Supporting Information

Hierarchical CoFe-layered double hydroxide and g-C₃N₄ heterostructures with enhanced bifunctional photo/electrocatalytic activity towards overall water splitting

Muhammad Arif,^{ab} Ghulam Yasin,^{ac} Muhammad Shakeel^a, Muhammad Asim Mushtaq,^{ab} Wen Ye,^b Xiaoyu Fang^b, Shengfu Ji,^{a*} and DongpengYan^{ab*}

^aState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

^bKey Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

^cBUCT-CWRU International Joint Laboratory, State Key Laboratory of Organic–Inorganic Composites, Center for Soft Matter Science and Engineering, College of Energy, Beijing University of Chemical Technology, Beijing, China.

Corresponding authors:

Dongpeng Yan Email: <u>yandongpeng001@163.com</u>, Shengfu Ji Email:<u>jisf@mail.buct.edu.cn</u>

Table of Contents

Figure S1. SEM images of CoFe-LDH (a and b) CoFe-LDH@g-C $_3N_4$ (10%) composite (c and d) at different resolutions

Figure S2. EDS spectrum of the CoFe-LDH@g-C₃N₄ (10%) composite

Figure S3. TEM images of CoFe-LDH (a and b) CoFe-LDH@g-C₃N₄ (10%) composite (c and d) at different resolutions

Figure S4. Photoluminescence spectra of g-C $_3N_4$, CoMn-LDH and CoMn-LDH@g-C $_3N_4$ (10%) composites

Figure S5. (a) Linear scan voltammogram (LSV) OER curves of $g-C_3N_4$, CoFe-LDH and CoFe-LDH@ $g-C_3N_4$ (10%)

Figure S6. The comparison of the LSV curves for CoFe-LDH@g-C $_3N_4$ with and without light irradiations.

Figure S7. (a) UV–vis/DR spectroscopic analysis; (b) plots of $(\alpha hv)^2$ vs (hv) for band gap energies of g-C₃N₄, CoFe-LDH and hierarchical CoFe-LDH@g-C₃N₄ heterostructures with different wt.% loading of g-C₃N₄.

Figure S8. XRD patterns of g-C₃N₄, CoFe-LDH and CoFe-LDH@g-C₃N₄ composite materials.

Figure S9. SEM images of CoFe-LDH (a and b) and CoFe-LDH@g-C₃N₄ composite (c and d).

Figure S10. (a) Linear scan voltammogram (LSV) OER curves of CoFe-LDH and CoFe-LDH@ $g-C_3N_4$ with different methods; (b) corresponding EIS spectra of CoFe-LDH and CoFe-LDH@ $g-C_3N_4$ (10%).

Figure S11. SEM images of a physical mixture of CoFe-LDH and g-C₃N₄ (a and b).

Figure S12. (a) Linear scan voltammogram (LSV) OER curves of CoFe-LDH@g-C₃N₄ composite and physical mixture of CoFe-LDH and g-C₃N₄ nanosheets.

Table S1. Comparison of OER performance for the CoFe-LDH@g-C $_3N_4$ (10%) and recently reported materials

Table S2. Comparison of bifunctional catalyst performance built as two-electrode electrolyzers in 1 M KOH.

Figure S1. SEM images of CoFe-LDH (a and b) CoFe-LDH@g-C₃N₄ (10%) composite (c and d) at different resolutions

Figure S2. EDS spectrum of the CoFe-LDH@g-C₃N₄ (10%) composite

Figure S3. TEM images of CoFe-LDH (a and b) CoFe-LDH@g-C₃N₄ (10%) composite (c and d) at different resolutions

Figure S4. Photoluminescence spectra of g-C₃N₄, CoMn-LDH and CoMn-LDH@g-C₃N₄ (10%) composites

Figure S5. Linear scan voltammogram (LSV) OER curves of g-C₃N₄, CoFe-LDH and CoFe-LDH@g-C₃N₄ (10%)

Figure S6. The comparison of the LSV curves for CoFe-LDH@g-C₃N₄ with and without light irradiations.

Figure S7. (a) UV–vis/DR spectroscopic analysis; (b) plots of $(\alpha hv)^2$ vs (hv) for band gap energies of g-C₃N₄, CoFe-LDH and hierarchical CoFe-LDH@g-C₃N₄ heterostructures with different wt.% loading of g-C₃N₄.

