Supplementary Information

Rh(III)-Catalyzed Directed C-H Carbenoid Coupling Reveals Aromatic Bisphosphonates Inhibiting Metallo- and Serine-β-Lactamases

Chen Zhang, ^[a] Yan-chi Pu, ^[a] Zhu-Jun Yu, ^[a] Cheng-yong Wu, ^[a] Jürgen Brem, ^[b] Michael A. McDonough, ^[b] Christopher J. Schofield, ^[b] Guo-Bo Li,*^[a] Yong Wu*^[a]

^[a]Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Sichuan 610041, China.

^[b]Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX13TA, UK

Correspondence: liguobo@scu.edu.cn (G.-B. Li); wyong@scu.edu.cn (Y. Wu)

Contents

Supplementary Experimental Section	.2
SE. 1. Chemical Synthesis.	.2
1.1 General Information	.2
1.2 Preparation of Substrates	.2
1.3 Experimental Procedures and Characterizations	.7
1.4 Mechanistic studies2	27
SE. 2. Computational Studies	33
SE. 3. Protein Production	33
SE. 4. Inhibition, Competitive, Reversibility, and Cellular Assays	34
SE. 5. ITC Analyses	36
Supplementary Tables	37
Supplementary Figures5	51
H NMR, ¹³ C NMR, ³¹ P NMR of Compounds6	52
Reference13	39

Supplementary Experimental Section

SE. 1. Chemical Synthesis.

1.1 General Information

Unless otherwise noted, all reactions were carried out in reaction vessels in sealed tubes. Reactions were carried out without any precautions to extrude moisture or air unless otherwise noted. Solvents used were of analytical purity. All reactions were monitored by thin-layer chromatography (TLC) and were visualized using UV light. Product purification was done using silica gel column chromatography. Thin layer chromatography (TLC) characterization was performed with precoated silica gel GF254 (0.2mm), while column chromatography characterization was performed with silica gel (100-200mesh). ¹H and ¹³C spectra were recorded with tetramethylsilane as the internal standard. ¹³C and ³¹P spectra were recorded with broadband ¹H decoupling model. ¹H NMR spectra were recorded at 400 or 600 MHz, ¹³C NMR spectra were recorded at 100 or 150 MHz and ³¹P NMR spectra were recorded at 162 MHz. Chemical shifts (δ) were reported as parts per million (ppm) downfield from tetramethylsilane and the following abbreviations were used to identify the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br =broad and all combinations thereof can be explained by their integral parts. HRMS spectra were recorded on a Waters Q-TOF Premier. Commercial reagents were from Best-reagent (Homepage: http://www.best-reagent.com) or Astatech Chemical Technology Co, Ltd. (Homepage: http://www.astabio-chem.com). All reagents were used without further purification.

1.2 Preparation of Substrates

2-Arylpyridine derivatives **1a-1r** were prepared via Suzuki coupling of the corresponding boronic acids and 2-bromopyridine using a reported procedure ^{S1}. 2-phenylpyrimidine derivatives **1q**, **1u-1y** and 3-phenylisoquinoline derivatives **1t**, **1z** were prepared according to reported procedures ^{S2-S4}. Substrate **1p** was commercially available and used without further purification. All substrates are shown in Scheme S1.

Preparation of 2-phenylpyridine S1

To a solution of 2-bromopyridine (0.32 g, 2.0 mmol) in toluene (7 mL), ethanol (3.5

mL), and H₂O (7 mL) was added Na₂CO₃ (1.6 g, 15 mmol) followed by Pd(PPh₃)₄ (0.069 g, 0.060 mmol) and arylboronic acid (2.6 mmol) under argon in a 50 mL twonecked flask. The reaction mixture was refluxed for 5 h, then cooled to room temperature. To the reaction mixture was added aqueous NH₄Cl (15 mL); the mixture was then extracted with EtOAc three times; the organic extracts were dried over MgSO₄, then evaporated in vacup to afford the crude product, which was purified by flash chromatography on silica gel to provide the desired products.

Preparation of 2-phenylpyrimidine S2

To a 50 ml Schlenk tube was added $Pd(PPh_3)_2Cl_2$ (84 mg, 3.0 mol%), Na_2CO_3 (6.36 g, 60 mmol), phenylboronic acid (1.76 g, 14.4 mmol), 2-chloropyrimidine (1.36 g, 12 mmol), toluene (7 mL), ethanol (3.5 mL), and H_2O (7 mL). The reaction was heated

to 105 °C and stirred for 5 h. After completion, the solvent was removed under reduced pressure and ethyl acetate was added which was washed with water and brine respectively. The combined organic layer was dried over anhydrous sodium sulfate and purified by silica gel column chromatography to afford the desired product.

Preparation of 3-phenylisoquinoline

Step 1: To a mixture of $Pd(PPh_3)_2Cl_2$ (379 mg, 5 mol %) and 2-bromobenzaldehyde (2.0 g, 10.8 mmol) in THF (77 ml) was added triethylamine (4.5 ml, 32.4 mmol). After being stirred for 10 min at room temperature, phenylacetylene (1.7 g, 16.2 mmol) and copper iodide (5 mol %) were added to the reaction mixture. The mixture was stirred at room temperature for 12h under argon. The reaction mixture was quenched with saturated aq. NH₄Cl, extracted with EtOAc three times, and washed with brine. The organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration. The crude mixture was purified by silica-gel column chromatography to provide the desired products ^{S3-S4}.

Step 2: *t*-BuOH (47 ml) was added to a mixture of AgNO₃ (0.57 mmol, 0.1 equiv.), ammonium acetate (8.55 mmol, 1.5 equiv.) and 2-(phenylethynyl)-benzaldehyde (5.70 mmol, 1 equiv.) under argon atmosphere. The resulting mixture was stirred at room temperature; the reaction was monitored by TLC. After completion, the reaction

was quenched by the addition of NaHCO₃ (0.48 mmol, 4 equiv.) at room temperature and stirring was continued for additional 4 h. The mixture was then filtered through a cotton plug, washed with EtOAc (5–10 mL), then dried over anhydrous Na₂SO₄. The filtrate was evaporated under reduced pressure and the residue was purified through silica gel column chromatography to obtain the pure isoquinoline derivative ^{S5}.

Preparation of diazo-diphosphonates 2

Step 1: A mixture of 17.6g (0.1 mol) of bis-(dihydroxyphosphiny)-1-methane, and 40.0 g. (0.1 mol) of methane-diphosphonic acid tetraethyl ester was strongly heated to effect dissolution. PCl₅ (166 g, 0.8 mole) was added, with stirring, over a period of about half an hour to a cooled solution of the acid. During most of the addition of the PCl₅ in an ice-bath was employed. The mixture was heated several minutes to dissolve the last traces of PCl₅, then transferred to a larger vessel; 400 ml. of petroleum ether was added and crystallization was induced. The product was cooled in an ice-bath, filtered, and washed with 200 ml. of petroleum ether ^{S6}.

Step 2¹: A suspension of methylene bis-(phosphonic dichloride) (5.00 g, 20.0 mmol) was stirred rapidly in dry toluene (20 mL) at 0 °C. A mixture of dry benzyl alcohol (8.66 mL, 83.0 mmol) and dry pyridine (6.15 mL, 76.1 mmol) was added dropwise via an addition funnel over a 2-hour period, while the temperature was maintained at 0 °C. After the addition was complete, the reaction was allowed to reach 20 °C and stirred for a further 3 h. The solids were removed by filtration and washed twice with toluene (2×20 mL). The filtrate was washed twice with 2 M NaOH (2×15 mL) and water (15 mL), dried (MgSO₄), and concentrated in vacuo. Removal of benzyl alcohol impurity by distillation (120 °C, 1 mmHg) gave product as a colorless oil ^{S7}.

Step 2²: Methylene bis-(phosphonic dichloride) (5.00 g, 20.0 mmol) and 1H-tetrazole (0.2 g, 3.5 mmol) were dissolved in 20 mL dry toluene, with vigorous stirring (under nitrogen). When the dissolution was complete, a solution of the alcohol (64.0 mmol) and diisopropylethylamine (6.12 mL, 70.4 mmol) in 20 mL of toluene was added dropwise through an addition funnel over a 2 hour period. After stirring the reaction overnight (about 16-18 hours) at room temperature under a nitrogen atmosphere, the solvent was removed in vacuo. The resulting residue was dissolved in hexane and the diisopropylammonium and tetrazonium salts were removed by filtration using a Hirsch funnel. The solution was concentrated in vacuo and the resulting crude product, a light yellow oil, was purified by flash chromatography (10:90 v/v acetone/hexane; first band)^{S8}.

R=Et, Bu-n, Bn

Step 3: To a stirred solution of 60% NaH (1.8g, 4.5 mmol) in 100 ml dry THF was added methanediphosphonic acid tetra-ester (10.0g, 3.5 mmol) dropwise at 0°C under N₂. After 10 min stirring, Ts-N₃ (6.8 g, 3.5 mmol) was added dropwise. The resulting mixture was stirred at rt for 30 min. The reaction was quenched with water (10 mL), and the product was extracted with EtOAc (100 mL x 3). The combined organic layer was dried over MgSO₄ and evaporated. The crude compound was purified by column chromatography to get 6.0 g product as pale yellow oil ^{S9}.

Scheme S1. Substrate Scope.

1.3 Experimental Procedures and Characterizations

To a 15 ml tube was added **1a** (0.3 mmol, 46.56 mg), **2a** (0.36 mmol, 113.1 mg), $[Cp*RhCl_2]_2$ (9.20 mg 5mol%), $Ag_2SO_4(10.14 \text{ mg 10 mol}\%)$ in DCE (3.0 mL). The tube was sealed and stirred at 80°C for 12 h. After completion, the reaction mixture was concentrated in vacuo and purified by silica gel column chromatography(80:1 DCM/MeOH) to provide the product **3aa** (pale brown oil) in 93% yield.

1.3.2 Characterizations

Tetraethyl ((2-(pyridin-2-yl)phenyl)methylene)bis(phosphonate) (3aa). Yield 93%, pale brown oil, ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 4.4 Hz, 1H), 8.03 (d, J = 7.6 Hz, 1H), 7.77 (td, J = 7.6, 1.4 Hz, 1H), 7.54 (d, J = 7.6 Hz, 1H), 7.48 – 7.34 (m, 3H), 7.32 – 7.20 (m, 1H), 5.09 (t, J = 25.6 Hz, 1H), 4.29 – 3.87 (m, 8H), 1.21 (t, J = 7.2 Hz, 6H), 1.15 (t, J = 7.2 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 159.09, 149.10, 140.62, 136.57, 131.20, 130.36, 128.31, 128.07, 127.66, 124.55, 121.94, 63.31, 63.26, 62.74, 62.69, 39.78 (t, J=130.5Hz), 16.25, 16.21, 16.17, 16.13; ³¹P NMR (162 MHz, CDCl₃) δ 19.45; HRMS (ESI): *m/z* calculated for C₂₀H₂₉NO₆P₂ [M+Na⁺]: 464.1362, found: 464.1366.

Tetraethyl ((3-methyl-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonate) (3ba). Yield 72%, pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 4.4 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.75 (t, *J* = 7.6 Hz, 1H), 7.39 (d, *J* = 7.6 Hz, 1H), 7.34 – 7.28 (m, 2H), 7.21 (d, *J* = 7.6 Hz, 1H), 4.10 – 3.94, (m, 8H), 3.72 (t, *J* = 25.2 Hz, 1H), 2.02 (s, 3H), 1.24 (t, *J* = 6.8 Hz, 6H), 1.18 (t, *J* = 6.8 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 158.25, 149.60, 136.73, 136.12, 129.48, 127.83, 127.77, 127.74, 125.57, 122.14, 112.47, 63.38, 63.30, 62.79, 62.74, 41.45 (t, *J* = 130.5 Hz), 20.77, 16.30, 16.26, 16.24, 16.20; ³¹P NMR (162 MHz, CDCl₃) δ 19.12 18.79; HRMS (ESI): *m/z* calculated for C₂₁H₃₁NO₆P₂ [M+Na⁺]: 478.1519, found: 478.1513.

Tetraethyl ((3-methoxy-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonate) (3ca). Yield 68%, pale yellow oil. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.65 (d, *J* = 4.4 Hz, 1H), 7.85 (t, *J* = 7.6 Hz, 1H), 7.44 – 7.31 (m, 4H), 7.08 (d, *J* = 7.6 Hz, 1H), 3.99 – 3.74 (m, 9H), 3.67 (s, 3H), 1.12 (t, *J* = 6.8 Hz, 6H), 1.02 (t, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCL₃) δ 157.40, 149.08, 136.03, 129.78, 129.70, 128.99, 126.72, 126.15, 122.17, 119.23, 110.29, 63.39, 62.78, 55.76, 40.89 (t, *J* = 137.0 Hz), 16.32; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 18.69; HRMS (ESI): *m/z* calculated for C₂₁H₃₁NO₇P₂ [M+Na⁺]: 494.1468, found: 494.1463.

Tetraethyl ((4-methyl-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonate) (3da). Yield 96%, pale yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 4.4 Hz, 1H), 7.82 (s, 1H), 7.75 (t, J = 7.6 Hz, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.24 (dd, J = 7.6, 5.6 Hz, 1H), 7.19 (d, J = 7.6 Hz, 1H), 5.14 (t, J = 26.0 Hz, 1H), 4.15 – 3.97 (m, 8H), 2.42 (s, 3H), 1.21 (t, J = 7.2 Hz, 6H), 1.15 (t, J = 7.2 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 159.16, 148.92, 138.07, 137.66, 136.56, 131.83, 130.24, 128.49, 127.79, 124.58, 121.70, 63.21, 63.17, 62.67, 62.63, 39.57 (t, J = 130.5 Hz), 21.36, 16.27, 16.23, 16.15, 16.11; ³¹P NMR (162 MHz, CDCl₃) δ 19.58; HRMS (ESI): *m/z* calculated for C₂₁H₃₁NO₆P₂ [M+Na⁺]: 478.1519, found: 478.1513.

