Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Supporting Information

Organocatalytic Michael/cyclization cascade reactions of 3-

isothiocyanato oxindoles with 3-trifluoroethylidene oxindoles:

approach for the synthesis of 3'-trifluoromethyl substituted 3,2'-

pyrrolidinyl-bispirooxindoles

Wen-Run Zhu,^{‡a} Qing Chen,^{‡a,c} Ning Lin,^{*a,c} Kai-bin Chen,^a Zhen-Wei Zhang,^a Gang Fang,^a Jiang Weng^b and Gui Lu^{*b}

 ^a College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, P.R. China. E-mail: linninginnanning@163.com
^b Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, P.R. China. E-mail: lugui@mail.sysu.edu.cn
^c Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, Guangxi, 530200, P.R. China.

Table of Contents

1.	General information	-S2
2.	Synthetic transformation of the spirocyclic products	-S2
3.	Copies of NMR Spectra	-S9
4.	Copies of HPLC Spectra	S36

1. General Information

All reactions were carried out in oven-dried reaction vessel unless otherwise noted and solvents were dried according to established procedures. Reactions were monitored by thin layer chromatography (TLC). Purification of reaction product was carried out by flash chromatography using Qing Dao Sea Chemical Reagent silica gel (200-300 mesh). ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker 400 MHz spectrometer in CDCl₃ unless otherwise noted. Chemical shifts in ¹H NMR spectra are reported in parts per million (ppm, δ) downfield from the internal standard Me₄Si (TMS, $\delta = 0$ ppm). Chemical shifts in ¹³C NMR spectra are reported relative to the central line of the chloroform signal ($\delta = 77.0$ ppm). Data are presented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, cm = complex multiplet) and coupling constant in Hertz (Hz). HPLC analyses were conducted on an Agilent instrument using a Daicel Chiralpak IA-H column. High resolution mass spectra were obtained with a Shimadzu LCMS-IT-TOF mass spectrometer.

2. Synthetic transformation of the spirocyclic products

General Procedure for the Asymmetric Synthesis of Compound 3a-3p

To a solution of 3-isothiocyanato-1-methylindolin-2-one **2a** (22.5mg, 0.1mmol) and catalyst **V** (6.31mg, 0.01mmol, 10mol%) in CHCl₃ (1 mL) was added (E)-tert-butyl 2-oxo-3-(2,2,2-trifluoroethyl-idene)indoline-1-carboxylate **1a** (31.3 mg, 0.1 mmol) and Et₃N (0.0001mmol, 13.8µL). The mixture was stirred at room temperature until the reaction was completed (monitored by TLC analysis). The crude product was purified directly by flash column chromatography on silica gel (petroleum ether/ ethyl acetate = 5:1) to give the desired product **3a**.

Compound 3a. White solid, 92% yield, >20:1 dr, >99% ee, $[a]_D^{20} = -58.76$ (c=0.21, CH₃OH),

Mp.168.8-170.1°C; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 7.7 Hz, 1H), 8.31 (s, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.64 (d, J = 7.4 Hz, 1H), 7.42 (q, J = 7.8 Hz, 2H), 7.29 – 7.23 (m, 1H), 7.19 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 4.48 (q, J = 9.1 Hz, 1H), 3.26 (s, 3H), 1.65 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 200.9, 173.3, 171.9, 148.6, 143.3, 140.8, 131.9, 130.3, 127.9, 126.0, 125.4, 124.8, 124.5, 124.4, 123.2 (q, J_{CF} = 279.8 Hz), 115.2, 109.3, 85.4, 69.1, 68.0, 58.5 (q, J_{CF} = 28.8 Hz), 28.2, 27.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.84. HRMS (ESI):*m*/*z* [M+Na]⁺ calcd. for [C₂₅H₂₂F₃N₃NaO₄S]⁺: 540.1175, found: 540.1172; The enantiomeric excess was determined by

HPLC with a Chiralpak IA-H column (hexane/*i*-propanol =90/10, flow rate 1.0 mL·min⁻¹, $\lambda = 254$ nm): $t_{\text{major}} = 9.1$ min, $t_{\text{minor}} = 12.3$ min.

Compound 3b. White solid, 93% yield, >20:1 dr, 96% ee, $[a]_D^{20} = -37.67$ (c=0.21,CH₃OH),

Mp.172.6-173.4°C; ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 8.22 (d, J = 8.4 Hz, 1H), 7.92 (dd, J = 9.0, 4.6 Hz, 1H), 7.62 (d, J = 7.5 Hz, 1H), 7.44 (t, J = 7.8 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.11 (td, J = 8.8, 2.6 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 4.47 (q, J = 9.1 Hz, 1H), 3.28 (s, 3H), 1.64 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 172.9, 171.9, 161.4, 159.0, 148.5, 143.4, 136.9, 132.0, 126.4 (d, $J_{CF} = 9.7$ Hz), 125.5, 124.4 (d, $J_{CF} = 6.3$ Hz), 123.1 (q, J = 276.2 Hz), 117.1 (d, $J_{CF} = 23.2$ Hz), 116.5 (d, $J_{CF} = 7.9$ Hz), 115.6 (d, $J_{CF} = 26.3$ Hz), 109.4, 85.6, 69.1, 67.9, 58.2 (q, $J_{CF} = 29.2$ Hz), 28.2, 27.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.78, -115.84. HRMS (ESI):m/z [M+Na]⁺ calcd. for [C₂₅H₂₁F₄N₃NaO₄S]⁺: 558.1081, found: 558.1069; The enantiomeric excess was determined by **HPLC** with a Chiralpak IA-H column (hexane/i-PrOH=90/10, 1.0 mL·min⁻¹, 254 nm): t_{major}=8.1min, t_{minor}=9.4 min.

