Photo-induced, Cu-Catalyzed Three Components

Azidofluoroalkylation of Alkenes with CF₃I and R_fI as

Fluoroalkylation Reagents

Hong Liu,^a Quanping Guo,^a Chao Chen,^b Mengran Wang,^a and Zhaoqing Xu^{a,*}

^aKey Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical

Science, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China.

^bSchool of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School,

Shenzhen 518055, China.

E-mail: zqxu@lzu.edu.cn

Supporting Information

Table of Content:	
1. General information	S2
2. General procedure for the synthesis of alkenes	S2
3.General procedure for the azidofluoroalkylation of alkenes	S 3
4. Synthetic applications	S6
5. The mechanistic studies	S7
6. References	S11
7. Characterization of products	S11
8.NMR spectra of new compounds	S19

1. General information

Unless stated otherwise, all reactions were carried out under an argon atmosphere. All solvents were purified and dried according to standard methods prior to use. ¹H NMR, ¹³C NMR, ¹⁹F NMR, and ³¹P NMR spectra were recorded on a Varian instrument (300 MHz, 75 MHz, 282 MHz, and 121 MHz) spectrometer in CDCl₃ using tetramethylsilane (TMS) as internal standard unless otherwise noted. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad, q = quartet or unresolved, coupling constant(s) in Hz, integration). Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (δ , ppm). High resolution mass spectra (HRMS) were obtained by the ESI or EI ionization sources.

Materials: All other reagents were commercially available and used as received.

2. General procedure for the synthesis of alkenes

2.1 General procedure for the synthesis of alkenes 2a—2f, 2h-2n.¹⁾

In a 100 mL round bottomed flask equipped with a stir bar, methyltriphenylphosphonium bromide (12 mmol, 1.2 equiv) were dissolved with 50 mL THF under Ar atmosphere, *n*-BuLi (2.5 mol/L, 12mmol, 1.2 equiv) were added dropwise under 0 °C, the mixture was stirred for 15 minutes. Aldehyde (10.0 mmol) was dissolved with THF, which was added into reaction, and the mixture continues to stir for 1 h under 0 °C. After the reaction mixture was stirred at room temperature for another 9 h, the mixture was quenched with water and extracted with diethyl ether. The combine organic layer was washed with H₂O and brine ,and dried over by Na₂SO₄. The solvent was removed under reduced pressure, and the residue was chromatographed (*n*-hexane) by silica gel column to give alkenes **2a-2f**, **2h-2n**.

2.2 General procedure for the synthesis of alkene 2g.²⁾

In a 100 mL round bottomed flask equipped with a stir bar, methyltriphenylphosphonium bromide (12 mmol, 1.2 equiv) and K_2CO_3 (20 mmol, 2 equiv) were dissolved with 20 mL 1,4-dioxane, aldehyde (10 mmol) was dissolved with 1,4-dioxane, which was added into the reaction mixture. After the reaction mixture was heated to reflux (110 °C) overnight, the mixture was cooled to room temperature, quenched with water, and extracted with diethyl ether. The combine organic layer was washed with H₂O and brine, and dried over Na₂SO₄. The solvent was removed under reduced pressure, and the residue was chromatographed (*n*-hexane) by silica gel column to give alkene **2g**.

2.3 General procedure for the synthesis of 20.³⁾

1) A mixture of estrone (5 mmol) dissolved in 30 mL DCM was added Et_3N (10 mmol, 2 equiv). Trifluoromethanesulfonic anhydride (5.5 mmol, 1.1 equiv) was added dropwise no less than 9 minutes into the mixture under 0 °C. The reaction mixture was stirred at room temperature for 3 h. The resulting mixture was extracted with DCM, washed with sat. NH₄Cl. The organic layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was directly used in the next step without further purification. 2) The previous crude product, potassium vinyltrifluoroborate (5 mmol), PdCl₂ (0.1 mmol, 0.02 equiv), Ph₃P (0.3 mmol, 0.06 equiv), H₂O (0.6 ml), and Cs₂CO₃ (15 mmol, 3 equiv) were combined in an oven-dried sealing tube. The vessel was evacuated andbackfilled with N₂ (repeated for 3 times), THF (20 mL) were added *via* syringe.The tube was sealed with a

Teflon lined cap and the reaction mixture was placed into a preheated oil bath at 85 °C for 19 h. The mixture was then cooled to room temperature, filtered through a plug of silica and washed with EtOAc. The filtrate was concentratedunder vacuum and purified by flash column chromatography on silica gel(PE: EA = 5:1) to give the product **20**.

3. General procedures for the azidofluoroalkylation of alkenes.

3.1 Optimization of reaction condition.

Table S1. Catalysts screening.^{a)}

Entry	Catalyst	Yield (4a / 4aa) (%) ^{b)}	Entry	Catalyst	Yield (4a / 4aa) $(\%)^{b}$
1	CuI	3/4	7	Cu(OTf) ₂	6/2
2	CuCl	4/3	8	Cu(OAc) ₂	11/4
3	CuBr	5/5	9	$CuCl_2$	5/1
4	CuTc	7/3	10	CuF_2	5/3
5	Cu(MeCN) ₄ PF ₆	18/6	11	Cu(OH) ₂	1/0
6	Cu ₂ O	1/1	12	CuSO ₄	6/3

^{a)}0.1 mmol scale. ^{b)}Based on ¹H NMR analysis using anisole as an internal standard.

