Electronic Supplementary Information

Mesoporous graphitic carbon nitride (g-C₃N₄) nanosheets synthesized from carbon-beverage-reformed commercial melamine for enhanced photocatalytic hydrogen evolution

Shaodong Sun,^{*a} Xufeng Gou,^a Shasha Tao,^a Jie Cui,^a Jia Li,^a Qing Yang,^a Shuhua Liang,^{*a} and Zhimao Yang^b

^a Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, ShaanXi, People's Republic of China.

^b School of Science, State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Center of Suzhou Nano Science and Technology, Xi'an Jiaotong University, Xi'an 710049, ShaanXi, People's Republic of China.

*Corresponding author.

E-mail: sdsun@xaut.edu.cn, liangsh@xaut.edu.cn.

Fig. S1. EDS result of the *Coca-Cola*-assisted hydrothermal-reformed MA precursor.

Fig. S2. FTIR spectra of the commercial MA, HCN-precursor and PCN-precursor.

Fig. S3. Photograph of the CN, HCN and PCN sample with the same weight.

Fig. S4. (a) Photocatalytic H₂ evolution by the $CN_{Pepsi-Cola}$, CN_{Sprite} and CN_{Fanta} photocatalysts under visible light irradiation. (b) HER of the $CN_{Pepsi-Cola}$, CN_{Sprite} and CN_{Fanta} . (c) ~ (e) TEM images of $CN_{Pepsi-Cola}$, CN_{Sprite} and CN_{Fanta} , respectively.

Fig. S5. TEM image of the PCN sample after the photocatalytic hydrogen evolution reaction after three successive cycles.

Fig. S6. Transient photocurrent responses of CN, HCN and PCN under visible-light irradiation.

Fig. S7. EIS Nyquist plots of CN, HCN and PCN under visible-light irradiation.

Fig. S8. PL spectra of CN, HCN and PCN.

Sample	C%	N%	Н%	0%
CN	34.00	58.86	1.293	5.847
HCN	33.78	58.82	1.389	6.011
PCN	33.53	58.52	0.986	6.964

 Table S1. OEA results of the CN, HCN and PCN sample.

Table S2. Comparison of the photocatalytic performance in hydrogen evolution of PCN with other recently reported carbon nitrides.

Catalyst	Lamp	HER	BET surface area	Normalized HER	AQE (%)	Reference
		$(\mu mol \cdot h^{-1} \cdot g^{-1})$	$(m^2 \cdot g^{-1})$	$(\mu mol \cdot h^{-1} \cdot m^{-2})$		
Porous g-C ₃ N ₄ nanosheet	λ>400 nm	1078	186.3	5.8		1
Holey g-C ₃ N ₄ nanosheet	λ>400 nm	2860	277.9	10.3	4.03	2
Porous g-C ₃ N ₄ nanorod	λ>420 nm	1150	40.8	28.2	8.9	3
Holey Graphitic Carbon Nitride Nanosheets	λ>420 nm	8290	196	42.3	-	4
Porous, thin g-C ₃ N ₄ nanosheets	λ>420 nm	991	44.2	22.4	-	5
Holey carbon nitride nanosheet	λ>420 nm	6659	265.2	25.1	-	6
Mesoporous S-doped g-C ₃ N ₄	λ>420 nm	1360	128.4	10.6	5.8	7

Holey O-doped g-C ₃ N ₄	λ>420 nm	6752	348.0	19.4		8
thin sheet						
Porous g-C ₃ N ₄	λ>420 nm	387	160	2.4	21.3	9
C-rich g-C ₃ N ₄ nanosheet	λ>400 nm	3960	213.2	18.6	4.52	10
O-doped g-C ₃ N ₄	λ>420 nm	375	47.0	7.98		11
Crystalline g-C ₃ N ₄ nanosheet	λ>420 nm	1060	203.0	5.2	8.57	12
Porous g-C ₃ N ₄	λ>420 nm	1161.5	37.4	31.2	7.7	This work

Reference

1 L. T. Ma, H. Q. Fan, J. Wang, Y. W. Zhao, H. L. Tian, G. Z. Dong, *Appl. Catal. B-Environ.* **2016**, *190*, 93.

2 Y. F. Li, R. X. Jin, Y. Xing, J. Q. Li, S. Y. Song, X. C. Liu, M. Li, R. C. Jin. *Adv. Ener. Mater.* **2016**, *6*, 1601273.

3 G. Zhao, G. Liu, H. Pang, H. Liu, H. Zhang, K. Chang, X. Meng, X. Wang, J. Ye, *Small* **2016**, *12*, 6160.

4 Q. H. Liang, Z. Li , Z. H. Huang, F. Y. Kang, Q. H. Yang, Adv. Funct. Mater. 2015, 25, 6885.

5 H. W. Huang, K. Xiao, N. Tian, F. Dong, T. R. Zhang, X. Du, Y. H. Zhang, *J. Mater. Chem. A* **2017**, *5*, 17452.

6 T. Song, P. Y. Zhang, T. T. Wang, A. Ali, H. P. Zeng, Appl. Catal. B-Environ. 2018, 224, 877.

7 J. Hong, X. Xia, Y. Wang, R. Xu, J. Mater. Chem. 2012, 22, 15006.

8 S. Guo, Y. Zhu, Y. Yan, Y. Min, J. Fan, Q. Xu, Appl. Catal. B-Environ.2016, 185, 315.

9 M. R. Gholipour, F. Béland, T. O. Do, ACS Sustainable Chem. Eng. 2017, 5, 213.

10 Y. F. Li, M. Yang, Y. Xing, X. C. Liu, Y. Yang, X. Wang, S. Y. Song, Small 2017, 13, 8.

11 J. Li, B. Shen, Z. Hong, B. Lin, B. Gao, Y. Chen, Chem. Commun. 2012, 48, 12017.

12 H. H. Ou, L. H. Lin, Y. Zheng, P. J. Yang, Y. X. Fang, X. C. Wang, Adv. Mater. 2017, 29, 6.