Compound 3c. White solid, 91% yield, >20:1 dr, 95% ee $[a]_D^{20} = -48.17$ (c=0.23,CH₃OH),

Mp.160.3-161.6°C; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 8.30 (s, 1H), 7.90 (d, J = 8.8 Hz, 1H), 7.62 (d, J = 7.5 Hz, 1H), 7.44 (t, J = 7.8 Hz, 1H), 7.38 (dd, J = 8.8, 2.2 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 7.9 Hz, 1H), 4.46 (q, J = 9.0 Hz, 1H), 3.29 (s, 3H), 1.64 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 199.9, 172.7, 171.7, 148.4, 143.4, 139.4, 132.0, 130.8, 130.4, 128.2, 126.4, 125.6, 124.4, 124.4, 123.0 (q, $J_{CF} = 289.6$ Hz), 116.4, 109.4, 85.8, 69.0, 67.8, 58.2 (q, $J_{CF} = 28.9$ Hz), 28.1, 27.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.76. HRMS (ESI): m/z [M+Na]⁺ calcd. for [C₂₅H₂₁ClF₃N₃NaO₄S]⁺ :574.086, found:574.0771. The enantiomeric excess was determined by HPLC with Chiralpak IA-H column (hexane/i-PrOH=90/10, 1.0 mL·min⁻¹, 254 nm): t_{major}=8.2min, t_{minor}=6.6 min.

Compound 3d. White solid, 84% yield, >20:1 dr, >99% ee $[a]_D^{20} = -17.00(c=0.30,CH_2Cl_2)$,

Mp.177.6-179.2°C; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 8.25 (s, 1H), 7.84 (d, J = 8.8 Hz, 1H), 7.62 (d, J = 7.3 Hz, 1H), 7.54 (dd, J = 8.8, 2.1 Hz, 1H), 7.44 (td, J = 7.8, 0.8 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 4.46 (q, J = 9.1 Hz, 1H), 3.29 (s, 3H), 1.64 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 199.9, 172.6, 171.7, 148.4, 143.4, 139.9, 133.3, 132.0, 131.0, 126.6, 125.6, 124.4, 124.4, 123.0 (q, $J_{CF} = 284.4$ Hz), 118.3, 116.8, 109.4, 85.8, 69.0, 67.6, 58.3 (q, $J_{CF} = 28.9$ Hz), 28.2, 27.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.76. HRMS (ESI):m/z [M+Na]⁺ calcd. for [C₂₅H₂₁BrF₃N₃NaO₄S]⁺: 618.0280, found: 618.0273; The enantiomeric excess was determined by **HPLC** with a Chiralpak IA-H column (hexane/i-PrOH=90/10, 1.0 mL·min⁻¹, 254 nm): t_{major}=10.1min, t_{minor}=6.9 min.

Compound 3e. White solid, 90% yield, >20:1 dr, 98% ee $[a]_D^{20} = -17.53$ (c=0.19,CH₂Cl₂),

Mp.176.2-178.1°C; ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 8.17 (s, 1H), 7.79 (d, J = 8.3 Hz, 1H), 7.64 (d, J = 7.4 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.23 – 7.15 (m, 2H), 6.88 (d, J = 7.8 Hz, 1H), 4.47 (q, J = 9.2 Hz, 1H), 3.26 (s, 3H), 2.41 (s, 3H), 1.64 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 201.0, 173.5, 171.7, 148.6, 143.3, 138.3, 135.0, 131.8, 130.8, 128.4, 126.0, 124.6, 124.4, 124.4, 123.2 (q, $J_{CF} = 279.3$ Hz), 114.9, 109.3, 85.2, 69.1, 68.1, 58.5 (q, $J_{CF} = 28.8$ Hz), 28.2, 27.2, 21.5;

¹⁹F NMR (376 MHz, CDCl₃) δ -62.76. HRMS (ESI):*m/z* [M+Na]⁺ calcd. for [C₂₆H₂₄F₃N₃NaO₄S]⁺: 554.1332, found: 554.1321; The enantiomeric excess was determined by **HPLC** with a Chiralpak IA-H column (hexane/i-PrOH=90/10, 1.0 mL·min⁻¹, 254 nm): t_{major}=8.8min, t_{minor}=7.9 min.