^{a)}0.1 mmol scale. ^{b)}Based on ¹H NMR analysis using anisole as an internal standard.

Table S3. Solvents screening.^{a)}

C₄F9I + 1a	+ 2a	${{\rm TMSN_3} \atop {\rm 3}} \frac{{\rm solvent}}{{\rm Cu}({\rm CH_3CN})_4{\rm PF_6}~(10)}\\ {\rm 3} \\ {\rm 3} \\ {\rm 3} \\ {\rm 3} \\ {\rm 25-W,~254~nm~UV}\\ {\rm H_2O}~(2~{\rm equiv})\\ {\rm N_2,~2~h} \\ {\rm N_2,~2~h} \\ {\rm 3} \\ {\rm 100} \\ {\rm 100}$	mol %)) /C	N ₃ C ₄ F ₉ + 4a	C ₄ F ₉ 4aa
Entry	Solvent	Yield (4a / 4aa) (%) ^{b)}	Entry	Solvent	Yield $(4a/4aa) (\%)^{b}$
1	DMSO	30/3	4	acetone	31/4
2	THF	22/9	5	DCM	27/2
3	DMAc	44/0	6	CH ₃ CN	30/1

^{a)}0.1 mmol scale. ^{b)}Based on ¹H NMR analysis using anisole as an internal standard.

C ₄ F ₉ I	+	+ TMSN ₃	hv (254 nm) conditions	N ₃ C ₄ F ₉	+C4F
1a	2	a 3		4a	4aa
	Entry	Catalyst	Amine	Solvent	Yield (%) ^{b)} (4a/4aa)
	1	Cu(OAc) ₂	DIPEA	CH ₃ CN	11/4
	2	Cu(CH ₃ CN) ₄ PF ₆	DIPEA	CH ₃ CN	18/6
	3 inst	other Cu catalysts tead of Cu(CH ₃ CN) ₄	.PF ₆ DIPEA	CH ₃ CN	1/0 - 11/4
	4	Cu(CH ₃ CN) ₄ PF ₆	BDMA	CH ₃ CN	31/1
	5	Cu(CH ₃ CN) ₄ PF ₆	other amines instead of BDMA	CH ₃ CN	12/3 - 18/6
	6	Cu(CH ₃ CN) ₄ PF ₆	BDMA	DMAc	44/0
	7	Cu(CH ₃ CN) ₄ PF ₆	BDMA	other solvents instead of DMAc	22/9 -31/4
	8 ^{c)}	Cu(CH ₃ CN) ₄ PF ₆	BDMA	DMAc	25/5
	9 ^{d)}	Cu(CH ₃ CN) ₄ PF ₆	BDMA	DMAc	60/0
	10 ^{e)}	Cu(CH ₃ CN) ₄ PF ₆	BDMA	DMAc	75(71)/0
	11		BDMA	DMAc	0
	12	Cu(CH ₃ CN) ₄ PF ₆		DMAc	0/10
	13 ^{f)}	Cu(CH ₃ CN) ₄ PF ₆	BDMA	DMAc	0
	14 ^{g)}	Cu(CH ₃ CN) ₄ PF ₆	BDMA	DMAc	0

^{a)} Unless otherwise noted, the reactions were carried out by using **2a** (0.1 mmol), **1a** (3.0 equiv), **3** (3 equiv), amine (3 equiv), H₂O (2 equiv), solvent (1.0 mL), catalyst (10 mol %), under N₂, and stirred at room temperature for 2 hours under UV light irradiation (25-W UVC (254 nm) compact fluorescent light bulbs). ^{b) 1}H NMR yields with anisole internal standard. ^{c)} 2 equiv **3** used. ^{d)} 5 equiv **3** used. ^{e)} 0.25 mL DMAc used; isolated yield in parentheses. ^{f)} 25-W, 365 nm UVC. ^{g)} No light, 24 h at rt or 12 h at 80 °C, respectively.

3.2 General procedures of the azidofluoroalkylation of alkenes

The reactions with $R_f I$. To an oven-dried 10 mL quartz test tube with a magnetic stirring bar was added $Cu(CH_3CN)_4PF_6$ (0.1 mmol, 10 mol %). Then, air was withdrawn and backfilled with Ar (three times). Perfluoroalkyl iodide ($R_f I$, 3 mmol, 3 equiv), alkene (1 mmol) and

azidotrimethylsilane (TMSN₃, 5 mmol, 5 equiv), H₂O (2 mmol, 2 equiv), *N*-benzyldimethylamine (BDMA, 3 mmol, 3 equiv), and 2.5 mL of DMAc, were added in turn by syringe. Thereafter, the test tube was transferred to a UV photoreactor (25 W, see Scheme S1 for details), where it was irradiated at 254 nm for 2 h. Two hours later, the reaction was quenched with water (2 mL), extracted with *n*-hexane, dried over anhydrous sodium sulfate, concentrated in *vacuo* and purified by column chromatography (petroleumether or petroleumether/ethylester 100:1-50:1) to afford the product.