Tetraethyl ((4-methoxy-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonate) (3ea). Yield 83%, yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 4.4 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.77 (td, *J* = 8.0, 1.3 Hz, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.267 (d, *J* = 8.0 Hz, 1H), 7.00 – 6.95 (m, 2H), 4.89 (t, *J* = 26.0 Hz, 1H), 4.16 – 3.93 (m, 8H), 3.84 (s, 3H), 1.22 (t, *J* = 7.2 Hz, 6H), 1.17 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (150 MHz, CDCL₃) δ 158.90, 158.74, 149.12, 141.88, 136.58, 132.38, 124.47, 122.05, 119.82, 115.73, 113.99, 63.19, 62.62, 55.29, 39.06 (t, *J* = 130.5 Hz), 16.24; ³¹P NMR (162 MHz, CDCl₃) δ 19.73; HRMS (ESI): *m/z* calculated for C₂₁H₃₁NO₇P₂ [M+Na⁺]: 494.1468, found: 494.1462.

Tetraethyl ((4-chloro-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonate) (3fa). Yield 78%, yellow oil, ¹H NMR (600 MHz, DMSO- d_6) δ 8.69 (d, J = 4.4 Hz, 1H), 7.97 (t, J = 7.6 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.54 (s, 1H), 7.48 – 7.42 (m, 1H), 5.21 (t, J = 25.2 Hz, 1H), 3.98 – 3.82 (m, 8H), 1.11 (t, J = 7.2 Hz, 6H), 1.01 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 157.72, 149.18, 142.03, 136.71, 133.49, 132.52, 130.16, 128.24, 126.96, 124.39, 122.34, 63.21, 62.71, 39.35 (t, J = 130.0 Hz), 16.14; ³¹P NMR (162 MHz, DMSO- d_6) δ 18.75; HRMS (ESI): m/z calculated for C₂₀H₂₈ClNO₆P₂ [M+Na⁺]: 498.0973, found: 498.0976.

Tetraethyl ((4-nitro-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonate) (3ga). Yield

78%, yellow oil,¹H NMR (600 MHz, DMSO-*d*₆) δ 8.74 (d, *J* = 4.4 Hz, 1H), 8.36 (d, *J* = 8.4 Hz, 1H), 8.27 (s, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 8.04 (t, *J* = 7.8 Hz, 1H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.55 – 7.48 (m, 1H), 5.40 (t, *J* = 24.6 Hz, 1H), 4.14 – 3.70 (m, 8H), 1.12 (t, *J* = 7.2 Hz, 6H), 1.02 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 157.01, 149.39, 147.00, 141.68, 137.22, 136.47, 132.50, 125.14, 124.61, 122.95, 122.73, 63.45, 63.41, 63.16, 63.12, 40.29 (t, *J* = 130.5 Hz), 16.27, 16.23, 16.22, 16.18; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 17.85; HRMS (ESI): *m*/*z* calculated for C₂₀H₂₈NO₈P₂ [M+Na⁺]: 509.1213, found: 509.1217.

Tetraethyl ((2-(pyridin-2-yl)-4-(trifluoromethyl)phenyl)methylene)bis(phosphonate) (*3ha*). Yield 56%, yellow oil, ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.72 (d, *J* = 4.4 Hz, 1H), 8.06 (d, *J* = 7.8 Hz, 1H), 8.00 (t, *J* = 7.8 Hz, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 7.79 (s, 1H), 7.68 (d, *J* = 7.8 Hz, 1H), 7.51 – 7.45 (m, 1H), 5.30 (t, *J* = 25.2 Hz, 1H), 4.02 – 3.83 (m, 8H), 1.12 (t, *J* = 7.2 Hz, 6H), 1.00 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (150 MHz, CDCL₃) δ 157.78, 149.28, 141.14, 136.86, 132.73, 131.74, 129.74 (q, *J* = 32.4 Hz), 128.76, 127.08, 124.78, 124.57, 122.51, 63.32, 63.27, 62.93, 62.89, 40.02 (t, *J* = 130.5 Hz), 16.23, 16.18, 16.15, 16.11; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 18.36 ; HRMS (ESI): *m/z* calculated for C₂₁H₂₈F₃NO₆P₂ [M+Na⁺]: 532.1236, found: 532.1233.

Methyl 4-(*bis*(*diethoxyphosphoryl*)*methyl*)-3-(*pyridin-2-yl*)*benzoate* (3*ia*). Yield 63%, yellow oil, ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.71 (d, *J* = 4.4 Hz, 1H), 8.10 – 7.94 (m, 4H), 7.64 (d, *J* = 7.8 Hz, 1H), 7.50 – 7.44 (m, 1H), 5.29 (t, *J* = 25.2 Hz, 1H), 4.10 – 3.66 (m, 11H), 1.11 (t, *J* = 7.2 Hz, 6H), 0.99 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 158.16, 149.02, 140.55, 136.81, 133.68, 131.37, 130.73 129.22, 128.97, 128.68, 124.57, 122.29, 63.27, 62.79, 40.04 (t, *J* = 130.2 Hz), 16.13; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 18.34; HRMS (ESI): *m*/*z* calculated for C₂₂H₃₁NO₈P₂ [M+Na⁺]: 522.1417, found: 522.1412.

Tetraethyl ((5-methyl-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonate) (3ja).

Yield 96%, yellow solid, mp 145-147 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 4.4 Hz, 1H), 7.90 (d, *J* = 7.6 Hz, 1H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.57 (d, *J* = 7.6 Hz, 1H), 7.25 (s, 2H), 7.23 (s, 1H), 4.91 (t, *J* = 25.6 Hz, 1H), 4.11 – 3.96 (m, 8H), 2.38 (s, 3H), 1.21 (t, *J* = 7.2 Hz, 6H), 1.16 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 159.12, 149.07, 137.37, 136.52, 136.50, 131.06, 130.99, 129.15, 124.80, 124.53, 121.88, 63.24, 62.63, 39.56 (t, *J* = 130.0 Hz), 21.06, 16.24; ³¹P NMR (162 MHz, CDCl₃) δ 19.59; HRMS (ESI): *m/z* calculated for C₂₁H₃₁NO₆P₂ [M+Na⁺]: 478.1519, found: 478.1513.

Tetraethyl ((5-(tert-butyl)-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonate) (3ka). Yield 96%, yellow oil, ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.66 (d, J = 4.4 Hz, 1H), 7.98 – 7.89 (m, 2H), 7.57 (d, J = 7.8 Hz, 1H), 7.42 (d, J = 7.8 Hz, 2H), 7.40 – 7.36 (m, 1H), 5.40 (t, J = 25.2 Hz, 1H), 4.01 – 3.74 (m, 8H), 1.32 (s, 9H), 1.08 (t, J = 7.2 Hz, 6H), 0.98 (t, J = 7.2 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 158.68, 151.23, 148.57, 137.05, 130.08, 128.80, 127.52, 124.67, 124.44, 121.85, 63.24, 63.20, 62.60, 62.55, 39.95 (t, J = 132.0 Hz), 34.69, 31.09, 16.27, 16.23, 16.18, 16.14; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 19.46; HRMS (ESI): *m/z* calculated for C₂₄H₃₇NO₆P₂ [M+Na⁺]: 520.1988, found: 520.1981.

Tetraethyl ((5-fluoro-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonate) (3la).

Yield 67%, yellow solid, mp 112-114 °C, ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.66 (d, *J* = 4.4 Hz, 1H), 7.94 (t, *J* = 7.8 Hz, 1H), 7.60 (d, *J* = 10.2 Hz, 1H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.54 (d, *J* = 7.8 Hz, 1H), 7.43 – 7.39 (m, 1H), 7.28 (t, *J* = 7.8 Hz, 1H), 5.31 (t, *J* = 25.2 Hz, 1H), 3.98 – 3.80 (m, 8H), 1.10 (t, *J* = 7.2 Hz, 6H), 0.99 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 162.06 (d, *J* = 246.0 Hz), 158.17, 149.04, 136.74, 131.88 (d, *J* = 8.0 Hz), 130.84 (dd, *J* = 16.0, 8.0 Hz), 124.53, 122.02, 118.10(d, *J* = 23.0 Hz), 114.71(d, *J* = 21.0 Hz), 63.24, 63.92, 39.93 (t, *J* = 131.0 Hz), 16.16; ³¹P NMR (162 MHz, DMSO) δ 18.58; HRMS (ESI): *m/z* calculated for C₂₀H₂₈FNO₆P₂ [M+Na⁺]: 482.1268, found: 482.1263.

Tetraethyl ((5-chloro-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonate) (3ma).

Yield 87%, pale yellow solid, mp 147-148 °C, ¹H NMR (600 MHz, DMSO-*d*) δ 8.67 (d, *J* = 4.4 Hz, 1H), 7.95 (t, *J* = 7.8 Hz, 1H), 7.85 (s, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.53 – 7.49 (m, 2H), 7.42 (dd, *J* = 7.8, 1.8 Hz, 1H), 5.32 (t, *J* = 25.2 Hz, 1H), 4.00 – 3.81 (m, 8H), 1.11 (t, *J* = 7.2 Hz, 6H), 0.99 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 158.08, 149.14, 138.95, 136.74 , 134.16, 131.46, 131.12, 130.42, 127.77, 124.51, 122.17, 63.33, 63.28, 62.85,62.81, 39.79 (t, *J* = 132.0 Hz), 16.23, 16.19, 16.15, 16.11; ³¹P NMR (162 MHz, DMSO-*d*) δ 18.55; HRMS (ESI): *m*/*z* calculated for C₂₀H₂₈CINO₆P₂ [M+Na⁺]: 498.0973, found: 498.0980.

Tetraethyl ((5-acetyl-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonate) (3na). Yield 84%, pale yellow oil, ¹H NMR (600 MHz, DMSO- d_6) δ 8.70 (d, J = 4.8 Hz, 1H), 8.44 (d, J = 1.8 Hz, 1H), 7.98 (t, J = 8.4 Hz, 2H), 7.63 (d, J = 7.8 Hz, 2H), 7.45 (dd, J = 7.8, 4.8 Hz, 1H), 5.33 (t, J = 25.2 Hz, 1H), 3.97 – 3.83 (m, 8H), 2.60 (s, 3H), 1.09 (t, J = 7.2 Hz, 6H), 1.00 (t, J = 7.2 Hz, 6H), ¹³C NMR (100 MHz, CDCl₃) δ 197.56, 158.02, 149.16, 144.61, 136.79, 136.40, 131.91, 130.66, 129.05, 126.85, 124.55, 122.50, 63.21, 62.83, 39.55 (t, J = 131.0 Hz), 26.66, 16.17; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 18.80; HRMS (ESI): *m*/*z* calculated for C₂₂H₃₁NO₇P₂ [M+Na⁺]: 506.1468, found: 506.1468.

Tetraethyl ((4-(pyridin-2-yl)-[1,1'-biphenyl]-3-yl)methylene)bis(phosphonate) (3oa). Yield 96%, pale brown oil, ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.69 (d, *J* = 4.2 Hz, 1H), 8.19 (s, 1H), 7.96 (t, *J* = 7.8 Hz, 1H), 7.73 (d, *J* = 7.8 Hz, 1H), 7.68 (d, *J* = 7.8 Hz, 2H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 2H), 7.41 (d, *J* = 7.8, 2H), 5.43 (t, *J* = 25.2 Hz, 1H), 3.99 – 3.81 (m, 8H), 1.11 (t, *J* = 7.2 Hz, 6H), 0.96 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 158.80, 149.07, 140.49, 139.93, 139.35, 136.52, 130.73, 129.88, 128.72, 128.64 127.49, 126.91, 125.93, 124.41, 121.85, 63.19, 62.64, 39.78 (t, *J* = 133.0 Hz), 16.14; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 19.27; HRMS (ESI): *m/z* calculated for C₂₆H₃₃NO₆P₂ [M+Na⁺]: 540.1675, found: 540.1671.

Tetraethyl (benzo[h]quinolin-10-ylmethylene)bis(phosphonate) (3pa). Yield 52%,

pale brown solid, mp 88-90 °C, ¹H NMR (400 MHz, DMSO- d_6) δ 9.35 (t, J = 26.4 Hz, 1H), 9.01 (d, J = 3.2 Hz, 1H), 8.49 (d, J = 8.0 Hz, 1H), 8.19 (d, J = 8.0 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 8.8 Hz, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.78 – 7.69 (m, 2H), 4.10 – 3.96 (m, 4H), 3.82 – 3.68 (m, 4H), 1.12 (t, J = 7.2 Hz, 6H), 0.78 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 148.11, 146.29, 136.27, 135.40,

132.74, 129.83, 129.29, 128.73, 127.67, 127.26, 125.39, 121.19, 62.67, 62.51, 39.50 (t, J = 130.0Hz), 16.19, 16.00; ³¹P NMR (162 MHz, DMSO- d_6) δ 20.59; HRMS (ESI): m/z calculated for C₂₂H₂₉NO₆P₂ [M+Na⁺]: 488.1362, found: 488.1365.

Tetraethyl ((3-(pyridin-2-yl)naphthalen-2-yl)methylene)bis(phosphonate) (3qa). Yield 91%, pale yellow oil, ¹H NMR (600 MHz, DMSO- d_6) δ 8.70 (d, J = 4.4 Hz, 1H), 8.35 (s, 1H), 8.06 (s, 1H), 7.98 (dd, J = 7.2, 1.2 Hz, 2H), 7.91 (d, J = 7.8 Hz, 1H), 7.71 (d, J = 7.8 Hz, 1H), 7.59 – 7.54 (m, 2H), 7.46 – 7.42 (m, 1H), 5.44 (t, J = 25.8 Hz, 1H), 4.00 – 3.90 (m, 4H), 3.88 – 3.78 (m, 4H), 1.11 (t, J = 7.2 Hz, 6H), 0.94 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.04, 148.81, 136.91, 132.76, 132.26, 130.92, 129.97, 128.06, 127.75, 126.71, 126.60, 125.66, 124.99, 122.03, 119.24, 63.31, 62.74, 39.53 (t, J = 129.0 Hz), 16.21; ³¹P NMR (162 MHz, DMSO- d_6) δ 19.24 . HRMS (ESI): *m/z* calculated for C₂₄H₃₁NO₆P₂ [M+Na⁺]: 514.1519, found: 514.1513.

