Supporting Information-I:

Scaffold diversity-oriented synthesis of limonoid dimers: discovery of an axially chiral agent

with *in vivo* anti-breast cancer activity

Wan-Shan Li, ^{‡a} Yang Yang, ^{‡b} Jun-Jun Liu,^d Li Shen, ^{*a} Zhi Shi^{*b} and Jun Wu^{*c}

^a Marine Drugs Research Center, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, P. R. China

^b Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, P. R. China

^c School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, P. R. China

^d School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China

[‡]These authors contributed equally

¹H, ¹³C NMR data and cytotoxic assay results for 1, 2–4, 2'–4', 5a, and 5b (Tables S1–S6),

Optimized coordinates of compounds (Tables S7–S14), Figures S1–S2, and X-ray

crystallographic data of 1, 2, 2', 3, 4', 5a and 5b

Table of Contents:

Table S1. ¹H (400 MHz) and ¹³C NMR (100 MHz) Data for Compound **1** (δ in ppm, J in Hz).....(S3–S4) **Table S2.** ¹H (400 MHz) and ¹³C NMR (100 MHz) Data for Compounds **2**, **2'** (δ in ppm, J in Hz).....(S5–S6) **Table S3.** ¹H (400 MHz) and ¹³C NMR (100 MHz) Data for Compounds **3**, **3'** (δ in ppm, *J* in Hz).....(S7–S10) **Table S4.** ¹H (400 MHz) and ¹³C NMR (100 MHz) Data for Compounds 4, 4' (δ in ppm, J in Hz).....(S11–S14) **Table S5.** ¹H (400 MHz) and ¹³C NMR (100 MHz) Data for Compounds **5a-b** (δ in ppm, J in Hz).....(S15–S16)

 Table S6. Cytotoxic assay results for 1-6 against six human tumor cells

 Table S7. Optimized coordinates of compound **2** at B3LYP/6-31G(d) level in CH₃CN.....(S18–S20) Table S8. Optimized coordinates of (P)-configured 2 at B3LYP/6-31G(d) level in CH₃CN······(S21-S23) **Table S9.** Optimized coordinates of compound **2'** at B3LYP/6-31G(d) level in CH₃CN.....(S24–S26) **Table S10.** Optimized coordinates of (P)-configured 2' at B3LYP/6-31G(d) level in CH₃CN.....(S27–S29) **Table S11.** Optimized coordinates of compound **4**' at B3LYP/6-31G(d) level in CH₃CN.....(S30–S32) **Table S12.** Optimized coordinates of (P)-configured 4' at B3LYP/6-31G(d) level in CH₃CN.....(S33–S35) Table S13. Optimized coordinates of compound 5a at B3LYP/6-31G(d) level in CH₃CN.....(S36-S38) **Table S14.** Optimized coordinates of compound **5b** at B3LYP/6-31G(d) level in CH₃CN.....(S39–S41) Figure S2. ECD spectra of 2 and 2'.....(S43)

Position	$\delta_{ m H}{}^{ m a}$	$\delta_{ m C}{}^{ m a}$	$\delta_{ extsf{H}}^{ extsf{b}}$	δ_{c}^{b}
1		90.8 qC		89.9 qC
2		80.4 qC		79.9 qC
3	4.82 s	89.7 CH	5.03 s	90.1 CH
4		43.5 qC		43.1 qC
5	2.76 br s	44.0 CH	2.89 br s	44.7 CH
6	4.47 d (4.0)	70.9 CH	4.49, s	71.8 CH
7		175.6° qC		175.1 qC
8		132.0 qC		131.1 qC
9	2.68 m	45.5 CH	2.86 m	46.1 CH
10		48.2 qC		48.0 qC
11α	1.78 m	40.7.011	1.87 m	20.1 CH ₂
11β	1.59 m	19.7 CH ₂	1.59 m	
12α	1.25 m		1.42 br d (12.0)	30.8 CH ₂
12β	1.57 m	30.9 CH ₂	1.74 br d (14.0)	
13		38.8 qC		39.1 qC
14		145.1 qC		146.4 qC
15α	3.90 dd (21.2, 4.4)		3.89 br s	36.6 CH ₂
15β	3.66 d (21.2)	36.6 CH2	3.89 br s	
16		168.7 qC		168.6 qC
17	5.37 s	80.1 CH	5.40 s	80.2 CH
18	1.09 s	19.4 CH ₃	1.18 s	19.3 CH ₃

Table S1. ¹H (400 MHz) and ¹³C NMR (100 MHz) Data for Compound **1** (δ in ppm, J in Hz)