The reaction with CF_3I . To an oven-dried 10 mL quartz test tube with a magnetic stirring bar was added $Cu(CH_3CN)_4PF_6$ (0.1 mmol, 10 mol %), and air was withdrawn and backfilled with Ar. Then, TMSN₃ (5 mmol, 5 equiv), H₂O (2 mmol, 2 equiv), and BDMA (3 mmol, 3 equiv) were added in turn by syringe. To another tube, which was cooled to -78°C, CF₃I (3 mmol, 3 equiv) was condensed via a Dewar type condenser fitted with a needle, and then filled with DMAc (2.5mL). The CF₃I solution was transfer to above quartz test tube and move to the UV photoreactor, where it was irradiated at 254 nm. 2 h later, the reaction was quenched with water, extracted with *n*-hexane, dried over anhydrous sodium sulfate, concentrated in *vacuo* and purified by column chromatography to afford the product.

4.Synthetic applications.⁴⁾

To an oven-dried glass tube, the substrate **4a** (0.2 mmol) was dissolved in THF (l mL), then phenylacetylene (66 μ L, 0.6 mmol) and CuI (12.1 mg, 0.06 mmol) were added. After stirred at 60° C for 4 h, the mixture was concentratedunder vacuum. The residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (10:1 - 4:1) to afford the product**6**.

In a flask, indium powder (48.5 mg, 0.4 mmol) and NH₄Cl (22.6 mg, 0.4 mmol) were added to the above mixture. The mixture was sealed and refluxed for 2 hours. After that, the mixture was diluted with ethyl acetate (5 mL), and filtered through a short pad of celite. The filtrate was concentrated under vacuum. ¹⁹F NMR analysis showed that the corresponding amine product was obtained in 95 % yield. Then, benzyl chloroformate (cbzCl, 32 μ L, 0.22

mmol)and Na₂CO₃ (26.8 mg, 0.25 mmol) were added to the above amine solution in THF (2 mL). After stirred at room temperature for 2 hours, the mixture was diluted with ethyl acetate (10 mL) and washed with diluted hydrochloric acid (10 mL), saturated NaHCO₃ (10 mL), water (10 mL), brine (10 mL) sequentially. The organic layer was concentrated under vacuum. The residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate (20:1 - 8:1) to afford product **7**as a white solid.

LiAlH₄ (0.8 mmol, 4 equiv) was added at room temperature to a solution of **4a** (0.2 mmol) in Et₂O (2 mL). After 5 h reflux, the reaction mixture was carefully quenched with H₂O (36 uL), 15% aq NaOH (108 μ L), and H₂O (36 μ L). After dilution of the residue with ethyl acetate, the mixture was filtered through celite and anhydrous sodium sulfate. The filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford product **8**.

5. The mechanistic study

5.1 Radical inhibition experiments

In order to gain some information on the reaction mechanism, radical inhibition experiments were examined. When radical scavenger TEMPO (2,2,6,6-tetromethyl-1-piperidinyloxy, 4.0 equiv) was added under the standard conditions, the reaction was completely suppressed (eq 1). No **4a** was detected and TEMPO-C₄F₉ product **16** was isolated by column chromatography gave 45% yield. Addition of butylated hydroxytoluene (BHT) led to a dramatic decrease of the yield (eq 2). These results indicated that a radical pathway could be involved. Which suggested that a radical pathway was involved in the current reaction.

(1)
$$1a + 2a + 3 + TEMPO \xrightarrow{\text{cond.}} 4a + (N - OC_4F_9) + (4 \text{ equiv}) = 0\%$$

(2) $1a + 2a + 3 + BHT \xrightarrow{\text{cond.}} 4a + (4 \text{ equiv}) = 32\%$

2,2,6,6-tetramethyl-1-(perfluorobutoxy)piperidine (9), Colorlessliquid; ¹H NMR (300 MHz, CDCl₃) δ 1.57-1.63 (m, 6H), 1.18 (s, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 61.88, 40.42, 33.43, 20.63, 16.78.

¹⁹**F** NMR (282 MHz, CDCl₃) δ -78.81—-78.86 (m, 2F), -81.03 (t, J = 9.6 Hz, 3F), -124.51—-124.62 (m, 2F), -126.05—126.13 (m, J = 3.4 Hz, 2F). HRMS (ESI): C₁₃H₁₈F₉NO+Na⁺ Calcd: 398.2630, Found: 398.2503.

5.2 Control experiments

To further prove the reaction as a multicomponent reaction, control experiment was carried out. Under the standard conditions, in the absence of TMSN₃, no iodoperfluorobutylation product could be observed, and the *p*-methylstyrene (**2a**) was mostly consumed, thus questioning vinyl iodides as effective intermediates in these transformations.

To explore the influence of BDMA in the reaction, control experiment was carried out. Under the standard conditions, in the absence of BDMA, no **4a** were observed, whereas the iodoperfluoroalkylation product **4aa** was obtained in 10% yield and *p*-methylstyrene (**2a**) was mostly consumed. Furthermore, to explore the influence of bases, a series of inorganic bases were used instead of DIPEA.However, no **4a** or **4aa** were observed, and *p*-methylstyrene (**2a**) was mostly consumed. The negative results demonstrated the importance of BDMA in this reaction.

1a + 2a + 3
$$\xrightarrow{\text{without BDMA}}$$
 4a + C_4F_9
stand. cond. 0% 4aa, 10%

Finally, the cross coupling between 4aa and TMSN₃ was proceeded under the standard conditions and gave the azidofluoroalkylation product 4a in 33% yield.