Compound 3f. White solid, 86% yield, >20:1 dr, 81% ee, $[a]_D^{20} = +12.89(c=0.19,CH_3OH)$,

Mp.268.1-270.0°C; ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, J = 7.6 Hz, 1H), 8.29 (s, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.40 (dt, J = 16.2, 8.0 Hz, 2H), 7.25 (d, J = 7.9 Hz, 1H), 7.18 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 4.91 (q, J = 9.1 Hz, 1H), 3.27 (s, 3H), 1.65 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 173.6, 168.9, 148.1, 143.6, 142.2, 131.5, 131.5, 131.3, 129.9, 126.5, 124.2, 123.7, 123.2 (q, J_{CF} = 279.7 Hz), 123.2, 113.7, 108.9, 85.9, 69.3, 67.2, 54.1 (q, J_{CF} = 28.9 Hz), 28.1, 27.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.95. HRMS (ESI):m/z [M+Na]⁺ calcd. for [C₂₅H₂₁ClF₃N₃NaO₄S]⁺: 574.0786, found: 574.0771; The enantiomeric excess was determined by **HPLC** with a Chiralpak IA-H column (hexane/i-PrOH=90/10, 1.0 mL·min⁻¹, 254 nm): t_{major}=13.9min, t_{minor}=26.4 min.

Compound 3g. White solid, 90% yield, >20:1 dr, >99% ee, $[a]_D^{20} = +38.62(c=0.24, CH_2Cl_2)$

Mp.276.2-278.1°C; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 7.7 Hz, 1H), 8.35 (s, 1H), 7.83 (d, J = 8.2 Hz, 1H), 7.41 (t, J = 8.2 Hz, 2H), 7.29 (t, J = 8.2 Hz, 1H), 7.17 (t, J = 7.7 Hz, 1H), 6.90 (d, J = 7.8 Hz, 1H), 4.94 (q, J = 9.1 Hz, 1H), 3.24 (s, 3H), 1.64 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 173.7, 169.0, 148.0, 143.5, 142.5, 131.7, 131.5, 130.0, 129.9, 124.8, 124.2, 123.2, 123.2 (q, J_{CF} = 279.6 Hz), 119.9, 114.1, 108.9, 85.9, 69.4, 68.0, 54.4 (q, J_{CF} = 28.9 Hz), 28.1, 27.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.05. HRMS (ESI):m/z [M+Na]⁺ calcd. for [C₂₅H₂₁BrF₃N₃NaO₄S]⁺: 618.0280, found: 618.0275; The enantiomeric excess was determined by **HPLC** with a Chiralpak IA-H column (hexane/i-PrOH=90/10, 1.0 mL·min⁻¹, 254 nm): t_{major}=11.0min, t_{minor}=19.9 min.

Compound 3h. White solid, 96% yield, >20:1 dr, 97% ee, $[a]_D^{20} = -34.26$ (c=0.27,CH₃OH), Mp.

225.2-226.7°C; ¹H NMR (400 MHz, CDCl₃) δ 8.33 (dd, J = 14.7, 6.7 Hz, 2H), 7.72 (dd, J = 10.1, 2.5 Hz, 1H), 7.62 (d, J = 7.2 Hz, 1H), 7.44 (td, J = 7.8, 0.9 Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H), 6.98 – 6.87 (m, 2H), 4.44 (q, J = 9.1 Hz, 1H), 3.26 (s, 3H), 1.65 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 200.6, 173.2, 171.9, 164.9, 162.4, 148.3, 143.3, 142.1 (d, $J_{CF} = 12.7$ Hz), 132.0, 129.5 (d, $J_{CF} = 9.6$ Hz), 124.5, 124.4, 123.1 (q, $J_{CF} = 279.8$ Hz), 120.2 (d, $J_{CF} = 3.0$ Hz), 112.2 (d, $J_{CF} = 22.4$ Hz), 109.4, 104.1 (d, $J_{CF} = 30.1$ Hz), 85.9, 69.1, 67.5, 58.3 (q, $J_{CF} = 28.9$ Hz), 28.1, 27.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.88, -108.19. HRMS (ESI):m/z [M+Na]⁺ calcd. for [C₂₅H₂₁F₄N₃NaO₄S]⁺: 558.1081, found: 558.1067; The enantiomeric excess was determined by **HPLC** with a Chiralpak IA-H column (hexane/i-PrOH=90/10, 1.0 mL·min⁻¹, 254 nm): t_{major}=9.7min, t_{minor}=7.9 min.

Compound 3i. White solid, 86% yield, >20:1 dr, 95% ee, $[a]_D^{20} = -48.85(c=0.20,CH_3OH)$,

Mp.164.2-165.8°C; ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 8.4 Hz, 1H), 8.26 (s, 1H), 8.01 (d, J = 2.0 Hz, 1H), 7.62 (dd, J = 7.4, 0.5 Hz, 1H), 7.45 (td, J = 7.8, 1.1 Hz, 1H), 7.23 (dd, J = 8.3, 2.0 Hz, 1H), 7.21 (td, J = 7.7, 0.8 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 4.45 (q, J = 9.1 Hz, 1H), 3.27 (s, 3H), 1.65 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 200.3, 172.9, 171.9, 148.3, 143.3, 141.7, 136.2, 132.0, 129.0, 125.7, 125.5, 124.5, 124.4, 123.2, 123.1 (q, J_{CF} = 280.1 Hz), 116.0, 109.4, 86.0, 69.1, 67.6, 58.3 (q, J_{CF} = 29.1 Hz), 28.1, 27.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.83. HRMS (ESI):*m/z*

 $[M+Na]^+$ calcd. for $[C_{25}H_{21}ClF_3N_3NaO_4S]^+$: 574.0786, found: 574.0791 ; The enantiomeric excess was determined by **HPLC** with a Chiralpak IA-H column (hexane/i-PrOH=90/10, 1.0 mL·min⁻¹, 254 nm): t_{major}=8.0min, t_{minor}=6.3 min.