Figure S8. XRD patterns of g-C₃N₄, CoFe-LDH and CoFe-LDH@g-C₃N₄ composite materials.

The PXRD patterns of the as-synthesized $g-C_3N_4$, CoFe-LDH and CoFe-LDH@ $g-C_3N_4$ composites are displayed in Figure S8. The diffraction patterns of pure and composite materials match well with the already reported in the literature.

Figure S9. SEM images of CoFe-LDH (a and b) and CoFe-LDH@g-C₃N₄ composite (c and d).

The scanning electron microscope (SEM) was performed to analyze the morphological and structural features of the CoFe-LDH and CoFe-LDH@g-C₃N₄ prepared by coprecipitation and hydrothermal method. Typical SEM image of CoFe-LDH demonstrates 2D nanosheets-shaped structure (Figure S9). It Is observed that the morphology of CoFe-LDH and CoFe-LDH@g-C₃N₄ prepared by coprecipitation and hydrothermal method is totally different from solvothermal method.

Figure S10. (a) Linear scan voltammogram (LSV) OER curves of CoFe-LDH and CoFe-LDH@ $g-C_3N_4$ with different methods, and (b) corresponding EIS spectra of CoFe-LDH and CoFe-LDH@ $g-C_3N_4$ (10%).

The electrocatalytic activities of CoFe-LDH and CoFe-LDH@g-C₃N₄ composites (prepared by coprecipitation and hydrothermal method) were measured for both OER and electrochemical impedance spectroscopy (EIS) studies with a three electrode electrochemical cell system, as for hierarchical CoFe-LDH@g-C₃N₄ heterostructures. LSV OER curves for CoFe-LDH@g-C₃N₄ (10%) prepared by coprecipitation/hydrothermal method, and CoFe-LDH@g-C₃N₄ (10%) prepared by solvothermal method with light irradiation show overpotentials (potential to achieve a current density of 10 mA/cm²) of 301 and 270 mV, respectively (Figure S10a). In our opinions, an efficient photo/electrochemical performance of composites prepared by solvothermal method is highly related to the hierarchical flower-like morphology, which has more exposed active sites and high surface area.

To further investigate the conductivity, EIS spectra of CoFe-LDH and CoFe-LDH@g-C₃N₄ composites prepared by different methods were performed in the three-electrode system as already discussed in detail in main manuscript. Various semi-circles in Nyquist plots at high

frequency range can be correlated with R_{ct} of the as-synthesized electrocatalysts. Therefore, EIS results confirm that the hierarchical CoFe-LDH@g-C₃N₄ shows a much lower R_{ct} (76 Ω) relative to CoFe-LDH@g-C₃N₄ prepared by coprecipitation and hydrothermal method R_{ct} (143 Ω), symbol of its effective electron-transfer behavior during the electrochemical reaction (Figure S10b). Excellent photoelectrocatalytic activities of CoFe-LDH@g-C₃N₄ are attributed to flower-like hierarchical structure, in which the high surface area and more exposed active sites could contribute to the enhancement of light harvesting capability, and facilitate the charge transportation within the heterostructure.

Figure S11. SEM images of a physical mixture of CoFe-LDH and g-C₃N₄ (a and b)

The scanning electron microscope (SEM) was performed to analyze the morphological and structural features of the physical mixture. SEM images (Figure S11) reveals that individual flower-like CoFe-LDH and g-C₃N₄ nanosheets are found. SEM images disclose several separated clumps (poor dispersion) of g-C₃N₄ nanosheets on the surface of flower like CoFe-LDH. The low dispersion may enlarge the ion transport distance in the nano-scale dimension, which leads to decrease of the electrochemical active surface area (ECSA) and hence influence the charge transportation for electrochemical water splitting.

Figure S12. (a) Linear scan voltammogram (LSV) OER curves of CoFe-LDH@g-C₃N₄ composite and physical mixture of CoFe-LDH and g-C₃N₄ nanosheets.

The electrocatalytic activities of CoFe-LDH@g-C₃N₄ composites and physical mixture were measured for OER and results indicate the weak catalytic activity of physical mixture (Figure S12).