1-methyl-4-(3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohexyl)benzene (4aa), colorless liquid;

¹**H** NMR (300 MHz, CDCl₃) δ 7.32 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 7.8 Hz, 2H), 5.50 (dd, J = 5.1,9.6 Hz, 1H), 3.05–3.40 (m, 2H), 2.32 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃) δ 139.85, 138.62, 129.60, 126.58, 42.39 (t, *J* = 20.3 Hz), 21.25, 16.99.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.00—-81.08 (m, 3F), -112.05—-115.56 (m, 2F), -124.45— -124.56 (m, 2F), -125.91—- 126.01 (m, 2F).

HRMS (EI): C₁₃H₁₈F₉NO Calcd: 463.9683, Found: 463.9665

S9

5.3 Proposed mechanism

Although the mechanism of this transformation is not completely clear yet, on the basis of our mechanistic studies and previous reports, a plausible mechanism was proposed. Firstly, Cu^{I} was excited to its triplet state $[Cu^{I}]^{*}$ under UV light irradiation. $R_{f}I$ was converted into $\cdot R_{f}$ and Γ through oxidative quenching of $[Cu^{I}]^{*}$ along with Cu^{II} . Cu^{II} was reduced by BDMA and formed an amine radical cation and Cu^{I} . In the meanwhile, $\cdot R_{f}$ attacked alkene to give the radical intermediate **A**, which was coupled with TMSN₃ with assistance of above *in situ* formed amine radical cation (*path I*). At this stage, the radical propagation pathway of **A** with TMSN₃ cannot be completely ruled out at this stage (*path II*). However, the results in the mechanistic studies disfavour this hypothesis. Unstable species TMS⁺ and Γ undergo rapid hydrolysis and then neutralized by amine, which promoted a completed conversion. Alternatively, the the oxidation of alkyl radical **A** by Cu(II) forms an alkyl cation, followed by the addition of N₃ anion that results from the coupling of I- with TMSN₃ may also account for the reaction.

6. References

[1] T. Ramnial, S. A. Taylor, M. L. Bender, B. Gorodetsky, P. T. K. Lee, D. A. Dickie, B. M. McCollum, C. C. Pye, C. J. Walsby and J. A. C. Clyburne, *J. Org. Chem.* 2008, **73**, 801.

[2] J. Zhang and Y. Tang, Adv. Synth. Catal. 2016,358, 752.

[3] L. Crespin, L. Biancalana, T. Morack, D. C. Blakemore and S. V. Ley, *Org. Lett.* 2017, **19**, 1084.

[4]a) F. Wang, X. Qi, Z. Liang, P. Chen, G. Liu, *Angew. Chem. Int.Ed.* 2014, **53**, 1881.b) K. Kuroda, Y. Hayashi and T. Mukaiyama. *Tetrahedron*, 2007, **63**, 6358.

7. Characterization of products

1-(1-azido-3,3,4,4,5,5,6,6,6-nonafluorohexyl)-4-methylbenzene (4a), 269.1mg, yield: 71%. Colourlessliquid.

¹**H NMR** (300 MHz, CDCl₃) δ 7.23 (s, 4H), 3.87 (dd, *J* = 4.6, 9.6 Hz, 1H), 2.35–2.65 (m, 2H), 2.33 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃) δ 139.04, 135.00, 129.87, 126.57, 58.67, 37.24 (t, *J* = 21.8 Hz), 21.15.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.02– -81.12 (m, 3F), -113.52– -113.65 (m,2F), -124.45– -124.58(m, 2F), -125.90– -126.01 (m, 2F).

HRMS (EI): C₁₃H₁₀F₉N₃Calcd: 379.0731, Found: 379.0737.

(1-azido-3,3,4,4,5,5,6,6,6-nonafluorohexyl)benzene (4b), 255.5mg, yield: 70%. Light yellow liquid.

¹**H NMR** (300 MHz, CDCl₃) δ 7.26–7.44 (m, 5H), 4.89 (dd, *J* =4.8, 8.1Hz, 1H), 2.36 – 2.70 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 138.16, 129.20, 129.04, 126.61, 58.96, 37.36(t, *J* = 20.3 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.35 --81.42 (m, 3F), -113.64 - -113.75 (m, 2F), -124.63 - -124.74 (m, 2F), -126.10 - -126.19 (m, 2F).

HRMS (EI): C12H8F9N3Calcd: 365.0573, Found: 365.0569.

1-(1-azido-3,3,4,4,5,5,6,6,6-nonafluorohexyl)-4-fluorobenzene (4c), 271.9mg, yield: 71%. Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.30–7.36 (m,2H), 7.10(t, *J* =8.7Hz, 2H), 4.89 (dd, *J* =5.4, 8.1Hz, 1H), 2.34 – 2.70 (m, 2H).

¹³**C NMR** (75 MHz, CDCl₃) δ 162.92 (d, J = 246.8 Hz), 133.98 (d, J = 3.0 Hz), 136.15 (d, J = 21 Hz), 116.15 (d, J = 21 Hz), 58.30, 37.39 (t, J = 20.3 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.39 - -81.47 (m, 3F), -112.48 (s, 1F), -113.59 - -113.72 (m, 2F), -124.68 - -124.78 (m, 2F), -126.14 - -126.26 (m, 2F).

HRMS (EI): C₁₂H₇F₁₀N₃Calcd: 383.0480, Found: 383.0476.

1-(1-azido-3,3,4,4,5,5,6,6,6-nonafluorohexyl)-4-(trifluoromethyl)benzene (4d), 307.4mg, yield: 71%.

Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* =8.1Hz, 2H), 7.49(d, *J* =8.1Hz, 2H), 4.98 (dd, *J* =4.8, 7.8Hz, 1H), 2.36 – 2.72 (m, 2H).