Compound 3j. White solid, 87% yield, >20:1 dr, 97% ee, $[a]_D^{20} = -37.62(c=0.29, CH_2Cl_2)$,

Mp.168.1-169.6°C; ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 8.3 Hz, 1H), 8.21 (s, 1H), 8.18 (d, J = 1.8 Hz, 1H), 7.62 (d, J = 7.3 Hz, 1H), 7.45 (td, J = 7.8, 0.9 Hz, 1H), 7.39 (dd, J = 8.3, 1.8 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 4.45 (q, J = 9.1 Hz, 1H), 3.27 (s, 3H), 1.65 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 172.7, 171.9, 148.3, 143.3, 141.8, 132.0, 129.3, 128.5, 125.6, 124.6, 124.4, 124.3, 123.7, 123.0 (q, $J_{CF} = 286.7$ Hz), 118.8, 109.4, 86.0, 69.1, 67.6, 58.3 (q, $J_{CF} = 28.9$ Hz), 28.1, 27.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.82. HRMS (ESI):m/z [M+Na]⁺ calcd. for [C₂₅H₂₁BrF₃N₃NaO₄S]⁺: 618.0280, found: 618.0294; The enantiomeric excess was determined by **HPLC** with a Chiralpak IA-H column (hexane/i-PrOH=90/10, 1.0 mL·min⁻¹, 254 nm): t_{major}=10.4min, t_{minor}=7.3 min.

Compound 3k. White solid, 75% yield, >20:1 dr, 98% ee, $[a]_D^{20} = -29.25$ (c=0.20,CH₃OH),

Mp.222.3-224.1°C; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 8.19 (d, J = 7.5 Hz, 1H), 7.61 (d, J = 7.4 Hz, 1H), 7.44 (t, J = 7.7 Hz, 1H), 7.25 – 7.12 (m, 3H), 6.91 (d, J = 7.8 Hz, 1H), 4.45 (q, J = 9.1 Hz, 1H), 3.26 (s, 3H), 1.60 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 172.8, 171.9, 150.0, 147.5, 146.8, 143.3, 132.0, 127.9 (t, J_{CF} = 5.0 Hz), 126.3 (d, J_{CF} = 6.8 Hz), 125.7, 124.6, 124.4, 123.9 (d, J_{CF} = 1.3 Hz), 123.1 (q, J_{CF} = 279.8 Hz), 118.5 (d, J_{CF} = 20.2 Hz), 109.4, 85.9, 69.1, 68.2, 58.6 (q, J_{CF} = 28.9 Hz), 27.8, 27.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.92, -119.40. HRMS (ESI):m/z [M+Na]⁺ calcd. for [C₂₅H₂₁F₄N₃NaO₄S]⁺: 558.1081, found: 558.1067; The enantiomeric excess was determined by **HPLC** with a Chiralpak IA-H column (hexane/i-PrOH=95/5, 1.0 mL·min⁻¹, 254 nm): t_{major}=27.7min, t_{minor}=34.1 min.

Compound 31. White solid, 80% yield, >20:1 dr, 90% ee, $[a]_D^{20} = -38.25$ (c=0.28,CH₃OH),

Mp.159.6-161.1°C; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (t, J = 9.1 Hz, 1H), 8.25 (s, 1H), 7.88 (dd, J = 11.3, 7.0 Hz, 1H), 7.61 (d, J = 7.0 Hz, 1H), 7.45 (td, J = 7.8, 1.0 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 4.43 (q, J = 9.0 Hz, 1H), 3.29 (s, 3H), 1.65 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 172.5, 171.9, 150.8 (dd, $J_{CF} = 330.7$, 13.3 Hz), 148.4 (dd, $J_{CF} = 326.9$, 13.3 Hz), 148.3, 143.3, 137.1 (dd, $J_{CF} = 10.4$, 2.5 Hz), 132.1, 125.3, 124.5, 124.4, 123.2 (q, $J_{CF} = 316.1$ Hz), 120.4 (dd, $J_{CF} = 7.5$, 4.0 Hz), 117.4 (d, $J_{CF} = 22.3$ Hz), 109.5, 105.9 (d, $J_{CF} = 25.4$ Hz), 86.1, 69.0, 67.5, 58.1 (q, $J_{CF} = 28.9$ Hz), 28.1, 27.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.86, -132.49 (d, J = 21.2 Hz), -140.24 (d, J = 21.2 Hz). HRMS (ESI):m/z [M+Na]⁺ calcd. for [C₂₅H₂₀F₅N₃NaO₄S]⁺: 576.0987, found: 576.0975; The enantiomeric excess was determined by **HPLC** with a Chiralpak IA-H column (hexane/i-PrOH=90/10, 1.0 mL·min⁻¹, 254 nm): t_{major}=7.4min, t_{minor}=5.6 min.