Tetraethyl ((1-(pyridin-2-yl)naphthalen-2-yl)methylene)bis(phosphonate) (3ra). Yield 90%, pale brown oil, ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.80 (d, *J* = 4.2 Hz, 1H), 8.02 – 8.00 (m, 2H), 7.96 (t, *J* = 7.8 Hz, 2H), 7.53 – 7.51 (m, 2H), 7.44 (d, *J* = 7.8 Hz, 1H), 7.42 – 7.39 (m, 1H), 7.16 (d, *J* = 8.4 Hz, 1H), 3.97 – 3.77 (m, 9H), 1.13 (dt, *J* = 14.4, 7.2 Hz, 6H), 0.98 (dt, *J* = 14.4, 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 157.27, 149.72, 138.52, 136.10, 132.67, 132.50, 128.10, 127.84, 127.27, 126.60, 126.29, 126.13, 125.87, 122.47, 63.15, 62.73, 42.04 (t, *J* = 132.0 Hz), 16.15; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 18.71, 18.15; HRMS (ESI): *m/z* calculated for C₂₄H₃₁NO₆P₂ [M+Na⁺]: 514.1519, found: 514.1517.

Tetraethyl ((2-(isoquinolin-3-yl)phenyl)methylene)bis(phosphonate) (3sa). Yield 90%, pale brown oil, ¹H NMR (600 MHz, DMSO- d_6) δ 8.80 (d, J = 4.2 Hz, 1H), 8.02 – 8.00 (m, 2H), 7.96 (t, J = 7.8 Hz, 2H), 7.53 – 7.51 (m, 2H), 7.44 (d, J = 7.8 Hz, 1H), 7.42 – 7.39 (m, 1H), 7.16 (d, J = 8.4 Hz, 1H), 3.97 – 3.77 (m, 9H), 1.13 (dt, J = 14.4, 7.2 Hz, 6H), 0.98 (dt, J = 14.4, 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 157.27, 149.72, 138.52, 136.10, 132.67, 132.50, 128.10, 127.84, 127.27, 126.60, 126.29, 126.13, 125.87, 122.47, 63.15, 62.73, 42.04 (t, J = 132.0 Hz), 16.15; ³¹P NMR (162 MHz, DMSO- d_6) δ 18.71, 18.15; HRMS (ESI): *m/z* calculated for C₂₄H₃₁NO₆P₂ [M+Na⁺]: 491.1627, found: 491.1622.

Tetraethyl ((6-(7,8-dimethoxyisoquinolin-3-yl)benzo[d][1,3]dioxol-5-yl) methylene) bis(phosphonate) (3ta). Yield 40%, yellow oil, ¹H NMR (400 MHz, DMSO- d_6) δ 9.44 (s, 1H), 7.91 (s, 1H), 7.78 (q, J = 9.0 Hz, 2H), 7.35 (s, 1H), 7.12 (s, 1H), 6.13 (s, 2H), 5.17 (t, J = 25.6 Hz, 1H), 4.02 (s, 3H), 3.99 (s, 3H), 3.97 – 3.83(m, 8H), 1.10 (t, J = 7.2 Hz, 6H), 1.02 (t, J = 7.2 Hz, 6H); δ^{13} C NMR (100MHz, CDCl₃) δ 150.40, 148.87, 147.22, 147.12, 146.78, 143.79, 132.02, 122.76, 122.60, 121.60, 120.37, 120.15, 110.89, 110.59, 101.34, 63.13, 62.67, 61.60, 56.99, 56.95, 39.95 (t, J = 133.0Hz), 16.18; ³¹P NMR (162 MHz, DMSO- d_6) δ 19.39; HRMS (ESI): *m/z* calculated for C₂₇H₃₅NO₁₀P₂ [M+Na⁺]: 618.1628, found: 618.1625.

Tetraethyl((5-(7,8-dimethoxyisoquinolin-3-yl)benzo[d][1,3]dioxol-4-yl)-methylene)-bis(phosphonate) (3ta¹). Yield 38%, pale yellow oil, ¹H NMR (400 MHz, DMSO- d_6) δ 9.39 (s, 1H), 7.87 (s, 1H), 7.79 (s, 2H), 7.00 (q, *J* = 8.0 Hz, 2H), 6.08 (s, 2H), 5.47 (t, *J* = 27.2 Hz, 1H), 4.01 – 3.80 (m, 14H), 1.08 (t, *J* = 6.8 Hz, 6H), 1.02 (t, *J* = 6.8 Hz,

6H); ¹³C NMR (101 MHz, CDCL₃) δ 152.51, 150.96, 148.77, 147.47, 146.35, 132.27, 124.43, 122.65, 122.55, 120.33, 120.19, 117.15, 110.33, 107.56, 101.17, 62.99, 62.44, 61.62, 57.01, 56.96, 38.28 (t, *J* = 132.0 Hz), 16.21; ³¹P NMR (162 MHz, DMSO-*d*₆) δ 18.87; HRMS (ESI): *m/z* calculated for C₂₇H₃₅NO₁₀P₂ [M+Na⁺]: 618.1628, found: 618.1624.

Tetrabutyl ((2-(pyridin-2-yl)phenyl)methylene)bis(phosphonate) (3ab). Yield50%, pale yellow oil, ¹H NMR (600 MHz, CDCl₃) δ 8.69 (d, J = 4.8 Hz, 1H), 8.02 (d, J = 6.6 Hz, 1H), 7.78 (t, J = 6.6 Hz, 1H), 7.55 (d, J = 7.8 Hz, 1H), 7.44 (t, J = 7.8 Hz, 2H), 7.41 (d, J = 7.8 Hz, 1H), 7.39 (s, 1H), 5.12 (t, J = 25.8 Hz, 1H), 4.93 – 3.93 (m, 8H), 1.57 – 1.53 (m, 4H), 1.52 – 1.47 (m, 4H), 1.30 – 1.25 (m, 8H), 0.86 (dt, J = 15.0, 7.2 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 159.09, 148.97, 140.43, 136.48, 131.28, 130.27, 128.30, 128.17, 127.49, 124.44, 121.83, 66.70, 66.31, 39.64 (t, J = 132.0 Hz), 32.33, 18.50, 13.51; ³¹P NMR (162 MHz, DMSO- d_6) δ 19.31; HRMS (ESI): m/z calculated for C₂₈H₄₅NO₆P₂ [M+Na⁺]: 576.2614, found: 576.2617.

Tetrabenzyl ((2-(pyridin-2-yl)phenyl)methylene)bis(phosphonate) (3ac). Yield 82%, pale yellow oil, ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.64 (d, *J* = 4.2 Hz, 1H), 7.97 (d, *J* = 7.2 Hz, 1H), 7.79 (t, *J* = 7.2 Hz, 1H), 7.48 – 7.43 (m, 3H), 7.37 – 7.34 (m, 1H), 7.34 – 7.21 (m, 13H), 7.18 (d, *J* = 7.2 Hz, 4H), 7.06 (d, *J* = 7.2 Hz, 4H), 5.74 (t, *J* = 27.0, 1H), 4.98 – 4.80 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 158.96, 148.78, 140.56, 136.72, 136.25, 131.60, 130.51, 128.55, 128.34, 128.30, 128.12, 128.03, 127.99, 127.85, 127.77, 124.54, 121.92, 68.39, 68.17, 40.10(t, *J* = 131.0 Hz); ³¹P NMR (162 MHz, DMSO-*d*₆) δ 20.04. HRMS (ESI): *m/z* calculated for C₄₀H₃₇NO₆P₂ [M+Na⁺]: 712.1988, found: 712.1984.

Tetraethyl ((3-methyl-2-(pyrimidin-2-yl)phenyl)methylene)bis(phosphonate) (5a). Yield 65%, pale yellow oil, ¹H NMR (600 MHz, DMSO- d_6) δ 8.97 (d, J = 4.8 Hz, 2H), 7.66 (d, J = 7.8 Hz, 1H), 7.51 (t, J = 4.8 Hz, 1H), 7.34 (t, J = 7.8 Hz, 1H), 7.26 (d, J = 7.8 Hz, 1H), 4.06 (t, J = 25.2 Hz, 1H), 3.95 – 3.73 (m, 8H), 2.05 (s, 3H), 1.10 (t, J = 6.6 Hz, 6H), 1.00 (t, J = 6.6 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 166.96, 156.93, 139.26, 136.75, 129.75, 128.38,128.27, 128.11, 118.97, 63.41, 63.37, 62.75, 62.70, 41.02 (t, J = 130.5 Hz), 20.81, 16.24; ³¹P NMR (162 MHz, DMSO- d_6) δ 18.78; HRMS (ESI): *m/z* calculated for C₂₀H₃₀N₂O₆P₂ [M+Na⁺]: 479.1471, found: 479.1478.

Tetraethyl ((4-methyl-2-(pyrimidin-2-yl)phenyl)methylene)bis(phosphonate) (5b). Yield93%, pale yellow oil, ¹H NMR (600 MHz, DMSO- d_6) δ 8.94 (d, J = 4.8 Hz, 2H), 7.81 (s, 1H), 7.75 (d, J = 7.8 Hz, 1H), 7.48 (t, J = 4.8 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 6.23 (t, J = 25.8 Hz, 1H), 3.96 – 3.77 (m, 8H), 2.36 (s, 3H), 1.08 (t, J = 7.2 Hz, 6H), 0.95 (t, J = 7.2 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 166.73, 156.90, 137.36, 137.12, 132.01, 131.71, 130.55, 126.43, 118.62, 63.09, 62.52, 38.86 (t, J = 130.5 Hz), 21.07, 16.17; ³¹P NMR (162 MHz, DMSO- d_6) δ 19.63; HRMS (ESI): *m/z* calculated for C₂₀H₃₀N₂O₆P₂ [M+Na⁺]: 479.1471, found: 479.1473.

Tetraethyl ((4-methoxy-2-(pyrimidin-2-yl)phenyl)methylene)bis(phosphonate) (5c). Yield 82%, pale yellow oil, ¹H NMR (400 MHz, DMSO- d_6) δ 8.97 (d, J = 4.8 Hz, 2H), 7.79 (d, J = 8.8 Hz, 1H), 7.54 (s, 1H), 7.50 (t, J = 4.8 Hz, 1H), 7.11 (dd, J = 8.8, 2.4 Hz, 1H), 6.20 (t, J = 26.0 Hz, 1H), 3.96 – 3.88 (m, 4H), 3.88 – 3.76 (m, 8H), 1.10 (t, J = 6.8 Hz, 6H), 0.96 (t, J = 6.8 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 166.32, 158.76, 156.87, 138.38, 133.01, 121.35, 118.77, 116.32, 115.85, 63.05, 62.46, 55.28, 38.40 (t, J = 130.5 Hz), 16.13; ³¹P NMR (162 MHz, DMSO- d_6) δ 19.76 ; HRMS (ESI): m/z calculated for C₂₀H₃₀N₂O₇P₂ [M+Na⁺]: 495.1420, found: 495.1423.

Methyl 4-(bis(diethoxyphosphoryl)methyl)-3-(pyrimidin-2-yl)benzoate (5d). Yield 91%, pale yellow oil, ¹H NMR (600 MHz, DMSO- d_6) δ 9.03 (d, J = 4.8 Hz, 2H), 8.65 (s, 1H), 8.08 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.57 (t, J = 4.8 Hz, 1H), 6.48 (t, J = 25.8 Hz, 1H), 4.03 – 3.93 (m, 4H), 3.92 – 3.82 (m, 7H), 1.10 (t, J = 7.2 Hz, 6H), 0.97 (t, J = 7.2 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 166.46, 165.76, 157.04, 137.53, 134.96, 132.76, 132.02, 130.19, 129.41, 119.05, 63.28, 63.24, 62.76, 62.72, 52.17, 39.65 (t, J = 130.5 Hz), 16.15; ³¹P NMR (162 MHz, DMSO- d_6) δ 18.58; HRMS (ESI): *m/z* calculated for C₂₁H₃₀N₂O₈P₂ [M+Na⁺]: 523.1370, found: 523.1375.

Octaethyl((2-(pyrimidin-2-yl)-1,3-

phenylene)bis(methanetriyl))tetrakis(phosphonate) (5e). Yield 90%, pale yellow oil, ¹H NMR (400 MHz, DMSO- d_6) δ 9.04 (d, J = 4.8 Hz, 2H), 7.83 (d, J = 8.0 Hz, 2H), 7.56 (t, J = 4.8 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 4.41 (t, J = 25.6 Hz, 2H), 3.93 – 3.79 (m, 16H), 1.11 (t, J = 6.8 Hz, 12H), 1.01 (t, J = 6.8 Hz, 12H); 13C NMR (150 MHz, CDCl₃) δ 165.75, 156.93, 130.56, 129.43, 128.24, 119.18, 63.26, 62.68, 41.16 (t, J = 130.5 Hz), 16.21; ³¹P NMR (162 MHz, DMSO- d_6) δ 18.70; HRMS (ESI): m/zcalculated for C₂₈H₄₈N₂O₁₂P₄ [M+Na⁺]: 751.2050, found: 751.2053.

Octaethyl((5-methyl-2-(pyrimidin-2-yl)-1,3-phenylene)bis(methanetriyl))tetrakis-(phosphonate) (5f). Yield 74%, pale yellow solid, mp71-73 °C, ¹H NMR (400 MHz, DMSO- d_6) δ 9.02 (d, J = 4.8 Hz, 2H), 7.65 (s, 2H), 7.54 (t, J = 4.8 Hz, 1H), 4.48 (t, J = 25.6 Hz, 2H), 3.94 – 3.77 (m, 16H), 2.36 (s, 3H), 1.11 (t, J = 7.2 Hz, 12H), 1.01 (t, J = 7.2 Hz, 12H); ¹³C NMR (150 MHz, CDCl₃) δ 165.89, 156.84, 137.98, 136.46, 131.23, 129.14, 118.96, 63.19, 62.62, 40.91 (t, J = 130.5 Hz), 21.55, 16.21; ³¹P NMR (162 MHz, DMSO- d_6) δ 18.79; HRMS (ESI): m/z calculated for C₂₉H₅₀N₂O₁₂P₄ [M+Na⁺]: 765.2206, found: 765.2203.