¹³**C NMR** (75 MHz, CDCl₃) δ 142.08, 131.33 (dd, *J* =4.8, 7.8Hz),127.03, 126.22 (dd, *J* =3.7, 7.4Hz), 123.72 (dd, *J* =270.5, 541.0Hz), 58.49, 37.45(t, *J* = 21.0 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ-63.12 (s, 3F), -81.33 – -81.41(m, 3F), -113.45 – -113.56 (m, 2F), -124.61 – -124.70(m, 2F), -126.10 – -126.22(m, 2F).

HRMS (EI): C₁₃H₇F₁₂N₃Calcd: 433.0448, Found: 433.0452.

1-(1-azido-3,3,4,4,5,5,6,6,6-nonafluorohexyl)-4-(tert-butyl)benzene (4e), 319.9mg, yield: 76%.

Light yellow liquid.

¹**H NMR** (300 MHz, CDCl₃) δ 7.44 (d, *J* =7.2Hz, 2H), 7.27(t, *J* =8.1Hz, 2H), 4.88 (dd, *J* =4.2, 8.4Hz, 1H), 2.37 - 2.71 (m, 2H), 1.33 (s, 9H).

¹³**C** NMR (75 MHz, CDCl₃) δ 152.15, 135.15, 126.27, 126.12, 58.62, 37.33(t, J = 21 Hz), 34.65, 31.17.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.15 - -81.18 (m, 3F), -113.68 - -113.78 (m, 2F), -124.55 - -124.58 (m, 2F), -125.99 (s, 2F).

HRMS (EI): C₁₆H₁₇F₉N₃Calcd: 421.1201, Found: 421.1205.

1-(1-azido-3,3,4,4,5,5,6,6,6-nonafluorohexyl)-4-methoxybenzene (**4f**), 284.4mg, yield: 72%.

Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.27 (d, *J* =8.4Hz, 2H),6.94 (d, *J* =8.4Hz, 2H), 4.86 (dd, *J* =5.4, 7.8Hz, 1H), 3.81 (s, 3H), 2.35 - 2.70 (m, 2H).

¹³**C NMR** (75 MHz, CDCl₃) δ 160.06, 129.99, 127.96, 114.47, 58.46, 55.19, 37.20 (t, *J* = 21.0 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.20 – -81.29 (m, 3F), -113.64 – -113.72 (m, 2F), -124.59 – -124.67 (m, 2F), -126.03 – -126.14 (m, 2F).

HRMS (EI): C13H10F9N3OCalcd: 395.0680, Found: 395.0676.

4-(1-azido-3,3,4,4,5,5,6,6,6-nonafluorohexyl)benzonitrile (4g),241.8mg, yield: 62%. Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.75 (d, J = 8.4Hz, 2H),7.51 (d, J = 8.1Hz, 2H), 5.00 (dd, J = 5.4, 8.1Hz, 1H), 2.36 - 2.73 (m, 2H).

¹³**C** NMR (75 MHz, CDCl₃) δ 143.19, 133.04, 127.47, 118.05, 113.10, 58.46, 37.37(t, *J* = 20.3 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.14 - -81.21(m, 3F), -113.19 - -113.35 (m, 2F), -124.45 - -124.55 (m, 2F), -126.00 - -126.10 (m, 2F).

HRMS (EI): C₁₃H₇F₉N₄Calcd: 390.0527, Found: 390.0532.

4h

1-(1-azido-3,3,4,4,5,5,6,6,6-nonafluorohexyl)-2-methylbenzene (4h), 269.1mg, yield: 71%. Light yellow liquid.

¹**H NMR** (300 MHz, CDCl₃) δ 7.35–7.39 (m, 1H), 7.19–7.30 (m, 3H), 5.18 (dd, *J* =4.2, 8.7Hz, 1H), 2.33 – 2.69 (m, 2H), 2.32(s, 3H).

¹³**C NMR** (75 MHz, CDCl₃) δ 136.44, 134.93, 131.21, 128.74, 126.93, 126.16, 55.22, 36.75(t, *J* = 20.3 Hz), 18.88.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.29 - -81.36 (m, 3F), -114.01 - -114.04 (m, 2F), -124.60 - -124.67 (m, 2F), -126.07 - -126.09 (m, 2F).

HRMS (EI): C13H10F9N3Calcd: 379.0731, Found: 379.0735.

1-(1-azido-3,3,4,4,5,5,6,6,6-nonafluorohexyl)-3-methylbenzene (4i), 246.4 mg, yield: 65%. Light yellow liquid.

¹**H NMR** (300 MHz, CDCl₃) δ 7.27–7.33 (m, 1H), 7.11–7.22 (m, 3H), 4.86 (dd, *J* =4.5, 8.4Hz, 1H), 2.40 – 2.70 (m, 2H), 2.38 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃) δ 139.11, 138.09, 129.81, 129.08, 127.25, 123.63, 58.93, 37.36(t, *J* = 20.3 Hz), 21.30.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.21 – -81.28 (m, 3F), -113.66 – -113.71 (m, 2F), -124.55 – -124.65 (m, 2F), -126.00 – -126.10 (m, 2F).

HRMS (EI): C₁₃H₁₀F₉N₃Calcd: 379.0731, Found: 379.0736.

1-(1-azido-3,3,4,4,5,5,6,6,6-nonafluorohexyl)-3-fluorobenzene (4j), 229.8mg, yield: 60%. Light yellow liquid.