Compound 3m. White solid, 94% yield, >20:1 dr, >99% ee, $[a]_D^{20} = -31.65$ (c=0.26, CH₃OH),

Mp.178.6-179.4°C; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 7.7 Hz, 1H), 8.29 (s, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.45 (s, 1H), 7.41 (t, J = 7.9 Hz, 1H), 7.25 – 7.18 (m, 2H), 6.78 (d, J = 7.9 Hz, 1H), 4.47 (q, J = 9.1 Hz, 1H), 3.24 (s, 3H), 2.34 (s, 3H), 1.66 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 200.9, 173.4, 171.9, 148.6, 140.9, 140.8, 134.5, 132.1, 130.2, 128.0, 126.0, 125.3, 125.1, 124.8,

123.2 (q, $J_{CF} = 279.2$ Hz), 115.2, 109.1, 85.4, 69.24, 68.0, 58.5 (q, $J_{CF} = 28.6$ Hz), 28.2, 27.3, 21.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.80. HRMS (ESI):m/z [M+Na]⁺ calcd. for [C₂₆H₂₄F₃N₃NaO₄S]⁺: 554.1332, found: 554.1330; The enantiomeric excess was determined by **HPLC** with a Chiralpak IA-H column (hexane/i-PrOH=90/10, 1.0 mL·min⁻¹, 254 nm): t_{maior}=7.3min, t_{minor}=11.1 min.

Compound 3n. White solid, 84% yield, >20:1 dr, >99% ee, $[a]_D^{20} = -36.23$ (c=0.10,CH₃OH),

Mp.178.6-180.2°C; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 8.32 (d, J = 7.7 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.42 (dd, J = 11.6, 4.5 Hz, 2H), 7.26 (t, J = 7.6 Hz, 1H), 7.14 (td, J = 8.6, 2.3 Hz, 1H), 6.83 (dd, J = 8.5, 3.8 Hz, 1H), 4.42 (q, J = 9.1 Hz, 1H), 3.24 (s, 3H), 1.65 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 201.0, 173.2, 171.7, 161.2, 158.7, 148.5, 140.8, 139.3, 130.4, 127.9, 127.4 (d, $J_{CF} = 7.7$ Hz), 125.4, 124.6, 123.1 (q, $J_{CF} = 279.7$ Hz), 118.4 (d, $J_{CF} = 23.5$ Hz), 112.7 (d, $J_{CF} = 25.5$ Hz), 110.2 (d, $J_{CF} = 7.9$ Hz), 85.5, 69.1, 67.9, 58.5 (q, $J_{CF} = 28.9$ Hz), 28.2, 27.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.76, -116.83. HRMS (ESI):m/z [M+Na]⁺ calcd. for [C₂₅H₂₁F₄N₃NaO₄S]⁺: 558.1081, found: 558.1074; The enantiomeric excess was determined by **HPLC** with a Chiralpak IA-H column (hexane/i-PrOH=90/10, 1.0 mL·min⁻¹, 254 nm): t_{maiof}=11.3min, t_{minof}=24.9 min.

Compound 30. White solid, 91% yield, >20:1 dr, 91% ee, $[a]_D^{20} = -31.20$ (c=0.31,CH₃OH),

Mp.170.2-172.1°C; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 7.2 Hz, 2H), 7.98 (d, J = 8.2 Hz, 1H), 7.61 (d, J = 7.4 Hz, 1H), 7.52 (d, J = 7.1 Hz, 2H), 7.40 (dq, J = 21.1, 7.0 Hz, 5H), 7.31 – 7.25 (m, 1H), 7.19 (t, J = 7.6 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 5.47 (s, 2H), 4.48 (q, J = 9.1 Hz, 1H), 3.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.6, 173.2, 171.9, 150.2, 143.3, 140.2, 134.7, 131.9, 130.4, 128.9, 128.7, 128.2, 128.0, 125.9, 125.7, 124.8, 124.5, 124.4, 123.1 (q, $J_{CF} = 274.5$ Hz), 115.2, 109.4, 69.3, 69.1, 68.0, 58.5 (q, $J_{CF} = 29.0$ Hz), 27.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.80. HRMS (ESI):m/z [M+Na]⁺ calcd. for [C₂₈H₂₀F₃N₃NaO₄S]⁺: 574.1019, found: 574.1005; The enantiomeric excess was determined by **HPLC** with a Chiralpak IA-H column (hexane/i-PrOH=90/10, 1.0 mL·min⁻¹, 254 nm): t_{major}=16.3min, t_{minor}=22.2 min.