Tetraethyl ((1-(pyrimidin-2-yl)-1H-indol-2-yl)methylene)bis(phosphonate) (5g).

Yield 67%, pale yellow solid, mp167-169 °C, ¹H NMR (400 MHz, DMSO- d_6) δ 8.99 (d, J = 4.8 Hz, 2H), 8.18 (d, J = 7.2 Hz, 1H), 7.65 (d, J = 7.2 Hz, 1H), 7.49 (t, J = 4.8 Hz, 1H), 7.22 (dt, J = 21.2, 7.2 Hz, 2H), 7.06 (s, 1H), 6.13 (t, J = 26.0 Hz, 1H), 4.02 – 3.85 (m, 8H), 1.13 (t, J = 6.8 Hz, 6H), 1.02 (t, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCL₃) δ 158.07, 136.79, 128.60, 128.05, 123.43, 122.06, 120.61, 119.21, 117.14, 114.40, 110.87, 63.53, 62.84, 37.27 (t, J = 131.0 Hz), 16.23; ³¹P NMR (162 MHz, DMSO- d_6) δ 17.28; HRMS (ESI): *m/z* calculated for C₂₁H₂₉N₃O₆P₂ [M+Na⁺]: 504.1424, found: 504.1425.

Tetraethyl ((2-(1H-pyrazol-1-yl)phenyl)methylene)bis(phosphonate) (5h). Yield

82%, pale solid, mp75-78 °C ¹H NMR (600 MHz, DMSO- d_6) δ 8.02 (s, 1H), 7.89 (d, J = 7.2 Hz, 1H), 7.82 (s, 1H), 7.52 – 7.45 (m, 2H), 7.41 (d, J = 7.2 Hz, 1H), 6.55 (d, J = 1.8 Hz, 1H), 4.69 (t, J = 25.2 Hz, 1H), 4.00 – 3.91 (m, 4H), 3.90 – 3.80 (m, 4H), 1.15 (t, J = 7.2 Hz, 6H), 1.01 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.91, 139.95, 131.51, 131.49, 128.32, 128.25, 126.61 126.25, 106.64, 63.33, 62.86, 38.30 (t, J = 126.0Hz), 16.23, 16.16, 16.13, 16.01; ³¹P NMR (162 MHz, DMSO- d_6) δ

18.33; HRMS (ESI): m/z calculated for $C_{18}H_{28}N_2O_6P_2$ [M+Na⁺]: 453.1315, found: 453.1317.

Tetraethyl ((2-((methoxyimino)methyl)-4-methylphenyl)methylene)(E)-bis(phosphonate) (5i). Yield 52%, pale yellow oil, ¹H NMR (400 MHz, DMSO- d_6) δ 8.46 (s, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.43 (s, 1H), 7.23 (d, J = 8.0 Hz, 1H), 5.13 (t, J = 26.0 Hz, 1H), 4.07 – 4.00 (m, 4H), 3.90 – 3.80 (m, 7H), 2.30 (s, 3H), 1.20 (t, J = 7.2 Hz, 6H), 1.02 (t, J = 7.2 Hz, 6H); ¹³C NMR (150 MHz,CDCll₃) δ 148.59, 137.86, 131.24, 130.53, 130.36, 129.70, 125.27, 63.70, 63.23, 62.09, 39.46 (t, J = 132.0Hz), 20.92, 16.23, 16.19, 16.11, 16.07; ³¹P NMR (162 MHz, DMSO- d_6) δ 18.82; HRMS (ESI): m/z calculated for C₁₈H₃₁NO₇P₂ [M+Na⁺]: 458.1468, found: 458.1468.

Tetraethyl ((3-methyl-2-(o-tolyldiazenyl)phenyl)methylene)(E)-bis(phosphonate) (5j). Yield 92%, pale yellow oil, ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, J = 7.2 Hz, 1H), 7.59 (d, J = 8.3 Hz, 1H), 7.44 – 7.38 (m, 2H), 7.32 (q, J = 7.2 Hz, 2H), 7.26 (d, J = 7.2 Hz, 1H), 5.27 (t, J = 25.2 Hz, 1H), 4.14 – 3.99 (m, 8H), 2.71 (s, 3H), 2.43 (s, 3H), 1.23 (t, J = 7.2 Hz, 6H), 1.15 (t, J = 7.2 Hz, 6H); ¹³C NMR (150 MHz, DMSO- d_6) δ 151.08, 149.49, 138.31, 132.28, 132.12, 132.07, 129.46, 129.22, 127.79, 127.33, 114.70, 63.04, 63.00, 62.78, 62.76, 20.81, 17.85, 16.54, 16.50, 16.32, 16.30; ³¹P NMR (162 MHz, DMSO- d_6) δ 18.68; HRMS (ESI): m/z calculated for C₂₃H₃₄N₂O₆P₂ [M+Na⁺]: 519.1784, found: 519.1788.

1.3.2 General procedure for the synthesis of acid (taking 3aa acid as an example):

To a solution of **3aa** (30.0 mg, 0.068 mmol) in 5 mL of dry CH_2Cl_2 , trimethylsilyl bromide (62.5mg, 0.41 mmol) was added and the reaction mixture was stirred under a nitrogen flow. The reaction was monitored by TLC. After 4 h, the reaction was quenched with 10 mL of H_2O and the aqueous layer was evaporated in vacuo to obtain **3aa acid** as a microcrystalline powder in 96% yield.

((2-(pyridin-2-yl)phenyl)methylene)bis(phosphonic acid) (3aa acid). Yield 96%, yellow powder, ¹H NMR (400 MHz, D₂O) δ 8.65 (d, *J* = 5.2 Hz, 1H), 8.51 (td, *J* = 8.0, 1.2 Hz, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.90 (t, *J* = 7.2 Hz, 2H), 7.57 – 7.48 (m, 1H), 7.44 – 7.38 (m, 2H), 3.41 (t, *J* = 23.6 Hz, 1H); ¹³C NMR (150 MHz, D₂O) δ 152.15, 146.90, 141.03, 132.14, 131.41, 131.25, 130.60, 128.71, 127.77, 125.77, 112.52; ³¹P NMR (162 MHz, D₂O) δ 16.69; HRMS (ESI): *m/z* calculated for C₁₃H₁₃NO₆P₂ [M+Na⁺]: 352.0110, found: 352.0113.

((3-methyl-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonic acid) (3ba acid). Yield 95%, yellow powder, ¹H NMR (400 MHz, D₂O) δ 8.81 (s, 1H), 8.64 (s, 1H), 8.04 (d, *J* = 7.2Hz, 2H), 7.75 (s, 1H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.32 (d, *J* = 7.2 Hz, 1H), 3.11 (s, 1H), 1.99 (s, 3H); ¹³C NMR (150 MHz, D₂O) δ 158.22, 149.65, 136.72, 136.09, 129.41, 127.88, 127.77, 127.74, 125.57, 122.14, 112.51, 20.77; ³¹P NMR (162 MHz, D₂O) δ 14.87; HRMS (ESI): *m/z* calculated for C₁₃H₁₅NO₆P₂ [M+Na⁺]: 366.0267, found: 366.0263.

((4-methyl-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonic acid) (3da acid). Yield 97%, yellow powder, ¹H NMR (400 MHz, D₂O) δ 8.63 (s, 1H), 8.49 (s, 1H), 8.02 (s, 1H), 7.88 (s, 1H), 7.70 (s, 1H), 7.30 (d, *J* = 7.6 Hz, 1H), 7.23 (d, *J* = 7.6 Hz, 1H), 3.85 (t, *J* = 23.2 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (100MHz, D₂O) δ 152.26, 146.94, 146.89, 142.50, 141.08, 131.48, 131.21, 129.06, 128.70, 128.65, 125.62, 20.67; ³¹P NMR (162 MHz, D₂O) δ 17.32; HRMS (ESI): *m/z* calculated for C₁₃H₁₅NO₆P₂ [M+Na⁺]: 366.0267, found: 366.0261.

((4-methoxy-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonic acid) (3ea acid). Yield 96%, pale yellow powder, ¹H NMR (400 MHz, D₂O) δ 8.66 (s, 1H), 8.52 (t, *J* = 7.6 Hz, 1H), 8.04 (d, *J* = 7.6 Hz, 1H), 7.93 (s, 1H), 7.79 (d, *J* = 7.6 Hz, 1H), 7.21 – 7.06 (m, 1H), 6.99 (d, *J* = 2.4 Hz, 1H), 3.73 (s, 3H), 3.37 (t, *J* = 23.2 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ 158.19, 151.65, 147.05, 141.28, 133.06, 132.01, 128.73, 126.10, 123.83, 117.35, 116.41, 55.67; ³¹P NMR (162 MHz, D₂O) δ 16.11; HRMS (ESI): *m/z* calculated for C₁₃H₁₅NO₇P₂ [M+Na⁺]: 382.0216, found: 382.0217.

((4-nitro-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonic acid) (3ga acid). Yield 97%, yellow powder, ¹H NMR (400 MHz, D₂O) δ 8.83 (d, *J* = 4.8 Hz, 1H), 8.68 (t, *J* = 7.2 Hz, 1H), 8.42 (s, 2H), 8.22 (d, *J* = 7.2 Hz, 2H), 8.10 (d, *J* = 7.2 Hz, 1H), 3.64 (t, *J* = 23.2 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ 149.84, 147.39, 146.44, 141.84, 140.84, 133.12, 132.07, 129.06, 126.83, 126.33, 125.77; ³¹P NMR (162 MHz, D₂O) δ

13.77; HRMS (ESI): m/z calculated for $C_{12}H_{12}N_2O_8P_2$ [M+Na⁺]: 396.9961, found: 396.9964.

((2-(pyridin-2-yl)-4-(trifluoromethyl)phenyl)methylene)bis(phosphonic acid) (3ha acid). Yield 97%, yellow powder, ¹H NMR (400 MHz, D₂O) δ 8.80 (d, *J* = 4.8 Hz, 1H), 8.65 (td, *J* = 8.0, 1.5 Hz, 1H), 8.24 – 8.12 (m, 2H), 8.10 – 8.02 (m, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.87 (s, 1H), 3.58 (t, *J* = 23.6 Hz, 1H); ¹³C NMR (150 MHz, D₂O) δ 157.78, 149.32, 141.12, 136.83, 132.79, 131.71, 129.69 (q, *J* = 54.0 Hz, 1H), 128.69, 127.08, 124.80, 124.50, 122.47; ³¹P NMR (162 MHz, D₂O) δ 14.88; HRMS (ESI): *m/z* calculated for C₁₃H₁₂F₃NO₆P₂ [M+Na⁺]: 366.0267, found: 366.0261.

((5-methyl-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonic acid) (3ja acid). Yield 98%, pale yellow powder, ¹H NMR (400 MHz, D₂O) δ 8.64 (s, 1H), 8.50 (t, *J* = 7.6 Hz, 1H), 8.01 (d, *J* = 7.6 Hz, 1H), 7.90 (s, 1H), 7.74 (d, *J* = 7.6 Hz, 1H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.24 (s, 1H), 3.42 (t, *J* = 24.0 Hz, 1H), 2.25 (s, 3H); ¹³C NMR (100 MHz, D₂O) δ 152.19, 146.96, 141.16, 138.51, 132.24, 131.88, 131.62, 130.46, 128.66, 128.39, 125.83, 42.85 (t, *J*=123.0Hz), 19.97; ³¹P NMR (162 MHz, D₂O) δ 15.93; HRMS (ESI): *m/z* calculated for C₁₃H₁₅NO₆P₂ [M+Na⁺]: 366.0267, found: 366.0265.

((5-(tert-butyl)-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonic acid) (3ka acid). Yield 97%, yellow powder, ¹H NMR (600 MHz, D₂O) δ 8.67 (s, 1H), 8.52 (s, 1H), 8.14 – 7.97 (m, 2H), 7.92 (s, 1H), 7.51 (s, 1H), 7.40 (s, 1H), 3.52 (t, *J* = 21.6 Hz, 1H), 1.25 (s, 9H); ¹³C NMR (100MHz, D₂O) δ 157.72, 154.64, 154.59, 149.36, 143.56, 133.48, 131.14, 130.97, 128.12, 127.65, 36.95, 32.71, ³¹P NMR (162 MHz, D₂O) δ 18.48; HRMS (ESI): *m/z* calculated for C₁₆H₂₁NO₆P₂ [M+Na⁺]: 408.0736, found: 408.0733.

((5-fluoro-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonic acid) (3la acid). Yield 97%, pale yellow powder, ¹H NMR (400 MHz, D₂O) δ 8.83 (d, *J* = 5.2 Hz, 1H), 8.69 (t, *J* = 8.0 Hz, 1H), 8.22 (d, *J* = 8.0 Hz, 1H), 8.15 – 8.04 (m, 1H), 7.83 (d, *J* = 10.0 Hz, 1H), 7.63 (dd, *J* = 8.4, 6.0 Hz, 1H), 7.33 (t, *J* = 8.4 Hz, 1H), 3.59 (t, *J* = 22.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.00 (d, *J* = 246.0 Hz), 158.07, 149.01, 136.74, 131.88 (d, *J* = 8.4 Hz), 130.84 (dd, *J* = 16.0, 8.0 Hz), 124.71, 122.02, 118.07(d, *J* = 23.0 Hz), 114.67 (d, *J* = 21.0 Hz); ³¹P NMR (162 MHz, D₂O) δ 15.66; HRMS (ESI): *m/z* calculated for C₁₂H₁₂FNO₆P₂ [M+Na⁺]: 370.0016, found: 370.0013.

