Stable Luminous Nanocomposite of CsPbX₃ Perovskite Nanocrystal Anchored on Silica for Multicolor Anti-counterfeit Ink and White-

LED

Aizhao Pan,*^{,a} Yanan Li,^a Youshen Wu,^a Ke Yan,^b Matthew Jurow,^c Yi Liu,*^{,c} Ling He*^{,a}

^aDepartment of Chemistry, School of Science, Xi'an Jiaotong University, Xianning West Road, 28, Xi'an, 710049, China.

^bKey Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China.

^cThe Molecular Foundry and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Experimental

Materials and Chemicals:

PbBr₂ (99.90%), PbCl₂ (99.90%) PbI₂ (99.90%), Cs₂CO₃ (99.99%), octadecene (ODE, 90%). acid (OA, oleic 90%. AR). oleylamine (OLA, 90%. AR). trimethoxy(octadecyl)silane (TMODS, 90%), 3-aminopropyltriethoxysilane (APTES, 99%), vinyltrimethoxysilane (VTMS, 98%), thioglycolic acid (TA, 90%, AR) and tetraethoxysilane (TEOS, >98%) were purchased from Aladdin and used as received without purification. Silicone resin and phosphor fluorescent powder (red) were purchased from Shenzhen Looking Long Technology co., LTD and used as received without purification. All the other solvents were used as received without any purification.

Preparation of silica (SiO₂) NPs:

SiO₂ NPs were synthesized via the modified Stöber method:¹ a solution of TEOS (8 ml), EtOH (150 ml), ammonium hydroxide (12 ml) and deionized H₂O (30 ml) was introduced into a 250 ml round-bottom glass flask and mixed homogenously with a magnetic stirrer. The hydrolysis and condensation reaction of TEOS was carried out under continuous magnetic stirring at a rate of 700 r/min at 50 °C, from which SiO₂ NPs were obtained as a suspension after 24 h.

Preparation of octadecyl/propylamine-capped silica (CA-SiO₂) NPs:

Octadecyl/propylamine-capped silica NPs were synthesized using the following procedures (Supporting information, Scheme S1). When the above SiO₂ NPs suspension was cooled to room temperature, a mixture of APTES (4 ml) and TMODS (4 ml) was injected gradually. After the magnetic stirring was continued for another 24 h, the white capped SiO₂ NPs (CA-SiO₂) powder was obtained by removing the residual reactant and ammonium hydroxide through five cycles of centrifugation/redispersion in ethanol and water, and finally drying in a vacuum oven at 50 $^{\circ}$ C for 24 h. Similarly, propylamine-capped silica (A-SiO₂) NPs and octadecyl/carboxyl-capped silica (CC-SiO₂) NPs were synthesized using the procedures outlined in Scheme S2.

Preparation of propylamine-capped silica (A-SiO₂) NPs:

When the pristine SiO₂ NPs suspension was cooled to room temperature, an aliquot of APTES (4 ml) was injected. After the magnetic stirring continued for another 24 h, the white functional SiO₂ NP (A-SiO₂ NP) powder was obtained by removing the residual reactant and ammonium hydroxide through five cycles of centrifugation/redispersion in ethanol and water, and finally drying in a vacuum oven at 50 $^{\circ}$ C for 24 h.

Preparation of octadecyl/carboxyl-capped silica (CC-SiO₂) NPs:

Octadecyl/carboxyl-capped silica (CC-SiO₂) NPs were synthesized using the procedures outlined in Scheme S2. When the above SiO₂ NP suspension was cooled to room temperature, a mixture of vinyltrimethoxysilane (VTMS, 4 ml) and TMODS (4 ml) was injected gradually. After the magnetic stirring was continued for another 24 h, the white functional SiO₂ NPs powder was obtained by removing the residual reactant and ammonium hydroxide through five cycles of centrifugation/redispersion in ethanol and water, and finally drying in a vacuum oven at 50 $^{\circ}$ C for 24 h.

When the above SiO₂ NPs disperse in ethanol, a calculated amount of thioglycolic acid (TA) and photoinitiator was injected. After UV light irradiation (365 nm, 0.5 $W \cdot cm^{-2}$) for 2 h, the white octadecyl/carboxyl-capped silica (CC-SiO₂) NPs powder was obtained by removing the residual reactant through five cycles of centrifugation/redispersion in ethanol and water, and finally drying in a vacuum oven at 50 °C for 24 h.