Compound 3p. White solid, 90% yield, >20:1 dr, >99% ee, $[a]_D^{20} = +11.40(c=0.30,CH_3OH)$,

Mp.88.2-90.1°C; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 8.38 (d, J = 7.7 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.63 (d, J = 7.4 Hz, 1H), 7.41 (t, J = 7.9 Hz, 1H), 7.33 – 7.19 (m, 9H), 7.15 (t, J = 7.6 Hz, 1H), 6.76 (d, J = 7.8 Hz, 1H), 4.53 (q, J = 9.2 Hz, 1H), 1.65 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 200.8, 173.3, 172.1, 148.6, 142.6, 140.8, 134.7, 131.8, 130.3, 129.1, 129.1, 128.2, 128.0, 127.4, 125.9, 125.4, 124.8, 124.7, 124.6, 124.5, 123.2 (q, J_{CF} = 260.9 Hz), 115.2, 110.7, 110.4, 85.4, 69.2, 68.0, 58.5 (q, J_{CF} = 28.9 Hz), 45.0, 28.2, 27.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.37. HRMS (ESI):m/z [M+Na]⁺ calcd. for [C₃₁H₂₆F₃N₃NaO₄S]⁺: 616.1488, found: 616.1505; The enantiomeric excess was determined by **HPLC** with a Chiralpak IA-H column (hexane/i-PrOH=90/10, 1.0 mL·min⁻¹, 254 nm): t_{major}=11.2min, t_{minor}=8.8 min.

Synthesis of Compound 4

To a solution of **3a** (25.9 mg, 0.05 mmol) and anhydrous K_2CO_3 (7.7 mg, 0.055 mmol) in acetone (1 mL) was added CH₃I (7.75mg, 0.055 mmol) at 0 °C. The reaction was stirred overnight and then concentrated under vacuum. The residue mixture was purified by flash column chromatography on silica gel (petroleum ether /ethyl acetate = 4:1) to give compound **4** as white foam.

Compound 4. White foam, 96% yield, >20:1 dr, 99% ee, $[a]_D^{20} = -26.3$ (c=0.23, CH₃OH); ¹H

NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 7.7 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.50 (d, J = 7.4 Hz, 1H), 7.42 (dtd, J = 12.4, 8.0, 1.2 Hz, 2H), 7.31 (t, J = 7.6 Hz, 1H), 7.19 (t, J = 7.2 Hz, 1H), 6.91 (d, J = 7.8 Hz, 1H), 4.33 (q, J = 9.7 Hz, 1H), 3.31 (s, 3H), 2.36 (s, 3H), 1.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 173.4, 172.5, 148.6, 143.5, 140.0, 130.6, 130.4, 129.8, 128.6, 125.5, 124.1, 123.9, 123.8 (q, J = 279.9 Hz), 122.5, 115.1, 108.8, 85.5, 80.4, 69.2, 60.7(q, J = 28.1 Hz), 28.2, 27.0, 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.55. HRMS (ESI):m/z [M+H]⁺ calcd. for [C₂₆H₂₅F₃N₃O₄S]⁺: 532.1512, found: 532.1500.

Synthesis of Compound 5

To a solution of **3a** (22 mg, 0.044mmol) in CH_2Cl_2 (0.5 mL) was added successively aqueous H_2O_2 (30%, 0.19 mL) and aqueous HCOOH (98%, 0.16 mL) at 0 °C. The resulting mixture was stirred for 3 h and then quenched with 1 M aqueous K_2CO_3 and extracted with CH_2Cl_2 (three times). The combined organic layers were dried over Na_2SO_4 . After evaporation of solvent, the product **5** was obtained after purified by flash column chromatography on silica gel (petroleum ether /ethyl acetate 1:1).

Compound 5. White foam, 83% yield, >99% *ee* $[a]_D^{20} = -28.5$ (c=0.16, CH₂Cl₂); ¹H NMR (400

MHz, CDCl₃) δ 8.38 (d, J = 7.7 Hz, 1H), 7.92 (d, J = 8.1 Hz, 1H), 7.62 (d, J = 7.2 Hz, 1H), 7.41 (dd, J = 17.9, 8.0 Hz, 2H), 7.27 (t, J = 7.2 Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 6.69 (s, 1H), 4.34 (q, J = 9.1 Hz, 1H), 3.26 (s, 3H), 1.64 (s, 9H); ¹³C NMR (100 MHz, CDCl₃)

δ 173.4, 172.9, 170.6, 148.5, 143.4, 140.8, 131.5, 130.2, 127.9, 127.1, 125.3, 124.3, 124.1, 123.4 (q, *J* = 281.0 Hz), 122.3, 115.2, 109.2, 85.4, 62.2, 59.6, 56.9 (q, *J* = 29.2 Hz), 28.2, 27.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.84. HRMS (ESI):*m*/*z* [M+Na]⁺ calcd. for [C₂₅H₂₂F₃N₃NaO₅]⁺: 524.1726, found: 524.1725.