((5-acetyl-2-(pyridin-2-yl)phenyl)methylene)bis(phosphonic acid) (3na acid). Yield 95%, pale yellow powder, ¹H NMR (400 MHz, D₂O) δ 8.77 (s, 1H), 8.61 (s, 1H), 8.52 (s, 1H), 8.15 (d, *J* = 7.8 Hz, 1H), 8.07 – 7.94 (m, 2H), 7.61 (d, *J* = 7.8 Hz, 1H), 3.56 (t, *J* = 23.6 Hz, 1H), 2.65 (s, 3H); ¹³C NMR (100 MHz, D2O) δ 202.70, 150.88, 147.17, 141.60, 138.40, 136.37, 133.14, 131.78, 130.78, 128.79, 127.19, 126.50, 43.42 (t, J=125.0Hz), 26.55; 31P NMR (162 MHz, D2O) δ 14.99; HRMS (ESI): *m/z* calculated for C₁₃H₁₅NO₆P₂ [M+Na⁺]: 394.0216, found: 394.0213.

((4-(pyridin-2-yl)-[1,1'-biphenyl]-3-yl)methylene)bis(phosphonic acid) (3oa acid). Yield 98%, pale yellow powder, ¹H NMR (600 MHz, D₂O) δ 8.70 (d, *J* = 4.8 Hz, 1H), 8.55 (t, *J* = 7.2 Hz, 1H), 8.20 (s, 1H), 8.11 (d, *J* = 7.8 Hz, 1H), 7.95 (s, 1H), 7.70 (d, *J* = 7.2 Hz, 3H), 7.52 (d, *J* = 7.8 Hz, 1H), 7.45 (t, *J* = 7.2 Hz, 2H), 7.41 – 7.34 (m, 1H), 3.58 (t, *J* = 24.0 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ 158.81, 149.07, 140.49, 139.93, 139.35, 136.52, 130.73, 129.88, 128.72, 128.64 127.49, 126.91, 125.93, 124.41, 121.85; ³¹P NMR (162 MHz, D₂O) δ 15.78; HRMS (ESI): *m/z* calculated for C₁₃H₁₅NO₆P₂ [M+Na⁺]: 428.0423, found: 428.0421.

(benzo[h]quinolin-10-ylmethylene)bis(phosphonic acid) (3pa acid). Yield 95%, yellow powder, ¹H NMR (400 MHz, D₂O) δ 8.87 (d, *J* = 3.6 Hz, 2H), 7.78 (d, *J* = 7.2 Hz, 1H), 7.64 (d, *J* = 7.2 Hz, 1H), 7.44 (s, 1H), 7.32 – 7.00 (m, 2H); ¹³C NMR (100 MHz, D₂O) δ 159.33, 136.36, 126.64, 123.43, 122.21, 120.58, 119.17, 112.53; ³¹P NMR (162 MHz, D₂O) δ 15.94; HRMS (ESI): *m/z* calculated for C₁₄H₁₃NO₆P₂ [M+Na⁺]: 376.0110, found: 376.0112.

((3-(pyridin-2-yl)naphthalen-2-yl)methylene)bis(phosphonic acid) (3qa acid). Yield 96%, yellow powder, ¹H NMR (600 MHz, D₂O) δ 8.70 (d, *J* = 4.8 Hz, 1H), 8.55 (t, *J* = 7.2 Hz, 1H), 8.20 (s, 1H), 8.11 (d, *J* = 7.8 Hz, 1H), 7.95 (s, 1H), 7.70 (d, *J* = 7.2 Hz, 3H), 7.52 (d, *J* = 7.8 Hz, 1H), 7.45 (t, *J* = 7.2 Hz, 2H), 7.41 – 7.34 (m, 1H), 3.58 (t, *J*

= 24.0 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ 159.02, 148.81, 136.96, 132.71, 132.26, 131.00, 129.99, 128.06, 127.75, 126.75, 126.60, 125.61, 125.08, 124.99, 122.03; ³¹P NMR (162 MHz, D₂O) δ 16.35; HRMS (ESI): *m/z* calculated for C₁₆H₁₅NO₆P₂ [M+Na⁺]: 402.0267, found: 402.0263.

((1-(pyridin-2-yl)naphthalen-2-yl)methylene)bis(phosphonic acid) (3ra acid). Yield 96%, yellow powder, ¹H NMR (400 MHz, D₂O) δ 8.81 (s, 1H), 8.63 (t, *J* = 7.2 Hz, 1H), 8.05 (t, *J* = 8.4 Hz, 3H), 8.01 – 7.89 (m, 2H), 7.48 (t, *J* = 7.2 Hz, 1H), 7.38 (t, *J* = 8.4 Hz, 1H), 7.02 (d, *J* = 8.4 Hz, 1H), 3.26 (t, *J* = 24.8 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ 150.36, 147.36, 142.31, 131.96, 131.62, 131.34, 130.58, 128.44, 127.98, 126..86, 126.69, 124.22, 123.31; ³¹P NMR (162 MHz, D₂O) δ 15.33; HRMS (ESI): *m/z* calculated for C₁₆H₁₅NO₆P₂ [M+Na⁺]: 402.0267, found: 402.0265.

((2-(isoquinolin-3-yl)phenyl)methylene)bis(phosphonic acid) (3sa acid). Yield 96%, yellow powder, ¹H NMR (600 MHz, D₂O) δ 9.54 (d, *J* = 7.2 Hz, 1H), 8.42 (d, *J* = 11.4 Hz, 1H), 8.37 (d, *J* = 7.8 Hz, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 8.11 (t, *J* = 6.6 Hz, 1H), 7.92 (d, *J* = 6.6 Hz, 1H), 7.55 (t, *J* = 7.2 Hz, 1H), 7.50 (d, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.2 Hz, 1H), 3.53 (t, *J* = 22.8 Hz, 1H); ¹³C NMR (100 MHz, D₂O) δ 152.51, 151.87, 140.97, 136.18, 131.12, 130.77, 130.64, 128.13, 128.04, 127.66, 127.43, 127.37, 127.16, 126.65, 120.86; ³¹P NMR (162 MHz, D₂O) δ 16.16; HRMS (ESI): *m/z* calculated for C₁₆H₁₅NO₆P₂ [M+Na⁺]: 402.0267, found: 402.0265.

((6-(7,8-dimethoxyisoquinolin-3-yl)benzo[d][1,3]dioxol-5-

yl)methylene)bis(phosphonic acid) (3ta acid). Yield 98%, pale yellow powder, ¹H NMR (600 MHz, D₂O) δ 9.54 (d, *J* = 7.2 Hz, 1H), 8.22 (d, *J* = 15.0 Hz, 1H), 7.98 (d, *J* = 8.8 Hz, 1H), 7.91 (d, *J* = 8.8 Hz, 1H), 7.36 (s, 1H), 6.87 (s, 1H), 5.95 (s, 2H), 3.99 (s, 6H), 3.41 (t, *J* = 23.4 Hz, 1H); ¹³C NMR (150 MHz, CD₃OD) δ 150.95, 149.47, 147.40, 144.63, 142.08, 140.21, 133.59, 126.51, 125.38, 123.34, 122.30, 112.48, 110.76, 110.38, 102.20, 61.13, 56.19; ³¹P NMR (162 MHz, D₂O) δ 16.16; HRMS (ESI): *m/z* calculated for C₁₉H₁₉NO₁₀P₂ [M+Na⁺]: 506.0376, found: 506.0371.

((1-(pyrimidin-2-yl)-1H-indol-2-yl)methylene)bis(phosphonic acid) (5g acid). Yield 98%, yellow powder, ¹H NMR (600 MHz, D₂O) δ 8.82 (d, *J* = 4.8 Hz, 2H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.39 (d, *J* = 4.8 Hz, 1H), 7.25 – 7.11 (m, 2H), 7.00 (s, 1H), 5.02 (t, *J* = 25.2 Hz, 1H); ¹³C NMR (150 MHz, D₂O) δ 159.27, 155.74, 136.38, 129.84, 128.16, 123.49, 122.21, 120.56, 119.13, 112.51, 38.15 (t, *J*=121.5Hz); ³¹P NMR (162 MHz, D₂O) δ 18.20; HRMS (ESI): *m/z* calculated for C₁₃H₁₃N₃O₆P₂ [M+Na⁺]: 392.0172, found: 392.0178.

((2-(1H-pyrazol-1-yl)phenyl)methylene)bis(phosphonic acid) (5h acid). Yield 98%, pale powder ¹H NMR (400 MHz, D₂O) δ 7.99 (s, 1H), 7.91 (dd, J = 20.4, 7.2Hz, 2H), 7.52 (d, J = 7.2Hz, 1H), 7.43 (t, J = 7.2, 1H), 7.37 (d, J = 7.2Hz, 1H), 6.65 (s, 1H), 3.76 (t, J = 23.4 Hz, 1H); 13C NMR (100 MHz, D2O) δ 139.36, 137.37, 134.17, 133.01, 130.64, 130.24, 128.54, 127.44; ³¹P NMR (162 MHz, D2O) δ 15.91; HRMS (ESI): *m/z* calculated for C₁₀H₁₂N₂O₆P₂ [M+Na⁺]: 318.0171, found: 318.0178.

1.4 Mechanistic studies

1.4.1 Synthesis of 2-(pentadeuteriophenyl)pyridine(1a-d₅)

Step1: A two-neck 25 mL flask fitted with magnetic stirring bar, and low-temperature thermometer was charged with bromobenzene- D_5 (0.5 mL, 4.8 mmol) under argon atmosphere. Dry THF (12 mL) was added, and the solution was cooled to -78° C. To this solution was added *n*-butyllithium (3.6 mL, 1.6 M, 5.7 mmol) drop wise using slow addition pump over 30 minutes. The solution was stirred at -78° C for 2 h whereupon triisopropyl borate (1.3 g, 7.1 mmol) dissolved in 1.2 mL of dry THF was added drop wise to the reaction system. The solution was allowed to warm to room temperature overnight. After that the reaction was quenched with dilute HCl (20%, 8.4 mL), and the reaction mixture was stirred for 3 h at room temperature. The resulted biphasic solution was extracted with Et₂O (3 X 6 mL). The ether solution was washed twice with H₂O and concentrated by rotary evaporation. To the crude product, hexane 75 ml was added. The white (*d5*-phenyl)boronic acid solid precipitated in hexane was filtered and dried and used without further purification (409 mg, 67.8%) ^{S10}.

Step2: To a solution of 2-bromopyridine (200 mg, 1.26 mmol) in toluene (5 mL), ethanol (2 mL), and H₂O (5 mL) was added Na₂CO₃ (1.0 g, 9.43 mmol) followed by Pd(PPh₃)₄ (44mg, 0.038 mmol) and (d_5 -phenyl)boronic acid (209 mg, 1.65 mmol) under argon in a 25 mL two-necked flask. The reaction mixture was refluxed for 12 h, and then cooled to room temperature. To the reaction mixture was added aqueous NH₄Cl (10 mL), extracted by EtOAc for three times, dried over MgSO₄, and evaporated in vacuum to afford the crude product, which was purified by flash chromatography on silica gel to provide **1a**- d_5 Pale yellow oil (132 mg, 65.4%) ^{S1}. ¹H NMR (400 MHz, DMSO- d_6) δ 8.67 (d, J = 4.4 Hz, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.88 (t, J = 7.6 Hz, 1H), 7.39 – 7.31 (m, 1H).

1.4.2 Reversible D/H exchange

To a 15 ml oven-dried tube was added **1a** (0.19 mmol, 30.0 mg), $[Cp*RhCl_2]_2$ (6.0 mg 5 mol%), Ag₂SO₄(6.0 mg 10 mol%) in DCE (1.8 mL):CD₃OD(0.2ml), The tube was

sealed and stirred at 80 °C for 1h. After completion, the reaction mixture was concentrated in vacuo and purified by silica gel column chromatography (50:1 PE/EA) to provide the product [**D**_n]-1a (pale brown oil)., which was analyzed by ¹H NMR in DMSO- d_6 . H/D exchange of 1a at the ortho-position was observed by ¹H NMR (with 51% D) in the presence of the suggesting reversible C-H activation. ¹H NMR (600 MHz, DMSO- d_6) δ 8.67 (d, J = 3.8 Hz, 1H), 8.09 (d, J = 7.5 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.89 (t, J = 7.7 Hz, 1H), 7.50 (d, J = 6.5 Hz, 2H), 7.47 – 7.41 (m, 1H), 7.36 (d, J = 5.5 Hz, 1H).

1.4.3 Determination of intermolecular kinetic isotope effect (KIE)

To a 15 ml oven-dried tube was added **1a** (0.08 mmol, 12.5 mg), $[D_5]$ -**1a** (0.08 mmol, 12.7 mg), **2a** (0.20 mmol, 63.0mg), $[Cp*RhCl_2]_2$ (5.0 mg 5 mol%), Ag₂SO₄(5.0 mg 10 mol%) in DCE(3ml). The tube was sealed and stirred at 80 °C for 1h. After completion, the reaction mixture was concentrated in vacuo and purified by silica gel column chromatography to afford the mixture of **3aa** and $[D_4]$ -**3aa**, which was analyzed by ¹H NMR in DMSO-*d6*.1H NMR spectra of the **3aa** and $[D_4]$ -**3aa** determined the intramolecular KIE value equal to 1.5.

To a 15 ml oven-dried tube was added 1e (0.27 mmol, 50.0 mg), 1h (0.27 mmol, 60.0 mg), 2a (0.65 mmol, 204.0 mg), [Cp*RhCl₂]₂ (16.7 mg 5 mol%), Ag₂SO₄(16.8 mg 10 mol%) in DCE(4ml). The tube was sealed and stirred at 80 °C for 1h. After completion, the reaction mixture was concentrated in vacuo and purified by silica gel column chromatography to afford a mixture of 3ea and 3ha, which was analyzed by ¹H NMR in DMSO-*d6*.1H NMR spectra 3ea and 3ha were afforded in a ratio of 1:1.25.

