Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Supporting Information

¹³C NMR and ECD Calculation Methods, Table S1-S3, Figure S1-S6, HRESIMS, 1D and 2D NMR Spectra for Tagalide A (**1**) and Tagalol A (**2**).

Table of Contents:

Expremental section (S4-S5)
Table S1. Important thermodynamic parameters (a.u.) and Boltzmann distributions of the optimized compound 1
at B3LYP/6-31G(d,p) level in the gas phase (S6)
Table S2. Optimized Z-matrixes of compound 1 in the gas phase (Å) at B3LYP/6-31G(d,p) level······(S7-8)
Table S3. Cytotoxic assay results for tagalide A (1), tagalsin C and its two anologs against human breast cancer cells
[IC ₅₀ (µM)]······(S9)
Figure S1. Four possible structures for compound 1(S10)
Figure S2. Calculated ¹³ C NMR chemical shifts for the structure of 1a (S11)
Figure S3. Calculated ¹³ C NMR chemical shifts for the structure of of 1b (S12)
Figure S4. Calculated ¹³ C NMR chemical shifts for the structure of of 1c (S13)
Figure S5. Tagalide A (1) inhibits the growth of six human breast cancer cell lines <i>in vitro</i> (S14)
Figure S6. Tagalide A (1) inhibits phosphorylation of JAK2 and STAT3, but enhances that of AKT and ERK in
MDA-MB-453 cells(S15)
HRESIMS of Tagalide A (1)(S16)
UV Spectrum of Tagalide A (1) ·····(S17)
¹ H NMR (400 MHz) spectrum of Tagalide A (1) in $CDCI_3$ (S18-20)
13 C NMR (100 MHz) spectrum of Tagalide A (1) in CDCl ₃ (S21)
DEPT135 (100 MHz) experiment of Tagalide A (1) in CDCl ₃ (S22-24)

¹ H- ¹ H COSY (400 MHz) spectrum of Tagalide A (1) in $CDCI_3$ (S25-28)
HSQC (400 MHz) spectrum of Tagalide A (1) in CDCl ₃ ······(S29-34)
HMBC (400 MHz) spectrum of Tagalide A (1) in $CDCI_3$ (S35-46)
NOESY (400 MHz) spectrum of Tagalide A (1) in CDCl ₃ (S47-49)
HRESIMS of Tagalol A (2)(S50)
UV Spectrum of Tagalol A (2) ······(S51)
¹ H NMR (400 MHz) spectrum of Tagalol A (2) in CDCl ₃ (S52-54)
¹³ C NMR (100 MHz) spectrum of Tagalol A (2) in $CDCl_3$ (S55)
DEPT135 (100 MHz) experiment of Tagalol A (2) in CDCl ₃ (S56-59)
¹ H- ¹ H COSY (400 MHz) spectrum of Tagalol A (2) in CDCl ₃ (S60-62)
HSQC (400 MHz) spectrum of Tagalol A (2) in $CDCl_3$ (S63-66)
HMBC (400 MHz) spectrum of Tagalol A (2) in CDCl ₃ (S67-75)
NOESY (400 MHz) spectrum of Tagalol A (2) in CDCl ₃ (S76-78)

Expremental section

¹³C NMR Calculation Methods

For the calculations of ¹³C NMR chemical shifts, B3LYP/6-31G(d,p) method was used to optimize the selected conformations. For all optimized structures, vibrational spectra were calculated to ensure that no imaginary frequencies for energy minimum were obtained. NMR calculations were performed at the levels of mPW1PW91/6-31G(d,p) with the gauge-independent atomic orbital (GIAO) method.¹ The solvent effect was considered by using chloroform for **1** and **2** in the calculations to resemble the experimental condition. The polarized continuum model (PCM) of Tomasiet al. was used.² The calculated ¹³C NMR chemical shifts were analyzed by subtracting the isotopic shifts for TMS calculated with the same methods.¹ Different conformers for structures **1** were considered. The ¹³C NMR chemical shifts in each compound were considered as the average values of the same atoms in the different conformers. The average values were obtained by the Boltzmann distributions, using the relative Gibbs free energies as weighting factors.³ The differences $\Delta \delta$ were determined by subtracting the experimental chemical shifts δ exptl from the calculated chemical shifts δ calcd.

