Electronic Supplementary Information

A novel D- π -A blue fluorophore based on [1,2,4]triazolo[1,5*a*]pyridine as electron acceptor and its application in organic lightemitting diodes

Chen Cao,^{a,b} Wen-Cheng Chen,^{*b} Shuang Tian,^b Jia-Xiong Chen,^b Zhong-Yi Wang,^a Xu-Hui Zheng,^a Chong-Wei Ding,^a Jing-Hong Li,^a Jie-Ji Zhu,^a Ze-Lin Zhu,^b Qing-Xiao Tong,^{*a} and Chun-Sing Lee^{*b}

^aDepartment of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, 243 University Road, Shantou, Guangdong, 515063, P. R. China. Email: qxtong@stu.edu.cn

^bCenter of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong & City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, P. R. China. E-mail: wenium@live.com, apcslee@cityu.edu.hk

Synthesis

2-(4"-([1,2,4]triazolo[1,5-a]pyridin-2-yl)-[1,1':4',1"-terphenyl]-4-yl)-1-phenyl-

1H-phenanthro[9,10-d]imidazole(TPP-PPI)

30 mL toluene, 15 mL ethanol and 15 mL 2 M Na₂CO₃ aq. were added to a mixture of 1-phenyl-2-(4'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1'-biphenyl]-4-yl)-1*H*-phenanthro[9,10-*d*]imidazole (PPI-pinB, 1.6 g, 2.81 mmol), 2-(4-bromophenyl)-[1,2,4]triazolo[1,5-a]pyridine (TP-Br, 0.64 g, 2.34 mmol), and 0.20 g Pd(PPh₃)₄ (0.18 mmol) in a degassed three-necked flask. Then the suspension was heated to 90 °C with stirring under an argon atmosphere. After 24 h, the mixture was allowed to cool to room temperature, extracted with CH₂Cl₂ and dried over anhydrous MgSO₄ before removing the solvent. Finally, the product was purified by column chromatography on 200-300 mesh silica gel (eluent: petroleum ether/ $CH_2Cl_2 = 1/6$) to give a white solid, with a yield of 73% (1.1 g). ¹H NMR (400 MHz, CD₂Cl₂) δ 8.80 (d, J = 8.4 Hz, 1H), 8.75 (d, J = 8.4 Hz, 1H), 8.64 (d, J = 6.8 Hz, 1H), 8.37 (d, J = 8.4 Hz, 2H), 7.87 - 1007.50 (m, 21H), 7.30 (t, J = 7.5 Hz, 1H), 7.21 (d, J = 7.7 Hz, 1H), 7.04 (t, J = 6.9 Hz, 1H). ¹³C NMR (151 MHz, CD₂Cl₂) δ 164.07, 152.28, 142.26, 140.20, 139.63, 130.82, 130.65, 130.37, 130.01, 129.53, 128.90, 128.13, 127.88, 127.83, 127.59, 127.04, 126.92, 125.28, 124.54, 123.64, 121.42, 116.72, 114.09. MS m/z: [M + H]⁺ calcd for C₄₅H₂₉N₅, 639.76; found, 640.06. Anal. Calcd for C₄₅H₂₉N₅: C, 84.48; H, 4.57; N, 10.95; found: C, 84.55; H, 4.53; N, 10.89.

Scheme S1. Synthetic routes of TPP-PPI. Suzuki-coupling reaction: 2 M Na₂CO₃ aq., Pd(PPh₃)₄, toluene, EtOH, 90 °C.

Fig. S1 a) Fluorescence and phosphorescence spectra in 2-methyltetrahydrofuran at 77 K; b) Transient PL decay of TPP-PPI's neat film.

Fig. S2 Cyclic voltammogram of TPP-PPI a) negative scan in THF b) positive scan in DCM (inset: ferrocene).

Fig. S3 Molecular Oak Ridge Thermal Ellipsoid Plot Program (ORTEP) structure

Fig. S4 Another similar chains around red chain: a) top view b) side view

Fig. S5 The detail interaction between the adjacent chains

Fig. S6 Energy level diagram of the non-doped OLEDs, doped OLEDs, yellow OLEDs and the chemical structures of the used materials.

Fig. S7 a) Current density-voltage-luminescence characteristic curves, b) plots of current efficiency-luminance-power efficiency, c) luminance-EQE plots and d) EL spectra at different voltage of device 6.

Fig. S8 Voltage-dependent EL spectra for device a) 7, b) 8 and c) 9.

Fig. S9 ¹H-NMR of TPP-PPI in CD₂Cl₂

Fig. S10 ¹³C-NMR of TPP-PPI in CD₂Cl₂

	$\lambda_{\rm abs} \left(\epsilon \right) \left[10^5 { m M}^{-1} { m cm}^{-1} ight]$	λ_{fl} (nm)	PLQY(%)
<i>n</i> -hexane	260 (0.095),330(0.093)	398, 422	69.6
THF	260(0.94), 330(0.92)	433	~100
DCM	260(0.90), 330(0.80)	439	~100
ACN	260(0.52), 330(0.50)	445	93.5

Table S1 Summary of the photophysical data of TPP-PPI in different solvents

Table S2 Summary of the recent orange device data

CE (cd A ⁻¹)	PE (lm W ⁻¹)	EQE (%)	
Max/@1000 cd m ⁻²	$Max/@1000 \text{ cd } m^{\text{-}2}$	Max/@1000 cd m ⁻²	Kei.
56.94/56.39	64.61/42.11	24.7/20.9	This work
-/-	64.5/57.3	24.5/24.2	1
-/-	73.1/-	27.0/-	2
57.3/54.1	60.0/53.4	18.9/17.8	3
69.3/65.8	89.0/44.5	22.6/21.4	4

References.

- 1D. Zhang, L. Duan, Y. Li, H. Li, Z. Bin, D. Zhang, J. Qiao, G. Dong, L. Wang and Y. Qiu, *Adv. Funct. Mater.*, 2014, **24**, 3551–3561.
- 2D. Zhang, M. Cai, Y. Zhang, Z. Bin, D. Zhang and L. Duan, *ACS applied materials & interfaces*, 2016, **8**, 3825–3832.
- 3Z.-L. Zhu, S.-F. Ni, W.-C. Chen, M. Chen, J.-J. Zhu, Y. Yuan, Q.-X. Tong, F.-L. Wong and C.-S. Lee, *J. Mater. Chem. C*, 2018, **6**, 3584–3592.
- 4Q. Liang, C. Han, C. Duan and H. Xu, Adv. Opt. Mater., 2018, 6, 1800020.