In-situ growth of CsPbX₃ NCs on capped CA-SiO₂ NPs (CsPbX₃@CA-SiO₂):

CsPbX₃@CA-SiO₂ composites were prepared following a modified procedure.² A typical synthetic procedure is described in Scheme 1. Cs₂CO₃ (0.1 mmol), PbBr₂ (0.2 mmol) or equivalent PbI₂, PbBr₂/PbCl₂ and PbCl₂, CA-SiO₂ NPs (0.3 g), ODE (10 mL), OLA (0.3 mL), and OA (1 mL) were mixed and heated under vigorous stirring at 150 $^{\circ}$ C. The reaction was cooled in an ice/water bath in 5 min. The centrifugation/redispersion procedure was repeated three to five times in toluene, after

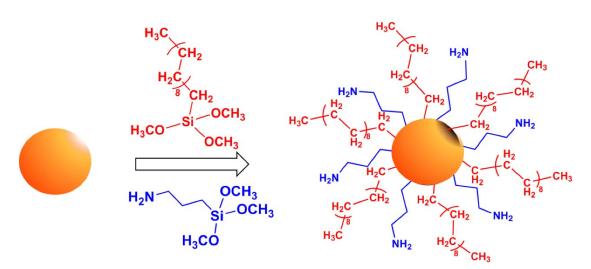
which the solid precipitate was collected for characterization. The resulting composite was dried in a vacuum oven overnight before being stored for future use. A control sample was made from physically blended silica NPs with CsPbBr₃ NCs.

Stability Tests:

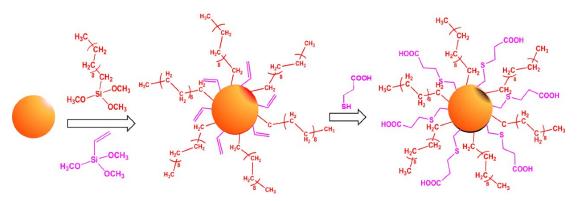
To evaluate the stability in water, all composite films were immersed in air-free de-ionized water stored in the dark at room temperature and PL intensity was subsequently measured over time. Separately, colloidal suspensions of CsPbX₃@CA-SiO₂ were stored under vacuum at room temperature and subjected to UV light irradiation (365 nm, 0.5 W·cm⁻²) over different period of times. The aged samples were then subjected to further characterization.

Anti-counterfeiting inks for patterning:

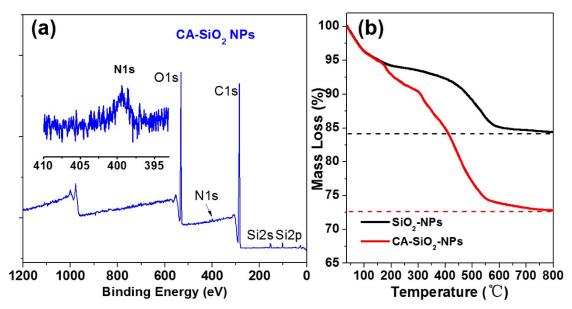
The composites were dispersed in toluene at a concentration of $0.2 \text{ g} \cdot \text{mL}^{-1}$. Predesigned seals with customized "XJTU" patterns were wetted with the above suspension and then pressed against filter papers to transfer the designed patterns.

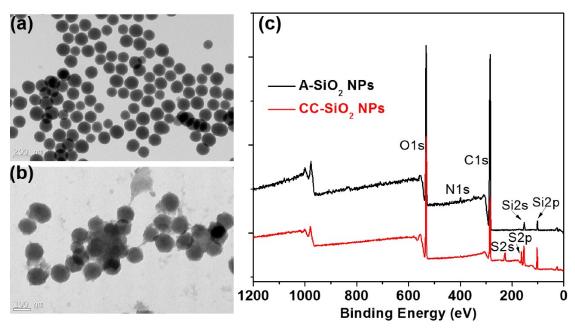

White LED device fabrication:

To fabricate white LEDs, a blue (460 nm) LED chip was used to excite the green (520 nm for CsPbX₃@CA-SiO₂) and red composites (660 nm, YAG fluorescent powder). Firstly, the YAG phosphors (0.3 g) were dispersed in silicon resin (3 g) after vigorous stirring, and the resulting mixture was directly coated onto blue LED chips and thermally cured at 40 °C for 30 min and then 120 °C for 60 min. Then, the composites film was prepared similarly as above, which would be stowage onto the upper surface of YAG-based LED devices by mixing with silicon resin, followed by two-stage thermal curing, to give the fabricated WLED devices.


Characterization Methods:

Ultraviolet and visible absorption (UV-vis) spectra of colloidal solutions were collected using a Cary 5000 UV-Vis-NIR spectrophotometer. Fluorescence spectra and absolute photo-luminescent quantum yields (PLQYs) were collected using an integrated sphere, recorded on an Edinburgh Instruments FLS920 spectrophotometer.


FTIR spectrometer for the chemical structures were collected using a Tensor 27 of Bruker Optics. PXRD data were acquired using a Bruker AXS D8 Discover X-Ray Diffractometer at a wavelength of Cu K (1.79 Å). X-Ray photoelectron spectroscopy (XPS) measurement for elemental composition was processed about the composites powder by an AXIS ULTRA (England, KRATOS ANALYTICAL Ltd) using an Al mono K α X-ray source (1486.6 eV) operated at 150 W. SEM images were acquired on a JEOL 7800F Field Emission Scanning Electron Microscope. TEM and high-resolution TEM (HR-TEM) data were acquired on a FEI G₂F₃₀ electron microscope operated at 200 kV with a Gatan SC 200 CCD camera.


Scheme S1. Schematic illustration of the octadecyl/propylamine capped silica (CA-SiO₂).