ECD Calculation Methods

The theoretical calculations of **1** and **2** were performed using Gaussian 09⁴ and figured using GaussView 5.0.⁵ Conformation search using molecular mechanics calculations was performed in Discovery Studio 3.5 Client with MMFF force field with 20 kcal mol⁻¹ upper energy limit.⁶ The optimized conformation geometries and thermodynamic parameters of all selected conformations were provided. The predominant conformers were optimized at B3LYP/6-31G(d,p) level. The theoretical calculation of ECD was performed using time dependent Density Functional Theory (TDDFT) at B3LYP/6-31G(d,p) level in MeOH with PCM model.¹ The ECD spectra of **1** and **2** were obtained by weighing the Boltzmann distribution rate of each geometric conformation.³ The ECD spectra were simulated by overlapping Gaussian functions for each transition according to:

$$\Delta \varepsilon(E) = \frac{1}{2.297 \times 10^{-39}} \times \frac{1}{\sqrt{2\pi\sigma}} \sum_{i}^{A} \Delta E_{i} R_{i} e^{-[(E - E_{i})/(2\sigma)]^{2}}$$
(1)

The σ represented the width of the band at 1/e height, and ΔE_i and R_i were the excitation energies and rotational strengths for transition *i*, respectively. R_{vel} was used in this work.

References:

- (1) (a) Miertus, S.; Scrocc, E.; Tomasi, J. J. Chem. Phys. 1981, 55, 117. (b) Miertus, S.; Tomasi, J. J. Chem. Phys. 1982, 65, 239. (c)
 Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327.
- (2) (a) Ditchfield, R. *Mol. Phys.* **1974**, *27*, 789.(b) Rohlfing, C. M.; Allen, L. C.; Ditchfield, R. *Chem. Phys.* **1984**, *87*, 9.(c) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. **1990**, *112*, 8251.
- (3) Tähtinen, P.; Bagno, A.; Klika, K. D.; Pihlaja, K. J. Am. Chem. Soc. 2003, 125, 4609-4618.
- (4) Gaussian 09, Revision C.01,M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
- (5) GaussView, Version 5, Dennington, R.; Keith, T.; Millam, J. Semichem Inc., Shawnee Mission, KS, 2009.
- (6) Smith, S. G.; Goodman, J. M. J. Am. Chem. Soc. 2010, 132, 12946-12959.

Table S1. Important thermodynamic parameters (a.u.) and Boltzmann distributions of the optimized compound **1** at B3LYP/6-31G(d,p) level in the gas phase

Compound	SCF	G	Zero-point	%
1-a	-1081.141005	0.409978	0.459809	49.98
1-b	-1081.141006	0.409975	0.459810	49.98
1-c	-1081.1133865	0.409837	0.459785	0.03
1-d	-1081.133565	0.409598	0.459705	0.02

SCF, G: self consistent field (SCF) and Gibbs free energy in the gas phase at B3LYP/6-31G(d,p) level., %: Boltzmann distributions, using the relative Gibbs free energies as weighting factors.

1-a				1-b			
С	3.114	-2.261	0.65	С	2.314	-1.188	0.837
С	2.314	-1.188	0.837	С	2.738	-0.161	-0.109
С	2.738	-0.161	-0.109	С	2.199	1.081	-0.198
С	2.199	1.081	-0.198	С	1.109	1.472	0.823
С	4.062	-1.944	-0.42	С	0.262	0.224	1.29
С	-6.273	-0.816	-1.158	С	1.193	-0.913	1.786
С	2.772	2.083	-1.122	С	0.145	2.571	0.299
С	-4.941	-0.896	-1.2	С	-0.905	2.089	-0.702
С	1.193	-0.913	1.786	С	-1.744	0.977	-0.063
С	-0.905	2.089	-0.702	С	-0.874	-0.262	0.306
С	0.145	2.571	0.3	С	-2.994	0.618	-0.884
С	-3.09	-1.616	0.295	С	-3.938	-0.398	-0.175
С	-1.808	-1.249	1.065	С	-3.09	-1.616	0.295
С	-2.994	0.618	-0.883	С	-1.808	-1.249	1.065
С	0.262	0.224	1.29	С	-4.642	0.26	1.026
С	-1.745	0.977	-0.063	Н	-2.101	1.388	0.893
С	1.109	1.472	0.824	Н	-0.278	0.578	2.178
С	-3.938	-0.398	-0.175	С	1.852	2.083	2.046
С	-0.874	-0.262	0.306	С	-0.322	-0.971	-0.952
С	1.852	2.083	2.046	С	3.113	-2.261	0.65
С	-4.642	0.259	1.026	С	4.062	-1.944	-0.42
С	-0.322	-0.971	-0.952	0	3.782	-0.636	-0.859
0	4.952	-2.581	-0.929	С	2.773	2.083	-1.122
0	3.521	1.836	-2.057	Н	2.492	3.131	-0.914
0	3.782	-0.635	-0.859	0	4.952	-2.581	-0.929
Н	3.105	-3.213	1.163	0	3.521	1.836	-2.057

Table S2. Optimized Z-matrixes of compound 1 in the gas phase (Å) at B3LYP/6-31G(d,p) level