(a) Synthesis of cyclometalled Rh(III) complex 6

The cyclorhodated complex was prepared according to the literature procedure ^{S11}. A 50 mL Schlenk flask was charged with [Cp*RhCl₂]₂ (50.0 mg, 0.081 mmol), NaOAc (29.1m g, 0.49 mmol), **1q**(41.5g, 0.20 mmol) and CH₂Cl₂ (20 mL). The mixture was stirred at room temperature for 15 h. The solution was filtered through Celite® and concentrated under reduced pressure. The product was then washed with hexane to afford a cyclometallated Rh(III) complex **6** as an orange solid. ¹H **NMR** (400 MHz, CDCl₃) δ 8.81 (d, *J* = 5.4 Hz, 1H), 8.17 (s, 1H), 8.12 (s, 1H), 7.99 (d, *J* = 8.1 Hz, 1H), 7.82 – 7.74 (m, 3H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.31 (t, *J* = 7.4 Hz, 1H), 7.24 – 7.19 (m, 1H), 1.66 (s, 15H).

(b) Complex 6-catalyzed coupling reaction

Complex 6 (5.0 mol %),1q (0.15mmol, 30 mg), Ag_2SO_4 (10mol %), 2a (0.18 mmol, 55.2mg) and DCE (3 mL) were added to a test tube. The reaction mixture was stirred at 80 °C for 8 h. The solvent was then removed under reduced pressure and the residue was purified by silica gel chromatography using DCM/MEOH (80:1) to afford the title compound 3qa (52%).

(c) Reaction of complex 6 with 2a

Complex 6 (0.04 mmol, 20.0 mg), Ag_2SO_4 (0.08mmol, 24.9mg), 2a (0.048 mmol, 16.0 mg) and DCE (3 mL) were added to a test tube. The reaction mixture was stirred at 80 °C for 8 h. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel chromatography using DCM/MEOH (80:1) to afford

the desired compound **3qa** in yield 61%.

SE. 2. Computational Studies.

In order to exploit the potential applications of aromatic bisphosphonates, we employed a virtual target screening system, termed IFPTarget,^{S12} to predict possible binding targets for the representative aromatic bisphosphonate acid **3aa**. The 3D structure of **3aa** acid was prepared as described previously. ^{S12-14} Using IFPTarget, **3aa** acid was screened against an established target library, ^{S12} which contains 11,863 protein structures covering 2842 unique targets. The possible target hits for **3aa** acid were ranked by a comprehensive index (Cvalue), ^{S12} which involves the predicted docking score (Vinascore), interaction fingerprint similarity (IFPscore), and the predicted binding affinity (IDscore). ^{S15} The top 1% target "hits" identified by IFPTarget are given in Table S2. Predicted results were analyzed using the Discovery Studio Visualizer. The figures for the predicted binding modes were made using PyMol program.

The molecular docking analyses for **3qa** acid with NDM-1, VIM-2, and TEM-1 were carried out using AutoDock Vina. The complex structures of NDM-1: Cephalosporins (PDB ID: 4RL0), ^{S16} VIM-2:2-(2-chloro-6-fluorobenzyl)-3-oxoisoin doline-4-carboxylic acid (compound 16) (PDB ID: 5LE1),^{S14} and TEM-1: (1*R*)-2-Phenylacetamido-2-(3-carboxyphenyl)ethyl boronic acid (PDB ID: 1ERO) ^{S17} were used as docking templates. All the water molecules and solvent molecules were removed. Gasteiger-Marsili charges were added to the protein model, and non-polar hydrogens were merged onto their respective heavy atoms. The grid centers were set as coordinates of [x, y, z = 3.0, 16.9, 41.6] for NDM-1, [x, y, z = 111.5, 72.1, 9.8] for VIM-2, and [x, y, z = 41.8, 37.0, 32.9] for TEM-1, and the grid size was as 23Å × 23Å × 23Å. The other parameters for Vina were set as default. The docking results were viewed using PyMol program.

SE. 3. Protein Production.

Recombinant forms of VIM-2 MBL (residues 27-266), NDM-1 MBL (residues 1-270), TEM-1 SBL (residues 24-286), and KPC-2 SBL (residues 26-289) were produced in *E. coli Transetta (DE3)* cells (Novagen) at 37 °C using LB medium supplemented with 50 µg/ml ampicillin and 50 µg/ml chloramphenicol. Cells were grown until the OD₆₀₀ reached 0.6-0.7. At this point the temperature was lowered to 30 °C (for VIM-

2), 20 °C (for NDM-1), 27 °C (for TEM-1) or 20 °C (for TEM-1), expression was induced with IPTG (0.5 mM final concentration) and the cells were further incubated for 18-20 hours. Cells were harvested by centrifugation (15min, 4000 rmp) and were resuspended in lysis buffer A (20 mM Tris-HCl, pH 8.0, 250 mM NaCl) supplemented with EDTA-free protease-inhibitor, and then lysed using an ultrahigh-

pressure homogenizer (JNBIO). The cellular debris was removed by centrifugation of the lysate at 15,000 rpm for 30 min; the supernatant was then loaded onto a Ni-NTA column (Roche), followed by extensive washing using buffer B (20 mM Tris–HCl, pH 8.0, 250 mM NaCl, 5 mM imidazole) to remove nonspecifically binding proteins. The target proteins were eluted with buffer C (20 mM Tris–HCl, pH 8.0, 250 mM NaCl, 250 mM imidazole). Fractions containing the purified enzyme were concentrated using Amicon Ultra 10K (Millipore), and then desalted using a HiTrap Desalting column (GE Heaithcare) into reaction buffer (VIM-2/NDM-1: 20 mM Tris-HCl, pH 7.5, 200 mM NaCl, 0.5 mM TCEP; TEM-1/KPC-2: 50 mM Phosphate, pH 7.0) for enzyme kinetic analyses. The purified enzymes were concentrated by centrifugal ultrafiltration and stored at -80 °C. All purification steps were identified *via* 12% SDS-PAGE, and the concentrations of the purified proteins were determined through a NanoDrop 2000 spectrophotometer (Thermo Scientic).

SE. 4. Inhibition, Competitive, Reversibility, and Cellular Assays.

Assays were performed using a Thermo microplate reader (Varioskan LUX) and were

performed at room temperature (24-25 °C). The assay buffer for VIM-2 and NDM-1

is: 50 mM HEPES-NaOH (~pH 7.2), 1 µg/mL BSA (to minimize the denaturation of the enzyme), 1 µM ZnSO₄, and 0.1% Triton X-100 (to large extent exclude the possibility that compounds form large colloid-like aggregates that sequester and thereby inhibit enzymes). The assay buffer for KPC-2 and TEM-1 is: 50 mM phosphate, pH 7.0, 1 µg/mL BSA, and 0.1% Triton X-100. The activities of VIM-2, NDM-1, KPC-2, and TEM-1 were determined using the fluorescent substrate FC-5 ^{S14, S18, S19}. Hydrolysis of FC5 was monitored by following the variation in fluorescence at excitation 380 nm and emission at 460 nm, respectively. In all tests, 96 well flat bottom black plates were used. The details are described as follows.

Inhibition Assays.

In the inhibition assays, the final concentration of the substrate FC-5 is 5 μ M, and the concentrations of VIM-2, NDM-1, KPC-2, and TEM-1 are 0.2 nM, 0.2 nM, 2 nM, and 10nM, respectively. Except where noted, the compounds for inhibition assays were prepared in 100 mM DMSO stock solutions. For IC₅₀ determination, compounds were 3-fold diluted from 600 μ M. The IC₅₀ values (concentration required to affect 50% inhibition of enzyme activity) for all aromatic bisphosphonates were determined by preincubation of the tested compound with the appropriate amount of enzymes in the assay buffer for 10 min (NDM-1 and VIM-2) or 4h (KPC-2 and TEM-1) at room temperature, prior to the initiation of the reactions by the addition of the substrates. The bisphosphonate ester compounds (**3aa-3ta** and **5a-5j**, Scheme 1-2) were initially
tested against VIM-2, NDM-1, KPC-2, and TEM-1 at 100 μ M; for compounds showing inhibition >50% at 100 μ M, the IC₅₀ values were determined. The fluorescence intensity was recorded every 60 seconds. All assays were carried out in triplicates.

Substrate Competitive Assays.

The calibration curve of fluorescence values verus product concentrations (or the FC-5 substrate ^{S18,S19}) was first determined. The saturated enzymes were reacted with FC-5 with different concentration (from 100 μ M ~ 0.195 μ M, 2-fold dilutions) for 24 h at

 $4 \,^{\circ}$ C in the assay buffer to obtain the calibration curve (the fluorescence intensity was obtained every 60 seconds). Then, the catalytic abilities of NDM-1 or VIM-2 in the absence and the presence of **3qa** acid were then determined. For NDM-1, treating

with different concentrations of **3qa** acid (0 μ M, 3 μ M, 10 μ M, 30 μ M, and 90 μ M), the enzyme kinetic values were determined using the FC-5 substrate. Similarly, the enzyme kinetic values were determined for VIM-2 at different concentrations of **3qa** acid (0 μ M, 1 μ M, 3 μ M, 10 μ M, and 30 μ M).

The Jump-Dilution Assays.

The jump-dilution method ^{S20} was used to determine the reversibility of MBL/SBL inhibition by **3qa** acid. *L*-captopril and EDTA were used as controls. 170 μ M **3qa** acid (10-fold the IC₅₀ value to NDM-1), 25 μ M EDTA (10-fold the IC₅₀ value to NDM-1), or 500 μ M L-captopril (10-fold the IC₅₀ value to NDM-1) were preincubated with 10 nM NDM-1 (100-fold the concentration of NDM-1 used in inhibition assays) for 30 min at room temperature (24-25 °C). Similarly, 38 μ M **3qa** acid (10-fold the IC₅₀ value to VIM-2), 25 μ M EDTA (10-fold the IC₅₀ value to VIM-2), or 20 μ M *L*-captopril (10-fold the IC₅₀ value to VIM-2) were preincubated with 10 nM VIM-2 (100-fold the IC₅₀ value to VIM-2 used in the inhibition assays). The samples are then rapidly diluted 100-fold into an assay solution, and the enzyme activities are measured.

Microdilution Broth Minimum Inhibitory Concentrations (MICs)

Strains of *E. coli* Transetta containing plasmids pET28-lacUV5-VIM-2 (*E. coli*-VIM-2) and pET28-lacUV5 (as control) were used to assess the cellular activities of the inhibitors. The pET28-lacUV5 and pET28-lacUV5-VIM-2 plasmids were obtained by multi-step gene cloning. Single colonies of the *E. coli*-VIM-2 strain on Mueller Hinton (MH) agar plates were transferred to 5 mL of MH liquid medium, and grown at 37 °C to an OD₆₀₀ of ~0.6. The MICs of meropenem in the absence or presence of **3qa acid** and **5g acid** were determined

according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. The concentrations of *E. coli*-VIM-2 and *E. coli* strains were diluted to ~10⁷ colony forming units (CFU) per mL in the MH medium, then transferred to the microtiter plates, and treated with meropenem (final concentrations of 64 mg/L to 0.125 mg/L in 2-fold dilution) or/and the inhibitors (final concentrations of 100 μ M, 50 μ M, 25 μ M, and 10 μ M). The microtiter plates were incubated for

16-20 h at 37 $^{\circ}$ C and visually evaluated for bacterial growth. Each determinate was performed in duplicate.

SE. 5. ITC Analyses.

ITC binding assays were carried out using a MicroCal ITC200 calorimeter (GE Healthcare) at 25 °C. The **3qa** acid (500 μ M or 600 μ M) was titrated with NDM-1 (60 μ M), VIM-2 (50 μ M), or TEM-1 (50 μ M), separately. In the calorimeter cell and syringe only contained <1% DMSO. The system was equilibrated until the cell temperature reached 25 °C. All titrations were conducted using a preliminary injection of 0.2 μ L **3qa** acid (500 μ M or 600 μ M) and then a series of 19 individual injections of 2 μ L at time intervals of 150 s. The titration cell was continuously stirred at 750 rpm. The obtained curves were fitted to a single binding site model using ITC data analysis module of Origin 7.5 (OriginLab).

Supplementary Tables Table S1. Reaction Optimization^{*a*}

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		nditions			/
Entry	Catalyst	Ag Salt	Solvent	<i>T</i> [℃]	Time[h]	Yield ^b
1	[Cp*RhCl ₂] ₂	AgSbF ₆	DCE	80	24	81%
2	$Pd(OAc)_2$	AgSbF ₆	DCE	80	24	N.R.
3	[Ru(<i>p</i> -cymene)Cl ₂] ₂	AgSbF ₆	DCE	80	24	N.R.
4	Cp*Co(CO)I ₂	$AgSbF_6$	DCE	80	24	N.R.
5	[Cp*Co(CH ₃ CN) ₃][SbF ₆] ₂	AgSbF ₆	DCE	80	24	N.R
6	$[Cp*IrCl_2]_2$	AgSbF ₆	DCE	80	24	20%
7	[Cp*RhCl ₂] ₂	AgOAc	DCE	80	24	N.R
8	[Cp*RhCl ₂] ₂	Ag_2SO_4	DCE	80	24	91%
9	[Cp*RhCl ₂] ₂	AgNO ₃	DCE	80	24	N.R
10	[Cp*RhCl ₂] ₂	Ag ₂ CO ₃	DCE	80	24	N.R
11	[Cp*RhCl ₂] ₂	Ag_2SO_4	DCE	80	12	93%
12	[Cp*RhCl ₂] ₂	Ag_2SO_4	DCE	60	12	80%
13	[Cp*RhCl ₂] ₂	Ag_2SO_4	DCE	40	12	56%
14	[Cp*RhCl ₂] ₂	Ag_2SO_4	THF	80	12	45%
15	[Cp*RhCl ₂] ₂	Ag_2SO_4	MeOH	80	12	88%
16	[Cp*RhCl ₂] ₂	Ag_2SO_4	CH ₃ CN	80	12	21%
17	[Cp*RhCl ₂] ₂	Ag_2SO_4	Dioxane	80	12	N.R

^{*a*} Reaction conditions: 1 (0.2 mmol), 2a (0.24 mmol), [Cp*RhCl₂]₂ (5mol %), AgSO₄ (10mol %), DCE 2ml under air; ^{*b*} Isolated yields.