S12

S13

¹⁹F NMR of compound **3e** (in CDCl₃)

S21

¹⁹F NMR of compound **3l** (in CDCl₃)

¹³C NMR of compound **3m** (in CDCl₃)

¹⁹F NMR of compound **3m** (in CDCl₃)

¹⁹F NMR of compound **3p** (in CDCl₃)

S33

¹⁹F NMR of compound **4** (in CDCl₃)

5. Copies of HPLC Spectra of compounds

HPLC spectrum of the racemate

信号 1: DAD1 E, Sig=254,8 Ref=360,100

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积
			[
1	9.152	MM R	0.3197	1.21627e4	634.05701	49.9068
2	12.116	MM R	0.4264	1.22082e4	477.23062	50.0932

峰	保留时间	类	型	峰宽	峰面积	峰高	峰面积
#	[min]			[min]	[mAU*s]	[mAU]	olo
1	9.072	MM	R	0.3183	2.66906e4	1397.76685	99.5453
2	12.356	ΜM	R	0.2763	121.91730	7.35455	0.4547

HPLC spectrum of the racemate

峰	保留时间	类型	峰宽	医 峰	面积	峰高	峰面积	
#	[min]		[min]	[mAU*s]		[mAU]	olo
	-					[]		
1	1 8.1	00 MM	R	0.2888	2.66738e	4 15	39.61145	49.8888
	2 9.2	26 MM	R	0.3243	2.67927e	4 13	76.81360	50.1112

峰	保留时间	类型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	00
	-	-				-		
1	L 8.08	3 MM	R	0.2802	3.41125e	4 1	470.91724	98.1812
2	2 9.39	6 MM	R	0.2700	631.929	14	39.00590	1.8188

HPLC spectrum of the racemate

信号 1: DAD1 E, Sig=254,8 Ref=360,100

峰	保留时间	类型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	00
		-						
1	6.59	9 MM	R	0.2274	1.09508e	4 8	302.62402	49.9012
2	8.23	5 MM	R	0.2882	1.09942e	4 6	535.88031	50.0988
		-						

峰伐	呆留时间 类	型	峰宽	峰	面积 峰	高 峰面积	
#	[min]			[min]	[mAU*s]	[mAU]	8
1	6.596	MM	R	0.1851	534.64386	48.13615	2.1839
2	8.170	MM	R	0.3196	2.39468e4	1248.75635	97.8161

HPLC spectrum of the racemate

峰	保留时间	类型	峰	宽 峰	面积	峰高	峰面积	
#	[min]		[min]	[mAU*s]	[]	mAU]	010
	-	-						
	1 6.8	53 M	ΜR	0.2447	1.95047e	4 132	8.61523	50.2875
1	2 9.7	46 M	ΜR	0.3359	1.92817e	4 95	6.58234	49.7125

峰 保留时间 类	型 峰宽	ī」 峰	面积 峰	高 峰面积	
# [min]		[min]	[mAU*s]	[mAU]	010
	-				
1 6.853	MM R	0.1633	14.98331	1.52920	0.0505
2 10.129	MM R	0.3641	2.96773e4	1358.56873	99.9495

HPLC spectrum of the racemate

信号 1: DAD1 E, Sig=254,8 Ref=360,100

峰	呆留时间 类	型 峰	宽 峰	面积	峰高 峰面积	
#	[min]		[min]	[mAU*s]	[mAU]	010
1	7.837	MM R	0.3208	1.25785e4	653.51947	50.1424
2	8.759	MM R	0.3513	1.25071e4	593.29553	49.8576

信号 1: DAD1 E, Sig=254,8 Ref=360,100

峰	保	留时间 类	型	峰宽	峰	面积	峰高	峰面积	
1	#	[min]			[min]	[mAU*s]		[mAU]	010
						[-		
	1	7.946	MM	R	0.2043	310.8237	70	25.35447	0.9205
	2	8.794	MM	R	0.3129	3.34571e4	4 1	782.12634	99.0795

HPLC spectrum of the racemate

峰	保留时间	类型	峰宽	峰	面积	峰高	峰面积	
#	[min]	Ú		[min]	[mAU*s]		[mAU]	010
	-		- -			-		
1	L 13.89	95 MM	R	0.5282	1.37267e	4	433.13150	90.6296
2	2 26.40)7 MM	R	0.6724	1419.225	10	35.17617	9.3704

HPLC spectrum of the racemate

信号 1: DAD1 E, Sig=254,8 Ref=360,100

峰	保留时间	类型	峰	宽 峰	面积	峰高	峰面积	
#	[min]		[min]	[mAU*s]		[mAU]	010
	-							
ĺ	1 11.0	50 MM	R	0.3730	9125.706	05	407.74939	50.0514
2	2 19.9	49 MM	R	0.6495	9106.975	59	233.67581	49.9486

峰	保留时间	类型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	010
	-	-	- -			-		
1	10.96	5 MM	R	0.3857	1.53523e	4	663.36743	99.7175
2	2 19.90	4 MM	R	0.5260	43.500	61	1.37825	0.2825

HPLC spectrum of the racemate

17.856 MM R0.2171577.6411144.340161.394529.697 MM R0.30394.08450e42240.2319398.6055

HPLC spectrum of the racemate

信号 1: DAD1 E, Sig=254,8 Ref=360,100

峰 保留时间 类型 峰宽 峰面积 峰高	峰面积
# [min] [min] [mAU*s]	[mAU] %
1 6.117 MM R 0.2454 1.19174e4 8	309.50934 50.1988
2 7.855 MM R 0.2560 1.18230e4	769.78674 49.8012