¹**H NMR** (300 MHz, CDCl₃) δ 7.36–7.44 (m, 1H), 7.05–7.12 (m, 3H), 4.91 (dd, *J* =5.1, 8.1Hz, 1H), 2.35 – 2.69 (m, 2H).

¹³**C NMR** (75 MHz, CDCl₃) δ 163.08 (d, *J* =246.8 Hz), 140.58 (d, *J* =6.8 Hz), 130.90 (d, *J* =8.3 Hz), 122.29 (d, *J* =3.0 Hz), 116.08 (d, *J* =21 Hz), 113.69 (d, *J* =22.5 Hz), 58.42, 37.41(t, *J* = 20.3 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.19 - -81.26 (m, 3F), -111.20 (s, 1F), -113.48 - -113.59 (m, 2F), -124.52 - -124.62 (m, 2F), -126.00 - -126.10 (m, 2F).

HRMS (EI): C₁₂H₇F₁₀N₃Calcd: 383.0483, Found: 383.0481.

2-(1-azido-3,3,4,4,5,5,6,6,6-nonafluorohexyl)pyridine (4k), 223.3mg, yield: 61%. Light yellow liquid.

¹**H NMR** (300 MHz, CDCl₃) δ 8.63 - 8.66 (m, 1H),7.73 - 7.80 (m, 1H), 7.40 (d, *J* =8.1Hz, 1H), 7.27 - 7.33 (m, 1H), 4.87 (dd, *J* =4.8, 8.4Hz, 1H), 2.59 - 3.08 (m, 2H).

¹³**C** NMR (75 MHz, CDCl₃) δ 156.68, 149.90, 137.30, 123.63, 121.75, 59.02, 35.02(t, *J* = 20.3 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.12 - -81.19 (m, 3F), -112.39 - -114.51 (m, 2F), -124.47 - -124.57 (m, 2F), -125.96 - -126.97 (m, 2F).

HRMS (EI): C₁₁H₇F₉N₄Calcd: 366.0527, Found: 366.0521.

5-(1-azido-3,3,4,4,5,5,6,6-nonafluorohexyl)benzo[d][1,3]dioxole (41),265.9mg, vield: 65%.

Light yellow liquid.

¹**H NMR** (300 MHz, CDCl₃) δ 6.82 (s, 3H),6.00 (s, 2H), 4.83 (dd, J = 5.1, 7.8Hz, 1H), 2.31 -2.66 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) & 148.45, 148.20, 131.78, 120.57, 108.54, 106.71, 101.49, 58.78, 37.32(t, J = 21.0 Hz).

¹⁹F NMR (282 MHz, CDCl₃) δ -81.1 - -81.20 (m, 3F), -113.58 - -113.70 (m, 2F), -124.54 --124.61 (m, 2F), -125.97 – -126.07 (m, 2F).

HRMS (EI): C₁₃H₈F₉N₃O₂Calcd: 409.0473, Found: 409.0471.

4-(1-azido-3,3,4,4,5,5,6,6,6-nonafluorohexyl)-1,2-dimethoxybenzene (4m), 242.3mg, yield: 57%.

Light yellow liquid.

¹**H NMR** (300 MHz, CDCl₃) δ 6.90 (s, 2H), 6.84 (s, 1H), 4.86 (dd, J = 4.8, 8.1Hz, 1H), 3.92 (s, 3H), 3.90 (s, 3H), 2.36 - 2.70 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 149.52, 130.44, 119.18, 111.20, 109.30, 58.79, 55.95, 55.89, 37.35(t, J = 20.3 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.07 - -81.14 (m, 3F), -113.57 - -113.68 (m, 2F), -124.48 --124.55 (m, 2F), -125.93 – -126.02(m, 2F).

HRMS (EI): C14H12F9N3O2Calcd: 425.0786, Found: 425.0784.

1-(1-azido-3,3,4,4,5,5,6,6,6-nonafluorohexyl)-3-methoxybenzene (4n), 225.2mg, yield: 57%.

Light yellow liquid.

¹**H NMR** (300 MHz, CDCl₃) δ 7.34 (t, *J* =8.1Hz, 1H),6.87 - 6.94(m, 3H), 4.87 (dd, *J* =4.8, 8.4Hz, 1H), 3.83 (s, 3H), 2.36 - 2.69 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 160.17, 139.64, 130.32, 118.74, 114.22, 112.39, 58.83, 55.25, 37.37(t, J = 21.0 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.13 - -81.20 (m, 3F), -113.57 - -113.69 (m, 2F), -124.50 --124.60 (m, 2F), -125.96 - -126.06(m, 2F).

HRMS (EI): C₁₃H₁₀F₉N₃O Calcd: 395.0680, Found: 395.0677

(8R,9S,13S,14S)-3-(1-azido-3,3,4,4,5,5,6,6,6-nonafluorohexyl)-13-methyl-7,8,9,11,12,13,1 5,16-octahydro-6H-cyclopenta[a]phenanthren-17(14H)-one (40), 384.3mg, yield: 71%, d.r. > 20:1.Colourlessliquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.34 (d, J = 8.1 Hz, 1H), 7.10 (t, J = 8.4 Hz, 2H), 4.85 (dd, J = 4.5, 8.4 Hz, 1H), 2.94 (dd, J = 3.9, 8.7 Hz, 2H), 2.40–2.57 (m, 4H), 2.31–2.36 (m, 1H), 1.96–2.19(m, 4H), 1.43–1.68 (m, 6H), 0.93 (s, 3H).