Scheme S2. Schematic illustration of the octadecyl/carboxyl capped silica NPs (CC-SiO₂).

Figure S1. (a) Elemental composition of functionalized silica (CA-SiO₂) by XPS. The inset is a higher magnification of N1s. (b) Thermogravimetry analysis plots of the primal and capped silica (CA-SiO₂).

Figure S2. TEM images of A-SiO₂ NPs (a) and CC-SiO₂ NPs (b). (c) High-resolution X-ray photoelectron spectra (XPS) analysis with a survey scan of A-SiO₂ NPs and CC-SiO₂ NPs.

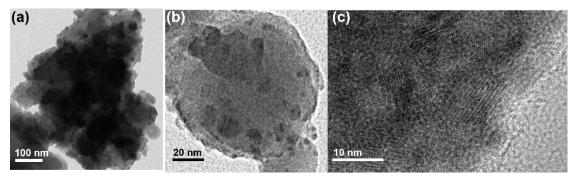
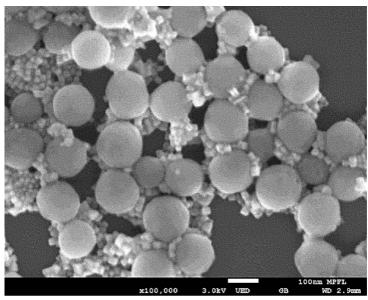
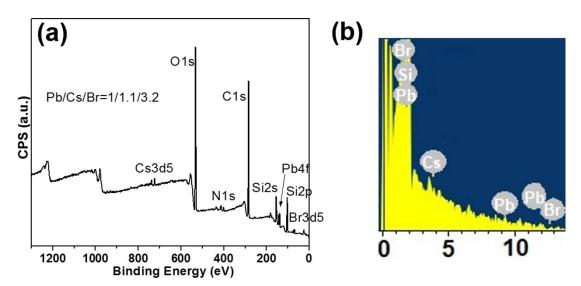


Figure S3. TEM (a, b) and HR-TEM (c) images of CsPbBr₃@CA-SiO₂ composites.

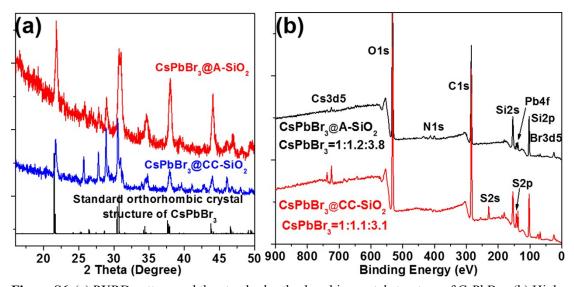

Figure S4. SEM images of the blend sample of CA-SiO₂ and CsPbBr₃ NCs.

Figure S5. (a) High-resolution X-ray photoelectron spectra (XPS) analysis with a survey scan. (b) SEM-EDS elemental compositions.

Samples	Emission peak/ nm	PLQY/ %
CsPbBr ₃ @CA-SiO ₂	520	76
CsPbCl ₃ @CA-SiO ₂	427	28
CsPbI ₃ @CA-SiO ₂	650	67
CsPbBr ₃ @A-SiO ₂	524	55
CsPbBr ₃ @CC-SiO ₂	523	40

Table S1. Summary of the optical properties of the composites obtained from different structures.

Figure S6. (a) PXRD pattern and the standard orthorhombic crystal structure of CsPbBr₃. (b) High-resolution XPS analysis with a survey scan.

PXRD analysis confirm the bulk crystallinity of as-prepared CsPbBr₃@A-SiO₂ and CsPbBr₃@CC-SiO₂, corresponding to the orthorhombic crystal structure of CsPbBr₃ NCs (Figure S6a). Furthermore, the elemental composition of CsPbBr₃@A-SiO₂ and CsPbBr₃@CC-SiO₂ from XPS analysis confirms that the composite contains all the elements (Cs3d5, O1s, N1s, C1s, Si2s, Pb4f and Br3d5) expected from the CsPbBr₃ NCs and capped SiO₂ NPs (Figure S6b). The elemental ratios for Cs:Pb:Br measured by XPS amount to 1:1.2:3.8 and 1:1.1:3.1 for CsPbBr₃@A-SiO₂ and CsPbBr₃@CC-SiO₂, respectively, which match well with the expected ratio of CsPbBr₃.

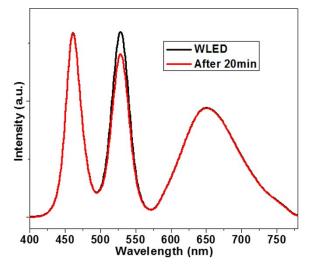


Figure S7. EL emission spectra of the WLED before (black curve) and after 20 min (red curve).

References

- 1. X. Li, Y. Wang, H. Sun and H. Zeng, Adv. Mater., 2017, 29, 1701185-1701194.
- 2. S. Werner, F. A. and B. Ernst, J. Colloid Interf. Sci., 1968, 26, 62-69.