Н	-6.882	-1.216	-1.965	С	-4.941	-0.896	-1.2
Н	-6.81	-0.358	-0.333	С	-6.273	-0.817	-1.158
Н	2.491	3.131	-0.914	Н	1.633	-0.618	2.748
Н	-4.482	-1.374	-2.069	Н	0.639	-1.832	1.99
Н	1.633	-0.618	2.747	Н	-0.385	2.965	1.177
Н	0.639	-1.832	1.99	Н	0.707	3.42	-0.102
Н	-1.552	2.932	-0.976	Н	-1.552	2.932	-0.976
Н	-0.437	1.746	-1.635	Н	-0.437	1.746	-1.635
Н	-0.385	2.965	1.178	Н	-3.558	1.537	-1.093
Н	0.707	3.42	-0.101	Н	-2.698	0.218	-1.863
Н	-3.714	-2.263	0.927	Н	-3.714	-2.263	0.927
Н	-2.825	-2.222	-0.58	Н	-2.826	-2.222	-0.58
Н	-2.076	-0.806	2.035	Н	-2.076	-0.806	2.035
Н	-1.279	-2.183	1.293	Н	-1.279	-2.182	1.293
Н	-3.558	1.537	-1.093	Н	-5.225	1.132	0.712
Н	-2.698	0.218	-1.862	Н	-3.927	0.596	1.782
Н	-0.278	0.578	2.178	Н	-5.324	-0.447	1.512
Н	-2.101	1.388	0.894	Н	2.373	3.002	1.753
Н	2.373	3.002	1.753	Н	1.139	2.343	2.837
Н	1.139	2.343	2.838	Н	2.601	1.403	2.463
Н	2.601	1.403	2.463	Н	-1.13	-1.323	-1.598
Н	-3.927	0.595	1.782	Н	0.316	-0.325	-1.559
Н	-5.324	-0.447	1.512	Н	0.266	-1.853	-0.677
Н	-5.226	1.132	0.712	Н	3.104	-3.213	1.163
Н	0.266	-1.853	-0.678	Н	-4.482	-1.373	-2.069
Н	-1.13	-1.323	-1.598	Н	-6.882	-1.215	-1.965
н	0.316	-0.325	-1.559	Н	-6.81	-0.358	-0.332

Compound	Cell Lines								
Compound	MD-MBA-453	MD-MBA-231	SK-BR-3	MCF-7	MT-1	ZR-75-1			
$\frac{21}{22} \xrightarrow{21}_{34} \xrightarrow{10}_{520} \xrightarrow{10}_{18} \xrightarrow{10}_{18} \xrightarrow{10}_{14} \xrightarrow{11}_{14} \xrightarrow{11}_{14$	1.73	8.12	2.45	12.03	3.75	1.97			
HO A HO To Me HO To Me HO To Me HO To Me HO To Me HO To Me HO TO Me HO TO TO Me HO TO Me HO TO ME HO TO HO TO ME HO TO ME HO TO ME HO TO ME HO TO ME HO TO ME HO TO ME HO TO ME HO TO ME HO TO ME HO TO ME HO TO ME HO TO ME HO TO ME HO TO ME HO TO ME HO TO ME HO TO ME HO TO TO TO TO TO TO TO TO TO TO	4.06	43.51	1.85	17.26	2.17	3.55			
HO + H + H + H + H + H + H + H + H + H +	2.58	10.99	2.08	20.65	3.92	5.87			
(5 <i>S</i> ,8 <i>S</i> ,9 <i>S</i> ,10 <i>R</i> ,13 <i>S</i>)-2-hydroxy-16-nor- 3-oxodolabr-1,4(18)-dien-15-oic acid	7.98	50.97	4.20	34.93	8.07	12.40			
Cisplatin (the positive control)	4.37	3.73	8.42	3.21	7.90	20.65			

Table S3. C	vtotoxic assav	v results for tac	galide A (1),	tagalsin C	C and its two ano	logs agains	t human breas	t cancer cells	[IC ₅₀ (L	JM)]
	,		\mathbf{J}			- 3 3				· /1

Figure S1. Four possible structures for compound 1.

Α

В

Figure S2. Calculated ¹³C NMR chemical shifts for the structure of **1a**.

(A) Linear correlations between the experimental and calculated ¹³C NMR chemical shifts of **1a**. (B) Individual deviations between the calculated and experimental ¹³C chemical shifts.

Figure S3. Calculated ¹³C NMR chemical shifts for the structure of of **1b**.

(A) Linear correlations between the experimental and calculated ¹³C NMR chemical shifts of **1b**. (B) Individual deviations between the calculated and experimental ¹³C chemical shifts.

Figure S4. Calculated ¹³C NMR chemical shifts for the structure of of **1c**.

(A) Linear correlations between the experimental and calculated ¹³C NMR chemical shifts of **1c**. (B) Individual deviations between the calculated and experimental ¹³C chemical shifts.