¹³**C** NMR (75 MHz, CDCl₃) δ 140.78, 137.54, 135.55, 127.15, 126.23, 123.88, 58.62, 50.46, 47.92, 44.34, 37.94, 37.26 (t, *J* = 21.0 Hz), 35.80, 31.54, 29.70, 29.38, 26.32, 25.62, 21.56, 13.79.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.05– -81.12 (m, 3F), -111.17– -113.71 (m, 2F), -124.47– -124.58 (m, 2F), -125.90– -126.00 (m, 2F).

HRMS (EI): C₂₄H₂₄F₉N₃O Calcd: 541.1716, Found: 541.1714.

1-(1-azido-3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-4-methylbenzene (5a),263.5mg, yield: 55%.

Light yellow liquid.

¹**H NMR** (300 MHz, CDCl₃) δ 7.23 (s, 4H), 4.87 (dd, *J* =4.8, 8.4Hz, 1H), 2.40 – 2.70 (m, 2H), 2.36 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃) δ 139.03, 135.07, 129.84, 126.55, 58.72, 37.35(t, *J* = 21.0 Hz), 21.03.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.01 – -81.09 (m, 3F), -113.40 – -113.52 (m, 2F), -121.89 – -121.97 (m, 2F), -122.99 – -123.06 (m, 2F), -123.66 – -123.77 (m, 2F), -126.27 – -126.43 (m, 2F).

HRMS (EI): C₁₅H₁₀F₁₃N₃Calcd: 479.0667, Found: 479.0662.

1-(1-azido-3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)-4-methylbenzene (5b), 289.5mg, yield: 50%.

Light yellow liquid.

¹**H NMR** (300 MHz, CDCl₃) δ 7.22 (s, 4H), 4.86 (dd, *J* =4.8, 8.1Hz, 1H), 2.40 – 2.70 (m, 2H), 2.36 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃) δ 139.01, 135.11, 129.82, 126.53, 58.73, 37.35(t, *J* = 21.0 Hz), 20.95.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.21 - -81.28 (m, 3F), -113.50 - -113.60 (m, 2F), -121.81 - -123.78 (m, 10F), -126.43 - -126.56 (m, 2F).

HRMS (EI): C₁₇H₁₀F₁₇N₃Calcd: 579.0603, Found: 579.0608.

1-(1-azido-3,3,3-trifluoropropyl)-4-methylbenzene (5c),126 mg, yield: 55%. Light yellow liquid. ¹**H NMR** (300 MHz, CDCl₃) δ 7.20 (s, 4H),4.73 (dd, *J* =5.4, 8.4 Hz, 1H), 2.40 - 2.67 (m, 2H), 2.35 (s, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 139.03, 134.63, 129.84, 127.17, 125.33 (q, *J* = 275.3 Hz),

59.71 (d, *J* = 3.8 Hz), 40.29 (dd, *J* = 27.8, 56.3 Hz), 21.12.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -64.08.

HRMS (EI):C₁₀H₁₀F₃N₃Calcd: 229.0827, Found: 229.0823.

1-(1-azido-3,3,3-trifluoropropyl)-4-(tert-butyl)benzene (5d), 143.6 mg, yield: 53%. Light yellow liquid.

¹**H NMR** (300 MHz, CDCl₃) δ 7.43 (d, *J* =8.1 Hz, 2H),7.24 (d, *J* =8.4 Hz, 2H), 4.75 (dd, *J* =4.2, 8.7 Hz, 1H), 2.42 - 2.68 (m, 2H), 1.32 (s, 9H).

¹³**C** NMR (75 MHz, CDCl₃) δ 152.14, 134.73, 126.35, 126.08, 125.36 (q, *J* = 275.3 Hz), 59.63 (d, *J* = 3 Hz), 40.34 (dd, *J* = 27.8, 56.3 Hz), 34.67, 31.22.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -64.15.

HRMS (EI):C₁₃H₁₆F₃N₃Calcd: 271.1296, Found: 271.1291.

1-(1-azido-3,3,3-trifluoropropyl)-4-fluorobenzene (5e),116.5mg, yield: 50%. Light yellow liquid.

¹**H NMR** (300 MHz, CDCl₃) δ 7.29-7.34 (m, 2H),7.11 (t, *J* =8.4 Hz, 2H), 4.78 (dd, *J* =5.4, 8.1 Hz, 1H), 2.37 - 2.71 (m, 2H).

¹³**C NMR** (75 MHz, CDCl₃) δ 162.90 (d, J = 246.8 Hz), 133.53 (d, J = 3 Hz), 128.55 (d, J = 8.3 Hz), 125.12 (q, J = 276 Hz), 116.20 (d, J = 21.8 Hz), 59.26 (d, J = 3 Hz), 40.45 (dd, J = 27.8, 55.5 Hz).

¹⁹**F** NMR (282 MHz, CDCl₃) δ -64.05, -122.2 (d, J = 2.0 Hz).

HRMS (EI):C₉H₇F₄N₃Calcd: 233.0576, Found: 233.0573.

(**1-azido-3,3,3-trifluoropropyl)benzene** (**5f**),96.8mg, yield: 45%. Light yellow liquid.