3aa acid

Rank	Target Name	PDB	Cvalue	IFPscore	Vinascor e	IDscore	No. of IFPs
1	Geranylgeranyl pyrophosphate synthase GGPS	3LDW	16.04	1.00	-7.40	7.17	5
2	Human farnesyl pyrophosphate synthase FPPS	2F9K	15.91	0.98	-8.60	7.09	8
3	HIV-1 reverse transcriptase	1VRU	15.55	1.00	-8.30	5.32	8
4	Polyprotein	2D3Z	15.19	1.00	-6.00	5.75	5
5	Rat phosphodiesterase 10A	3LXG	15.10	1.00	-5.80	5.65	3
6	Coagulation Factor X	4BTT	15.04	1.00	-6.00	5.34	5
7	Bromodomain-containing protein 4 BRD4	4J0S	15.04	1.00	-6.60	4.98	5
8	cAMP-specific 3',5'-cyclic phosphodiesterase PDE7A	3G3N	14.97	1.00	-6.10	5.11	3
9	Bromodomain-containing protein 4 BRD4	3U5L	14.96	1.00	-6.20	5.02	4
10	Bromodomain-containing protein 4 BRD4	3MXF	14.89	1.00	-6.60	4.59	4
11	Glutaminyl cyclase	4MHZ	14.87	1.00	-5.30	5.32	4
12	Endo-1,4-beta-xylanase d	1UX7	14.82	1.00	-4.80	5.49	3
13	Bromodomain-containing protein 4 BRD4	4F3I	14.79	1.00	-6.70	4.25	4
14	Bromodomain-containing protein 4 BRD4	4QZS	14.76	1.00	-6.20	4.49	4
15	Bromodomain-containing protein 4 BRD4	4BW1	14.74	1.00	-6.20	4.43	4
16	Mycobacterium tuberculosis	40WM	14.73	1.00	-6.10	4.47	4
17	Polymerase PA	4AWF	14.70	1.00	-5.50	4.74	4
18	Transthyretin	1E4H	14.67	1.00	-5.60	4.61	3
19	Bromodomain-containing protein 4 BRD4	4MEQ	14.66	1.00	-5.90	4.40	4
20	Mycobacterium tuberculosis	40WO	14.63	1.00	-5.90	4.31	3

21	Bromodomain testis-specific protein	4FLP	14.62	1.00	-6.30	4.06	4
22	RNA-directed RNA polymerase	4EO6	14.53	1.00	-6.00	3.99	4
23	Integrase	4AH9	14.53	1.00	-6.00	3.98	3
24	Lactoylglutathione lyase	4KYK	14.51	1.00	-5.50	4.23	3
25	N-terminal endonuclease domain of Bunyaviridae RNA Polymerases	2XI7	14.46	0.96	-5.30	5.97	4
26	Human farnesyl pyrophosphate synthase FPPS	2F89	14.43	0.93	-6.50	6.21	10
27	L-lactate dehydrogenase A chain	4I9U	14.41	1.00	-5.40	4.03	4
28	Bromodomain-containing protein 4 BRD4	4070	14.40	1.00	-5.40	4.00	3
29	PA-I galactophilic lectin	4A6S	14.38	1.00	-5.10	4.13	5
	CAMP and cAMP-inhibited cGMP						
30	3',5'-cyclic phosphodiesterase 10A, PDF10A	3WS9	14.36	1.00	-5.10	4.08	3
31	Human peroxiredoxin-5	4MMM	14 28	1.00	-5.00	3 93	6
32	Wild type human transthyretin	3NEE	14.26	1.00	-5.60	3.51	4
33	Thrombin alpha	1MU8	14.25	0.93	-6.80	5.75	6
34	Vp39	1B42	14.23	0.90	-7.30	6.61	4
35	Transthyretin	1E5A	14.22	1.00	-4.90	3.83	4
36	Carbonic anhydrase 2	1H4N	14.20	0.94	-7.30	4.65	5
37	Metallo-β-lactamase NDM-1	4EXS	14.17	0.91	-7.10	6.19	3
38	Polymerase protein PA	4E5G	14.06	0.96	-5.40	4.86	4
39	Polymerase protein PA	4AVG	14.02	0.93	-6.30	5.45	7
40	P-30 protein (T89N/E91A)	2GMK	13.99	1.00	-4.20	3.64	4
41	Lactoylglutathione lyase	4KYH	13.98	0.94	-6.40	4.91	5
42	Serum albumin	1GNJ	13.94	0.88	-8.60	6.08	5
43	Human farnesyl pyrophosphate synthase FPPS	2F94	13.92	0.87	-8.00	6.80	9
44	Acetylcholine-binding protein	2XZ5	13.90	0.88	-7.30	6.77	3
45	Leshmaniasis major Farnesyl diphosphate synthase	4K10	13.89	0.94	-6.30	4.42	5
46	Antibody fab fragment	1CT8	13.88	0.86	-8.20	6.83	10
47	Metallo-beta-lactamase CphA	3IOG	13.87	0.95	-6.10	4.27	5
48	PDE4B	2QYL	13.84	0.90	-6.30	6.16	4
49	Transthyretin	4ABV	13.79	1.00	-4.20	3.10	3

50	Metallo-β-lactamase VIM-2	4PVT	13.71	0.89	-8.00	5.18	5
51	Abscisic acid receptor PYL9/RCAR9	3W9R	13.70	0.92	-6.50	4.97	4
52	Beta-lactamase II	1HLK	13.68	0.90	-7.40	5.06	4
53	Dihydroorotase	2EG7	13.66	0.90	-6.70	5.27	8
54	Farnesyl pyrophosphate synthase	4DWB	13.65	0.86	-7.90	6.41	7
55	Nucleotide binding domain of the	3LLM	13.63	0.92	-5.80	5.21	8
56	PEPCK-Mn2 ⁺	2RKD	13.62	0.92	-6.10	5.01	6
57	HIV-1 RNase H p15	3HYF	13.62	0.92	-5.60	5.29	6
58	Proto-oncogene tyrosine- transferase src	104R	13.61	0.93	-6.40	4.30	9
59	Transferase	1C8K	13.61	0.86	-7.70	6.50	5
	Ectonucleotide						
60	pyrophosphatase/phosphodiesterase family member 2	3WAV	13.52	0.88	-6.70	6.11	3
61	HIV-1 IN core domain	3LPT	13.51	0.90	-6.70	5.05	4
62	Human nicotinamide phosphoribosyltransferase	3DKJ	13.45	0.90	-6.70	5.00	12
63	Proto-oncogene tyrosine- transferase src	1040	13.41	1.00	-3.60	2.45	5
64	Fatty acid binding protein, adipocyte	1TOW	13.40	0.88	-8.30	4.82	5
65	Dodecin	2CCC	13.40	0.88	-7.00	5.61	3
66	Cystic fibrosis transmembrane conductance regulator	1R0X	13.37	0.88	-6.60	5.78	7
67	Bromodomain-containing protein 4 BRD4	3P5O	13.37	0.90	-6.30	4.90	4
68	Intracellular B30.2 Domain of BTN3A1	4N7U	13.36	0.94	-5.40	3.86	4
69	HIV-1 reverse transcriptase	3LP0	13.34	0.91	-4.90	5.30	3
70	1-Deoxy-D-xylulose 5-phosphate reductoisomerase	3R0I	13.33	0.91	-5.60	4.83	5
71	Rna polymerase	2HAI	13.33	0.88	-7.30	5.23	5
72	Human BRD4	2YEL	13.32	0.90	-6.50	4.66	4
73	Genome polyprotein	4JU7	13.30	0.90	-6.70	4.49	4
74	X Secretory Phospholipase A2	4UY1	13.29	0.88	-7.60	4.94	3
75	Heparin-binding growth factor 1	3UD7	13.28	0.94	-4.90	3.94	6
76	Polymerase protein PA	4E5F	13.28	0.91	-5.30	4.89	3

77	Hiv-1 reverse transcriptase	1RTI	13.27	0.86	-7.40	5.77	5
78	Bromodomain BRD2	4A9M	13.26	0.90	-6.60	4.44	4
79	Pseudomonas aeruginosa Madelate racemase mutant K166R	1MDL	13.25	0.90	-5.30	5.19	3
80	Interleukin-13 receptor subunit alpha-1	4HWB	13.24	0.90	-6.70	4.33	3
81	Fatty acid-binding protein	1HMT	13.24	0.90	-7.10	4.07	3
82	14-3-3 Protein sigma	4DHP	13.24	0.91	-5.50	4.65	6
83	Soluble epoxide hydrolase 2	3WKD	13.22	0.88	-7.20	5.02	3
84	Dihydroorotase	1XGE	13.22	0.89	-6.40	4.91	6
85	Farnesyl pyrophosphate synthase	4GA3	13.20	0.82	-8.00	6.86	8
86	Succinyl-CoA:acetate coenzyme A transferase	4EU3	13.20	0.92	-5.20	4.42	4
87	14-3-3 Protein sigma	3T0M	13.17	0.93	-5.20	3.83	4
88	Methionine aminopeptidase	2Q93	13.14	0.84	-5.90	6.91	5
89	Glycogen phosphorylase	1GGN	13.14	0.85	-7.20	6.02	7
90	Farnesyl pyrophosphate synthase	4DZW	13.14	0.83	-8.40	6.01	9
91	Conserved hypothetical protein	2GL0	13.13	0.83	-8.20	6.21	8
92	Bromodomain-containing protein 4 BRD4	3U5J	13.13	0.88	-7.10	4.84	3
93	Human Peroxiredoxin-5	4K7I	13.12	0.93	-5.00	3.82	6
94	AmpC β-lactamase	40KP	13.09	0.92	-5.90	3.70	4
95	14-3-3 Protein sigma	4DHR	13.08	0.90	-5.40	4.67	5
96	Renin	4GJ8	13.06	0.86	-8.10	4.78	5
97	6-Phosphogluconate dehydrogenase	4GWK	13.05	0.92	-4.30	4.56	4
98	Geranylgeranyl pyrophosphate synthetase	2Z50	13.04	0.89	-6.70	4.24	6
99	Botulinum neurotoxin A	4ELC	13.02	0.90	-6.20	4.03	4
100	Replication protein A 70 kDa DNA-binding subunit	4LUV	13.02	0.90	-4.20	5.24	3
101	Ribonucleoside-diphosphate	3RSR	13.01	0.84	-7.20	5.75	7
102	CREB-binding protein	2L84	12.98	0.90	-6.10	4.00	3
103	Glycogen phosphorylase B	8GPB	12.97	0.85	-7.80	5.04	5
104	D-alanyl-D-alanine carboxypeptidase	2Y4A	12.97	0.88	-6.40	4.84	6
105	Human phosphodiesterase 4d	3G58	12.96	0.83	-6.40	6.55	4
106	Fucose-binding lectin PA-IIL	2JDU	12.96	0.90	-5.20	4.47	4

	(G24N)						
107	Transthyretin	3CFT	12.94	0.86	-6.00	5.75	4
108	Human MTH1 protein	4N1T	12.94	0.83	-6.20	6.62	6
100	Dengue virus ns5 RNA dependent	217W	12.04	0.00	5.00	1 5 1	6
109	RNA polymerase	2J / W	12.94	0.90	-3.00	т.5т	0
110	Hiv-1 reverse transcriptase	1IKW	12.93	0.82	-8.30	5.95	7
111	Farnesyl pyrophosphate synthase	4E1E	12.92	0.83	-7.70	6.00	7
112	Ribonuclease 2	1HI3	12.91	0.90	-5.40	4.23	7
113	14-3-3 Protein sigma	4DHN	12.89	0.90	-5.30	4.25	5
114	14-3-3 Protein sigma	4DHO	12.89	0.89	-6.00	4.27	4
115	Integrase	4NYF	12.88	0.90	-5.90	3.85	4
116	Polymerase PA	4MK1	12.88	0.89	-5.60	4.32	5
117	PDE2a catalytic domain	4D09	12.86	0.86	-6.50	5.24	5
118	Hiv-2 protease	6UPJ	12.85	0.88	-6.20	4.64	3

Cpd	Chemical structure	mical structure $IC_{50} (\mu M) / pIC_{50} / s.e. logIC_{50}^{a}$								
ID	Chemiear Structure	NDM-1	VIM-2	TEM-1	KPC-2					
L-captopril	HS (S) HO HO	46.38 / 4.33 / 0.088	0.74 / 6.13 / 0.120	>400 / < 3.40 / ~	>400 / < 3.40 / ~					
EDTA		2.07 / 5.68 / 0.06	2.35 / 5.63 / 0.042	>400 / < 3.40 / ~	>400 / < 3.40 / ~					
3aa acid	N POH POH POH POH OH	32.04 / 4.49 / 0.025	11.07 / 4.96 / 0.029	68.39 / 4.16 / 0.040	>400 / < 3.40 / ~					
3ba acid	N POH POH BOH OH	>400 / <3.40 / ~	7.65 / 5.12 / 0.074	126.30 / 3.90 / 0.065	>400 / <3.40 / ~					
3da acid	N POH OH POH OH OH	117.4 / 3.93 / 0.11	8.89 / 5.05 / 0.059	>400 / <3.40 / ~	>400 / <3.40 / ~					
3ea acid	N POH POH POH NOH	75.59 / 4.12 / 0.045	14.58 / 4.84 / 0.047	>400 / <3.40 / ~	>400 / <3.40 / ~					
3ga acid		78.31 / 4.11 / 0.036	14.08 / 4.85 / 0.065	>400 / <3.40 / ~	>400 / <3.40 / ~					
3ha acid		97.08 / 4.01 / 0.032	4.32 / 5.36 / 0.096	137.0 / 3.86 / 0.04	>400 / <3.40 / ~					
3ja acid		91.13 / 4.04 / 0.038	8.63 / 5.06 / 0.068	>400 / <3.40 / ~	>400 / <3.40 / ~					

Table S3. The inhibition activity of aromatic bisphosphonates against the clinically relevant β -lactamases NDM-1, VIM-2, TEM-1 and KPC-2.