Figure S5. Tagalide A (1) inhibits the growth of six human breast cancer cell lines *in vitro*.

Summary of IC_{50} of Tagalide A (1) and cisplatin against breast cancer cells was shown. Cells were grown in 96-well plates for 24 h and treated with the indicated concentrations of tagalide A (1) and cisplatin for 72 h. Cell survival was measured by MTT assay. The representative growth curves of cells treated with tagalide A (1) are shown.

Figure S6. Tagalide A (1) inhibits phosphorylation of JAK2 and STAT3, but enhances that of AKT and ERK in MDA-MB-453 cells.

Human breast cancer MDA-MB-453 cells were treated with **1** at the indicated time and concentrations. The protein expression was examined by Western blot after lysing cells, and HSP90 was used as loading control. The representative Western blot results and quantified results were shown.

				Mass	Spec	trum S	SmartF	orm	ula	Repor	t			
Analysis Info	s Info Name D:\Data\MS\data\201607\\iwanshan_zxh-15_pos_31_01							01 210	Acq	uisition Dat	e 7	/15/2016	5:43:07 P	M
Method Sample Name Comment	LC_Direct Infusion_pos_100-1000mz.m ame liwanshan_zxh-15_pos						01_213	Operator SCSIO Instrument / Ser# maXis 2				29		
Acquisition Pa	aram	ete	r											
Source TypeESIIon PolarityPositiveFocusActiveSet Capillary4500 VScan Begin100 m/zSet End Plate Offset-500 VScan End2000 m/zSet Collision Cell RF800.0 Vp				e /pp	Set Nebulizer 0.4 Bar Set Dry Heater 180 °C Set Dry Gas 4.0 I/min Set Divert Valve Waste									
Intens. x10 ⁴ 1.5 1.0				0	21 2 1 22 D A 0 3 4 18	H H H H H H H H H H H H H H H H H H H	¹⁵ 16			363.19	38		+MS, 0.3	min #16
0.5			341.	2115		1	355.:	2268 358	.2371		I			
0.0 4	5	3	39.1933 	╘╾┯┟╾ _╍ ┅╍┯╸	346.2700 345	349.1850 350	353,1864		36		365	Yly	370	m/z
Meas. r 341.2 363.1 703.3	m/z 115 938 990	# 1 1	Formul C 22 H 2 C 22 H 2 C 24 H 3	a 29 O 3 28 Na O 3 56 Na O 6	Score 100.00 100.00 27.04	m/z 341.2111 363.1931 703.3969	err [ppm] -1.1 -2.0 -3.0	err (r	nDa] -0.4 -0.7 -2.1	mSigma 8.1 10.3 41.9	rdb 8.5 8.5 16.5	e ⁻ Con even even even	nf N-Rule o o o	e k k k

UV spectrum for tagalide A (1) (recorded in MeCN at 250 µg/mL)

¹H (400 MHz) NMR spectrum of tagalide A (1) in CDCl₃

¹H (400 MHz) NMR spectrum of tagalide A (1) in CDCl₃

¹H (400 MHz) NMR spectrum of tagalide A (1) in CDCl₃

¹³C (100 MHz) NMR spectrum of tagalide A (1) in CDCl₃

DEPT135 (100 MHz) spectrum of tagalide A (1) in CDCl₃

DEPT135 (100 MHz) experiment of tagalide A (1) in CDCl₃

DEPT135 (100 MHz) experiment of tagalide A (1) in CDCl₃

¹H-¹H COSY (400 MHz) spectrum of tagalide A (1) in CDCl₃

¹H-¹H COSY (400 MHz) spectrum of tagalide A (1) in CDCl₃

¹H-¹H COSY (400 MHz) spectrum of tagalide A (1) in CDCl₃

HRESIMS for tagalol A (2)

UV spectrum for tagalol A (2) (recorded in MeCN at 100 µg/mL)

¹H (400 MHz) NMR spectrum of tagalol A (2) in CDCl₃

¹H (400 MHz) NMR spectrum of tagalol A (2) in CDCl₃

¹H (400 MHz) NMR spectrum of tagalol A (2) in CDCl₃

¹³C (100 MHz) NMR spectrum of tagalol A (2) in CDCl₃

220

Overlapped ¹³**C** signals

¹H-¹H COSY (400 MHz) spectrum of tagalol A (2) in CDCl₃

¹H-¹H COSY (400 MHz) spectrum of tagalol A (2) in CDCl₃

HMBC (400 MHz) spectrum of tagalol A (2) in CDCl₃

S73

HMBC (400 MHz) spectrum of tagalol A (2) in CDCl₃

HMBC (400 MHz) spectrum of tagalol A (2) in CDCl₃

NOESY (400 MHz) spectrum of tagalol A (2) in CDCl₃

NOESY (400 MHz) spectrum of tagalol A (2) in CDCl₃

S78