature			
Wavelength			
Crystal system, space group			
Unit cell dimensions			

Table S2. Crystal data and structure refinement for TPE-Sp-CN.

Volume Z, Calculated density Absorption coefficient *F*(000) Crystal size Theta range for data collection Limiting indices Reflections collected / unique Completeness to theta = 25.00Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F^2 Final *R* indices $[I \ge 2\sigma(I)]^a$ *R* indices (all data) Extinction coefficient Largest diff. peak and hole

TPE-Sp-CN C47H38Cl2N2O 717.69 273(2) K 0.71073 Å Monoclinic, P21/c a=20.728(9) Å $\alpha=90^{\circ}$ b=11.337(5) Å $\beta=107.633(8)^{\circ}$ c=17.818(8) Å $\gamma=90^{\circ}$ 3990(3) Å³ 1.195 g/cm⁻³ 4. 0.200 mm⁻¹ 1504.0 0.22× 0.20× 0.18 mm 1.03 to 25.00° $-22 \le h \le 24$, $-11 \le k \le 13$, $-21 \le l \le 20$ $22165 / 6987 [R_{int} = 0.1070]$ 99.3% Multi-scan 0.9649 and 0.9574 Full-matrix least-squares on F^2 6987 / 61 / 501 0.890 R1 = 0.0866, wR2 = 0.2215*R*1= 0.2198, w*R*2= 0.2971 0.0053(11)0.533 and -0.324 e.Å⁻³