Catalyst	η(mV @10 mAcm ⁻²)	Electrolyte	Substrate	References
CoFe-LDH@g- C ₃ N ₄	275	1М КОН	GCE	This Work
CoMn-LDH nanosheets	324	1М КОН	GCE	1
NiCo LDH	367	1.0 M KOH	GCE	2
Co ₃ O ₄ /NiCo ₂ O ₄ nanocages	340	1.0 M KOH	Ni foam	3
CoSe ₂	407	1 M KOH	CC	4
MnCoP nanoparticles	330	1 M KOH	GCE	5
NiFe@g- C ₃ N ₄ /CNT	326	1 M KOH	GCE	6
Co4N/CNW/CC	330	1 M KOH	GCE	7
N-GRW	360	1 M KOH	GCE	8
Ni-Fe-P	217	1 M KOH	NF	9
FeNi ₃ N	220	1 M KOH	NF	10

Table S1. Comparison of OER performance for the CoFe-LDH@g-C₃N₄ (10%) and recently reported materials

Catalyst	Ej=10 mAcm ⁻² (V)	Electrolyte	Ej=100 mAcm ⁻² (V)	References
CoFe-LDH@g-	1.55	1 М КОН	1.80	This Work
C_3N_4				
NiFe LDH	1.70	1M KOH	/	11
NiSe NWs	1.63	1.0 M KOH	/	12
NiFe/NF	1.64	1.0 M KOH	/	13
Ni ₂ P	1.63	1 M KOH	/	14
Ni ₃ S ₂	1.76	1 M KOH	/	15
FeNi ₃ N	1.62	1 M KOH	/	10
Porous	1.67	1 М КОН	2.12	16
NiFe/NiCo ₂ O ₄ /NF	1.07		2.12	10
NiFeOx/CFP	1.51	1 M KOH	1.80	17
Ni-Fe-P	1.64	1 M KOH	/	9
Ni-Fe-P@C	1.52	1 M KOH	/	9

Table S2. Comparison of bifunctional catalyst performance built as two-electrode electrolyzersin 1 M KOH.

Notes and references

- 1. F. Song and X. Hu, J. Am. Chem. Soc., 2014, 136, 16481-16484.
- H. Liang, F. Meng, M. Cabán-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang and S. Jin, *Nano Lett.*, 2015, 15, 1421-1427.
- 3. H. Hu, B. Guan, B. Xia and X. W. Lou, J. Am. Chem. Soc., 2015, 137, 5590-5595.
- P. Chen, K. Xu, S. Tao, T. Zhou, Y. Tong, H. Ding, L. Zhang, W. Chu, C. Wu and Y. Xie, *Adv. Mater.*, 2016, 28, 7527-7532.
- D. Li, H. Baydoun, C. N. Verani and S. L. Brock, J. Am. Chem. Soc., 2016, 138, 4006-4009.
- D. Liu, S. Ding, C. Wu, W. Gan, C. Wang, D. Cao, Z. u. Rehman, Y. Sang, S. Chen, X. Zheng, Y. Wang, B. Ge and L. Song, *J. Mater. Chem. A*, 2018, 6, 6840-6846.
- F. Meng, H. Zhong, D. Bao, J. Yan and X. Zhang, J. Am. Chem. Soc., 2016, 138, 10226-10231.
- H. B. Yang, J. Miao, S. F. Hung, J. Chen, H. B. Tao, X. Wang, L. Zhang, R. Chen, J. Gao, H. M. Chen, L. Dai and B. Liu, *Sci. Adv.*, 2016, 2, 1501122.
- 9. S. H. Ahn and A. Manthiram, J. Mater. Chem. A, 2017, 5, 2496-2503.
- B. Zhang, C. Xiao, S. Xie, J. Liang, X. Chen and Y. Tang, *Chem. of Mate.*, 2016, 28, 6934-6941.
- J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley, H. J. Fan and M. Grätzel, *Science*, 2014, 345, 1593-1596.
- 12. C. Tang, N. Cheng, Z. Pu, W. Xing and X. Sun, Angew. Chem., 2015, 54, 9351-9355.
- Q. Luo, M. Peng, X. Sun, Y. Luo and A. M. Asiri, *Inter. J.Hyd. Energy*, 2016, 41, 8785-8792.
- 14. L.-A. Stern, L. Feng, F. Song and X. Hu, Energy Environ. Sci., 2015, 8, 2347-2351.
- L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, J. Am. *Chem. Soc.*, 2015, **137**, 14023-14026.
- 16. C. Xiao, Y. Li, X. Lu and C. Zhao, Adv. Funct. Mater., 2016, 26, 3515-3523.
- 17. H. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu, Y. Liu, D. Lin and Y. Cui, *Nat. comm.*, 2015, **6**, 7261.