¹**H NMR** (300 MHz, CDCl₃) δ 7.24-7.46 (m, 5H),4.78 (dd, *J* =3.3, 8.7 Hz, 1H), 2.40 – 2.72 (m, 2H).

¹³**C NMR** (75 MHz, CDCl₃) δ 137.67, 129.20, 129.09, 126.69, 125.26 (q, *J* = 276 Hz), 59.91 (d, *J* = 3 Hz), 40.38 (dd, *J* = 28.5, 56.3 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -64.09.

HRMS (EI):C₉H₈F₃N₃Calcd: 215.0670, Found: 215.0675.

5g

ethyl 4-azido-2,2-difluoro-4-(p-tolyl)butanoate (5g), 121mg, yield: 42%. Colourless liquid.

¹**H NMR** (300 MHz, CDCl₃) δ7.26 (s, 4H), 4.76 (dd, *J* = 9.6, 4.5 Hz, 1H), 4.27-7.35 (m, 2H), 2.63–2.83 (m, 1H), 2.43–2.55 (m, 1H), 2.40 (s, 3H), 1.39 (t, *J* = 7.2 Hz, 3H).

¹³**C** NMR (75 MHz, CDCl₃) δ 163.56 (t, *J* = 32.3 Hz), 138.92, 134.75, 129.74, 126.80, 114.60 (t, *J* = 248.3 Hz), 63.00 (d, *J* = 14.3 Hz), 59.79 (d, *J* = 3.8 Hz), 40.98 (t, *J* = 23.3 Hz), 21.14 (d, *J* = 7.5 Hz), 13.82 (d, *J* = 7.5 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -102.00– -107.45 (m).

HRMS (ESI): C₁₃H₁₅F₂N₃O₂+Na⁺ Calcd: 306.1030, Found: 306.1031.

benzyl (3,3,4,4,5,5,6,6,6-nonafluoro-1-(p-tolyl)hexyl)carbamate (6), 93.3mg, yield: 97%. Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.93 (s, 1H),7.78 (d, J = 8.4Hz, 2H), 7.25 – 7.35 (m, 5H), 7.13 (d, J = 7.8Hz, 2H), 6.05 (dd, J = 5.4, 7.8Hz, 1H), 3.68 – 3.88 (m, 1H), 2.96 – 3.16 (m, 1H), 2.28 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃) δ 148.02, 139.33, 134.83, 130.43, 129.97, 128.79, 128.24, 126.73, 125.74, 119.88, 58.12, 36.05 (t, *J* = 20.3Hz), 20.92.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.23 - -81.31 (m, 3F), -112.51 - -115.59 (m, 2F), -124.43 - -124.48 (m, 2F), -126.03 - -126.10 (m, 2F).

HRMS (**ESI**):C₂₁H₁₈F₉NO₂+H⁺Calcd: 482.1268, Found: 482.1273.

benzyl (3,3,4,4,5,5,6,6,6-nonafluoro-1-(p-tolyl)hexyl)carbamate (7), 85.7mg, yield: 88%. Light yellow liquid.

¹**H** NMR (300 MHz, CDCl₃) δ 7.30 (s, 5H),7.16 (s, 4H), 5.38 (s, 1H), 5.17 (d, *J* = 5.7Hz,1H), 5.07 (s, 2H), 2.43 - 2.72 (m, 2H), 2.33 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 155.27, 138.02, 137.59, 136.13, 129.69, 128.51, 128.20, 128.12, 126.12, 67.06, 49.15, 36.66, 21.05.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.05 - -81.13 (m, 3F), -113.37 - -113.45 (m, 2F), -124.47 - -124.50 (m, 2F), -125.91 - -125.99 (m, 2F).

HRMS (ESI):C₂₁H₁₈F₉NO₂+H⁺Calcd: 488.1257, Found: 488.1267.

3,3,4,4,5,5,6,6,6-nonafluoro-1-(p-tolyl)hexan-1-amine (8), 57.9mg, yield: 82%.Light yellow liquid.

¹**H NMR** (300 MHz, CDCl₃) δ 7.27 (d, *J* =8.1Hz, 2H), 7.17 (d, *J* =7.8Hz, 2H), 4.47 (dd, *J* =4.5, 7.8Hz, 1H), 2.41–2.53 (m, 2H), 2.34 (s, 3H), 1.69 (s, 2H).

¹³**C NMR** (75 MHz, CDCl₃) δ 141.40, 137.57, 129.50, 126.03, 49.39, 40.08 (t, *J* = 21.0Hz), 21.02.

¹⁹**FNMR** (282 MHz, CDCl₃) δ -81.10 - -81.17(m, 3F), -112.05 - -114.83 (m, 2F), -124.64 - -124.71 (m, 2F), -125.95 - -126.02 (m, 2F).

HRMS (ESI):C₁₃H₁₂F₉N+H⁺Calcd: 354.0888, Found: 354.0885.

8. NMR spectra of new compounds

|--|

S24

S26

4g ¹H NMR (300 MHz, CDCl₃)

4j ¹³C NMR (75 MHz, CDCl₃)

ppm

 N_3 C₄F₉ **4k** ¹**H NMR** (300 MHz, CDCl₃)

5 1.00 9 8 7 4 2 6 1.05 w 0 ppm i 0.99 1.02 1.02 0.1 -77.41 -76.99 -76.57 35.29 35.02 34.74 N_3 _C₄F₉ 4k ¹³C NMR (75 MHz, CDCl₃) 0 ppm 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

S36

S51