3ka acid	N POH POH OOH	>400 / <3.40 / ~	7.86 / 5.10 / 0.041	>400 / <3.40 / ~	>400 / <3.40 / ~
3la acid	Р ОН Р ОН Р ОН Р ОН Р ОН В ОН Б ОН	123.8 / 3.91 / 0.037	2.26 / 5.65 / 0.032	>400 / <3.40 / ~	>400 / <3.40 / ~
3na acid		179.8 / 3.75 / 0.087	5.10 / 5.29 / 0.036	>400 / <3.40 / ~	>400 / <3.40 / ~
30a acid	N POH POH POH OH	55.64 / 4.26 / 0.021	36.53 / 7.44 / 0.062	0.93 / 6.03 / 0.056	>400 / <3.40 / ~
3pa acid	N BOH POH POH POH POH OH	268.3 / 3.57 / 0.18	19.84 / 4.70 / 0.072	145.50 / 3.84 / 0.061	>400 / <3.40 / ~
3qa acid		17.11 / 4.77 / 0.044	3.78 / 5.42 / 0.041	1.73 / 5.76 / 0.055	>400 / <3.40 / ~
3ra acid		120.6 / 3.92 / 0.076	4.57 / 5.34 / 0.053	1.18 / 5.93 / 0.24	>400 / <3.40 / ~
3sa acid	HO OH P-OH N OH	16.24 / 4.79 / 0.036	2.47 / 5.61 / 0.077	38.9 / 4.41 / 1.46	>400 / <3.40 / ~
3ta acid		17.23 / 4.76 / 0.045	5.36 / 5.27 / 0.045	1.72 / 5.77 / 0.16	>400 / <3.40 / ~
5g acid	N POH N POH N POH O OH	15.00 / 4.82 / 0.030	5.58 / 5.25 / 0.043	11.52 / 4.94 / 0.040	>400 / <3.40 / ~

5h acid	N POH OH POH OH	>400 / <3.40 / ~	3.92 / 5.41 / 0.070	86.39 / 4.06 / 0.59	>400 / <3.40 / ~
---------	--------------------------	------------------	------------------------	------------------------	---------------------

^{*a*} The method for measuring IC_{50}/pIC_{50} (n=3) values is described in Experimental Section; IC_{50} curves are given in Fig. S5-7.

		Inhibition%@100 µM					
ID	Chemical Structure		$(IC_{50}(\mu M) / pI)$	C_{50} / s.e pIC ₅₀) ^{<i>a</i>}			
		NDM-1 MBL	VIM-2 MBL	TEM-1 SBL	KPC-2 SBL		
3 aa		30.32 ± 0.70	26.49 ± 23.69	2.23 ± 1.58	24 ± 1.60		
3ba		18.78±0.04	32.05±12.05	65.22±2.89 (79.5 / 4.10 / 0.152)	30.56±6.15		
3ca		53.74±1.05 (>100)	16.01±10.72	36.63±8.49	41.11±8.78		
3da		25.5±1.00	44±0.39	3.65±0.15	45.47±7.16		
3ea		32.18±0.29	47.6±27.67	39±9.67	48±0.06		
3fa		33.65±0.14	52.16±1.48	21.37±2.30	40.77±8.30		
3ga		33.88±0.73	26.5±26.54	10.72±8.90	60.11±2.80		
3ha	F_3C	16±2.22	41.6±0.05	9.15±11.72	29.92±7.38		

Table	S4 .	The	inhibitory	activities	of	aromatic	bisphosphonates	3aa-5ja	against
NDM-	1. V	M-2.	TEM-1 an	d KPC-2.					

3ia	46±1.58	33.53±20.67	64.41±10.60 (>100)	9.46±7.65
3ja	8.81±0.54	13.08±2.8	45.83±0.94	5.79±6.80
3ka	48.95±1.19	42.99±5.09	19.31±1.21	42.32±3.05
3la	16.05±0.79	34.48±3.06	27.36±12.62	42.07±8.60
3ma	56.04±1.95	39.33±25.8	3.40±0.07	42.48±4.99
3na	22.08±0.34	38.6±0.04	47.13±8.80	26±0.32
3oa	37.32±1.99	5.21±2.31	95.22±1.46 (133 / 3.876 / 0.209)	38.35±7.45
Зра	39.3±7.47	28.6±0.01	56.26±8.42 (>100)	49.31±1.94
3qa	19.55±6.67	7.5±9.90	45.73±6.34	47.36±2.63
3ra	33.16±5.43	47.00±0.09	27.53±1.05	15.35±2.85

3sa	47.58±3.56	60.66±3,26	47.57±12.04	45±2.65
3ta	46.6±11.10	45.25±14.41	39.87±14.02	3.5±0.89
3ta ¹	72.67 ± 0.52 (42.2 / 4.37 / 0.044)	98.02±0.31 (7.94 / 5.1 / 0.082)	96.32±2.19 (1.10 / 5.96 / 0.068)	18±0.27
3ba	39.96±4.68	25.3±23.2	76.3±4.59 (119 / 3.92 / 0.064)	15±9.38
3ca	36.93±6.04	54.17±10.37	37.7±7.51	60.61±0.07 (>100)
5a	44.14±1.75	28.16±3.13	9.6±6.08	13.36±11.92
5b	46.47±10.71	8.71±6.83	58.42±9.70	36±0.60
5c	36.87±4.19	29.6±0.01	24.21±12.27	34.5±22.00
5d	48.93±4.26	44.96±4.03	19.19±8.41	47.2±0.84
5e	52.32 ± 6.64 (>100)	78.12±3.92	30.6±14.00	15.33±5.75

^{*a*}The method for measuring mean \pm SD (n=3) values is described in the Supplementary Methods.

Assay	Inhibitor	Meropenem	MIC (µg/mL)	
No.	(Concentration)		E. coli-VIM-2	E. coli
1	-	+	16	< 0.125
2	3qa acid (100 µM)	-	>64	>64
3	5g acid (100 µM)	-	>64	>64
4	3qa acid (100 µM)	+	4	< 0.125
5	3qa acid (50 µM)	+	4	< 0.125
6	3qa acid (25 µM)	+	16	< 0.125
7	3qa acid (10 µM)	+	16	< 0.125
8	5g acid (100 µM)	+	4	< 0.125
9	5g acid (50 µM)	+	4	< 0.125
10	5g acid (25 µM)	+	16	< 0.125
11	5g acid (10 µM)	+	16	< 0.125

Table S5. MICs of meropenem in the absence or presence of **3qa acid** and **5g acid**against VIM-2-producing *E. coli* transetta strain.

Supplementary Figures

Figure S1. Chemical structures of representative clinically useful bisphosphonates.

Figure S2. The clinically useful SBL inhibitors, representative MBL inhibitors and MBL/SBL dual inhibitors.

Figure S3. Proposed mechanism for the insertion reaction.

Figure S4. Comparison of the predicted binding mode of **3aa** acid based on an NDM-1:L-captopril (PDB ID: 4EXS)^{S21} complex structure, revealing that **3aa** acid likely has a similar binding mode to that of L-captopril.

Figure S5. Comparison of the predicted binding mode of **3aa** acid based on an VIM-2:ML302F (PDB ID: 4PVT) ^{S22} complex structure, revealing that **3aa** acid likely has a similar binding mode to that of ML302F.

Figure S6. The IC₅₀ curves of **3aa** acid with (a) NDM-1, (b) VIM-2, (c) TEM-1, and (d) KPC-2.

Figure S7. The IC₅₀ curves of all the compounds in Table 1 with NDM-1.

Figure S8. The IC_{50} curves of all the compounds in Table 1 with VIM-2.

Figure S9. The IC_{50} curves of all the compounds in Table 1 with the TEM-1 SBL.

Figure S10. Testing the reversibility of **3qa** acid inhibiting (a) NDM-1 and (b) VIM-2. *L*-captopril and EDTA were used as controls (the details please see Supplementary Experimental Section SE.4). The samples of inhibitors and NDM-1/VIM-2 were preincubated for 30 min at room temperature, then rapidly diluted 100-fold into an assay solution, and finally determined the enzyme activities.

Figure S11. Testing how **3qa acid** affects the activity of NDM-1, VIM-2, and TEM-1. (a) The results reveal that **3qa acid** inhibits NDM-1 probably through the partially mixed inhibition type, but which inhibits VIM-2 probably in a substrate-competitive manner. (b) The inhibitory activities were tested after preincubation of **3qa acid** with TEM-1 for 10 min, 1 hour, 4 hours, and 24 hours, respectively. The results revealed that **3qa acid** manifests time-dependent inhibition with TEM-1.

Figure S12. The predicted binding mode of 3qa acid with NDM-1.

Figure S13. The predicted binding mode of 3qa acid with VIM-2.

Figure S14. The predicted binding mode of 3qa acid with TEM-1.

¹H NMR, ¹³C NMR, ³¹P NMR of Compounds

0YL-170331-2

-19.448

Compound 3ba

Compound 3ca

-18.692

68

Compound 3ea

60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 f1 (ppm) 75 70 65

Compound 3fa

0YL-170406-2

-17.848

Compound 3ha

Compound 3ja

Compound 3ka

OYL-170406-5

-19.464

Compound 3la

Compound 3ma

OYL-170414-5

Compound 3na

Compound 30a

OYL-170414-3

-19.265

Compound 3pa

Compound 3qa

OYL-170414-2

-19.241

Compound 3ra

Compound 3sa

0YL-170619-05

-19.330

Compound 3ta1

OYL-170726-2

75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 f1 (ppm)

Compound 3ab

Compound 3ac

0YL-170510-01

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

-20.043

Compound 5a

Compound 5b

0YL-170426-02

-19.628

Compound 5c

Compound 5d

Compound 5f

-18.787

Compound 5g

Compound 5h

OYL-170510-03

Compound 5i

Compound 5j

0YL-170726

-18.678

Compound 3aa acid

Compound 3ba acid

Compound 3ga acid

Compound 3ha acid

Compound 3ka acid

21.0 20.5 20.0 19.5 19.0 18.5 18.0 17.5 17.0 16.5 16.0 15.5 15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 fl (ppm)

Compound 3la acid

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -5(fl (ppm)

Compound 30a acid

Compound 3ra acid

-15.333

Compound 3sa acid

Compound 3ta acid

-16.163

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

2017-08-24 zhanghailong-ZC-5ha

140

Reference

- S1: H. Kim, J. Park, J. G. Kim, S. Chang, Org. Lett. 2014, 16, 5466-5469.
- S2: X. Zheng, B. Song, B. Xu, Eur. J. Org. Chem. 2010, 23, 4376-4380.
- S3: K. Yoshida, K. Nishii, Y. Kano, S. Wada, A. Yanagisawa, J. Org. Chem. 2014, 79, 4231-4239.
- S4: S. Zhu, H. Huang, Z. Zhang, T. Ma, H. Jiang, J. Org. Chem. 2014, 79, 6113-6122.
- S5: V. Reddy, A. Jadhav, R. Anand, Org. Biomol. Chem. 2015, 13, 3732-3741.
- S6: J.J. Richard, K. E. Burke, J. Am. Chem. Soc, 1961, 83, 1722-1726.
- S7: P. C. Page, M. J. McKenzie, J. A. Gallagher, J. Org. Chem., 2001, 66, 3704-3708.
- S8: D. C Stepinski, Tetrahedron, 2001, 57, 8637-8645.
- S9: T. Sugioka, Jpn. Kokai Tokkyo Koho, 1993, 05247071.
- S10: Z. Cai, F. Li, S. Wang, S. Ji, Org. Lett. 2016, 18, 4810-4813.
- S11: L. Li, W. W. Brennessel, W. D. Jones, J. Am. Chem. Soc. 2008, 130, 12414 -12419.
- S12: G.-B. Li, Z.-J. Yu, S. Liu, L.-Y. Huang, L.-L. Yang, C. T. Lohans and S.-Y. Yang, J. Chem. Inf. Model., 2017, 57, 1640-1651.
- S13: G.-B. Li, L.-Y. Huang, H. Li, S. Ji, L.-L. Li and S.-Y. Yang, *RSC Adv.*, 2016, 6, 61137-61140.
- S14: G.-B. Li, M. I. Abboud, J. Brem, H. Someya, C. T. Lohans, S.-Y. Yang, J. Spencer, D. W. Wareham, M. A. McDonough and C. J. Schofield, *Chem. Sci.*, 2017, 8, 928-937.
- S15: G.-B. Li, L.-L. Yang, W.-J. Wang, L.-L. Li and S.-Y. Yang, J. Chem. Inf. Model., 2013, 53, 592-600.
- S16: H. Feng, J. Ding, D. Zhu, X. Liu, X. Xu, Y. Zhang, S. Zang, D. C. Wang and W. Liu, J. Am. Chem. Soc., 2014, 136, 14694-14697.
- S17: S. Ness, R. Martin, A. M. Kindler, M. Paetzel, M. Gold, S. E. Jensen, J. B. Jones and N. C. Strynadka, *Biochemistry*, 2000, **39**, 5312-5321.
- S18: G.-B. Li, J. Brem, R. Lesniak, M. I. Abboud, C. T. Lohans, I. J. Clifton, S.-Y. Yang, J.-C. Jimenez-Castellanos, M. B. Avison, J. Spencer, M. A. McDonough and C. J. Schofield, *Chem. Commun.*, 2017, 53, 5806-5809.
- S19: S. S. van Berkel, J. Brem, A. M. Rydzik, R. Salimraj, R. Cain, A. Verma, R. J. Owens, C. W. Fishwick, J. Spencer and C. J. Schofield, *J. Med. Chem.*, 2013, 56, 6945-6953.
- S20: R. A. Copeland, Evaluation of Enzyme Inhibitors In Drug Discovery, Wiley, 2013.
- S21: D. T. King, L. J. Worrall, R. Gruninger, N. C. J. Strynadka, J. Am. Chem. Soc. 2012, 134, 11362-11365.
- S22: J. Brem, S. S. van Berkel, W. Aik, A. M. Rydzik, M. B. Avison, I. Pettinati, K.-

D. Umland, A. Kawamura, J. Spencer, T. D. Claridge, M. A. McDonough, C. J. Schofield, *Nat. Chem.* 2014, 6, 1084-1090.