峰	保留时间 类	型	峰宽	峰	面积	峰高	峰面积	
#	[min]		[[min]	[mAU*s]		[mAU]	90
	-		-					
	L 6.250	MM	R (0.1799	294.777	07	27.30299	2.6430
4	2 8.013	MM	r (.2398	1.08582e	4	754.74048	97.3570

HPLC spectrum of the racemate

峰	保留时间	类型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	00
	-							
	1 7.25	55 MM	R	0.2341	7999.332	52	569.39673	50.0797
	2 10.10	52 MM	R	0.3507	7973.875	49	379.00204	49.9203

HPLC spectrum of the chiral compound

峰保	、留时间 类	型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	010
			- -			-		
1	7.315	MM	R	0.1901	128.245	18	11.24624	1.4611
2	10.413	MM	R	0.3895	8649.046	88	370.07364	98.5389

HPLC spectrum of the racemate

信号 1: DAD1 E, Sig=254,8 Ref=360,100

峰 保留	时间 类型	峰宽	峰	面积	峰高	峰面积	
# [[min]		[min]	[mAU*s]		[mAU]	olo
		-					
1 2	27.976 MM	R	0.9037	1.09313e	4	201.59564	50.0075
23	33.952 MM	R	0.9953	1.09280e	4	182.98953	49.9925

峰 保留日	时间 类型	峰宽	峰	面积	峰高	峰面积	
# [:	min]		[min]	[mAU*s]	[]	mAU]	00
1 2	7.712 MM	R :	1.2580	3.57338e	4 47	3.40793	99.2913
2 3	4.125 MM	R	0.8665	255.042	97 -	4.90588	0.7087

HPLC spectrum of the racemate

1 5.611 MM R 0.2391 2.93263e4 2044.33374 49.9273 2 7.501 MM R 0.2679 2.94117e4 1829.65417 50.0727

HPLC spectrum of the chiral compound

信号 1: DAD1 E, Sig=254,8 Ref=360,100

峰	保留时间	类型	峰	宽 峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	olo
	-	-						
-	L 5.60	9 MM	R	0.1457	1062.923	22	121.59606	4.8042
2	2 7.43	5 MM	R	0.2542	2.10618e	4 1	381.02710	95.1958

HPLC spectrum of the racemate

信号 1: DAD1 E, Sig=254,8 Ref=360,100

峰	保留时间	类型	峰宽	峰	面积	峰高	峰面积	
#	[min]	Î.		[min]	[mAU*s]		[mAU]	010
	-							
1	1 7.29	93 MM	R	0.2239	8281.918	95	616.56372	50.8883
4	2 11.07	77 MM	R	0.3498	7992.781	25	380.86148	49.1117

信号 1: DAD1 E, Sig=254,8 Ref=360,100

峰	保留时间	类型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	010
	-	-						
	1 7.25	9 MM	R	0.2507	3.27008e	4 2	174.21240	99.6851
2	2 11.12	3 MM	R	0.2680	103.303	05	6.42353	0.3149

HPLC spectrum of the racemate

HPLC spectrum of the chiral compound

信号 1: DAD1 E, Sig=254,8 Ref=360,100

峰	保留时间	类型	峰宽	」 峰	面积	峰高	峰面积	
#	[min]]		[min]	[mAU*s]		[mAU]	010
	-					-		
	1 11.25	52 MM	R	0.4101	3.94065e	4 1	601.40344	99.6376
	2 24.93	34 MM	R	0.6047	143.330	41	3.95034	0.3624

HPLC spectrum of the racemate

信号 1: DAD1 E, Sig=254,8 Ref=360,100

峰保	留时间 类	型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	olo
			- -			-		
1	16.713	MM	R	0.5563	8933.044	92	267.64093	49.6662
2	23.116	ΜM	R	0.7490	9053.111	33	201.45735	50.3338

信号 1: DAD1 E, Sig=254,8 Ref=360,100

峰	保留时间 类	型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	00
	-		-			-		
	16.283	MM	R	0.5489	3.26652e	4	991.77917	95.6135
-	2 22.173	ΜM	R	0.6962	1498.580	44	35.87554	4.3865

HPLC spectrum of the racemate

信号 1: DAD1 G, Sig=280,16 Ref=360,100

峰	保留时间	类型	峰宽	峰	面积	峰高	峰面积	
#	[min]		[min]	[mAU*s]		[mAU]	90
	-					-	·	[]
	1 8.6	63 MM	R	0.3124	3.66421e	4 1	954.87927	50.0110
	2 11.2	09 MM	R	0.3804	3.66259e	4 1	604.69629	49.9890

信号 1: DAD1 G, Sig=280,16 Ref=360,100

峰	保留时间	类型	峰宽	峰	面积	峰高	峰面积	
#	[min]]		[min]	[mAU*s]		[mAU]	olo
	-		-			-		
	1 8.7	70 MM	R	0.1856	130.0166	59	11.67748	0.4715
	2 11.1	87 MM	R	0.3797	2.74425e4	1 1	204.56946	99.5285