19	1.25 s	19.3 CH ₃	1.37 s	19.3 CH ₃
20		120.5 qC		120.2 qC
21	7.76 br s	142.1 CH	7.45 br s	141.1 CH
22	6.56 br s	110.3 CH	6.41 br s	109.6 CH
23	7.75 br s	144.4 CH	7.45 br s	143.5 CH
28	0.90 s	15.5 CH₃	0.97 s	15.2 CH₃
29a	2.59 d (10.4)	40.5.011	2.70 d (10.8)	
29b	1.83 d (10.4)	42.5 CH ₂	1.92 d (10.8)	42.8 C⊓ ₂
30		198.0 qC		197.9 qC
7-OMe-31	3.57 s	52.5 CH₃	3.76 s	53.3 CH₃
1-isobutyryloxy				
32		175.7 qC		176.8 qC
33	2.50 m	33.7 CH	2.56 m	33.9 CH
34	1.05 d (7.2)	19.2 CH₃	1.14 d (7.2)	18.9 CH₃
35	1.03 d (7.2)	19.6 CH₃	1.13 d (7.2)	19.0 CH₃
3-isobutyryloxy				
36		175.6 ° qC		175.6 qC
37	2.17 m	33.6 CH	2.27 m	33.8 CH
38	1.01 d (7.2)	20.1 CH ₃	1.09 d (7.2)	19.9 CH ₃
39	0.95 d (7.2)	18.3 CH₃	1.08 d (7.2)	17.9 CH ₃
2-OH	5.54 s		4.49 br s	
6-OH	5.71 d (4.0)		2.92 br s	

^aRecorded in DMSO-*d*₆. ^bRecorded in CDCI₃. ^c Overlapped signals assigned by ¹H–¹H COSY, HSQC, and HMBC spectra without designating multiplicity.

	2		2'	
Position	δ_{H}	δc	$\delta_{ m H}$	δc
1/1'		91.3 qC		92.1 qC
2/2'		81.4 qC		82.1 qC
3/3'	5.23 s	88.3 CH	5.34 s	86.5 CH
4/4'		43.7 qC		44.3 qC
5/5'	3.09 s	45.1 CH	3.16 d (10.8)	39.3 CH
6a/6a'	4.57 hr o	71.9 CH	2.34 dd (16.4, 10.8)	34.0 CH ₂
6b/6b'	4.57 Dr S		2.44 d (16.4)	
7/7'		175.5ª qC		173.8 qC
8/8'		134.8 qC		135.4 qC
9/9'	3.06 m	46.6 CH	2.87 dd (9.2, 6.4)	45.4 CH
10/10'		47.8 qC		47.6 qC
11α/11α'	2.0 m	20.0 CH ₂	1.91 m	19.8 CH ₂
11β/11β'	2.0 m		1.98 m	
12α/12α'	1.80 m	31.3 CH ₂	1.67 m	31.1 CH ₂
12β/12β'	1.80 m		1.77 m	
13/13'		40.9 qC		40.8 qC
14/14'		142.9 qC		142.9 qC
15/15'		137.8 qC		137.6 qC
16/16'		160.5 qC		160.6 qC
17/17'	5.76 s	82.0 CH	5.87 s	81.9 CH

Table S2. ¹H (400 MHz) and ¹³C NMR (100 MHz) Data for Compound **2**, and **2'** (δ in ppm, J in Hz)

18/18'	1.01 s	19.4 CH ₃	1.11 s	19.1 CH₃
19/19'	1.36 s	19.3 CH ₃	1.07 s	18.5 CH₃
20/20'		120.5 qC		120.1 qC
21/21'	7.52 br s	140.9 CH	7.69 br s	142.1 CH
22/22'	6.40 br s	109.4 CH	6.47 br s	109.6 CH
23/23'	7.45 br s	143.4 CH	7.45 br s	143.3 CH
28/28'	0.96 s	15.2 CH ₃	0.86 s	14.5 CH ₃
29a/29a'	2.88 d (10.8)	42.2 CH ₂	2.52 d (11.2)	40.7 CH ₂
29b/29b'	2.15 d (10.8)		2.26 br d (11.2)	
30/30'		192.7 qC		193.7 qC
7,7'-OMe-31,31'	3.74 s	53.3 CH ₃	3.67 s	52.0 CH ₃
1,1'- isobutyryloxy				
32/32'		175.5 ª qC		175.8 qC
33/33'	2.44 m	34.2 CH	2.42 m	34.3 CH ₃
34/34'	1.11 d (6.8)	19.1 CH ₃	1.10 d (6.8)	18.9 CH ₃
35/35'	1.09 d (6.8)	18.8 CH ₃	1.07 d (6.8)	19.2 CH ₃
3,3'- isobutyryloxy				
36/36'		178.2 qC		178.8 qC
37/37'	2.66 m	33.7 CH	2.71 m	33.9 CH
38/38'	1.13 d (6.8)	20.4 CH ₃	1.20 d (6.8)	20.3 CH ₃
39/39'	0.91 d (6.8)	17.8 CH ₃	0.91 d (6.8)	17.8 CH ₃
2-OH/2'-OH	4.41 s		4.33 br s	
6-OH/6'-OH	2.91 br s			

^a Overlapped signals assigned by ¹H–¹H COSY, HSQC, and HMBC spectra without designating multiplicity.

	3	}	3	1
Position	бн	$\delta_{ m C}$	δ_{H}	δς
1		88.8 qC		89.2 qC
2		78.7 qC		78.6 qC
3	4.92 s	90.5 CH	5.04 s	89.4 CH
4		42.6 qC		43.0 qC
5	2.92 s	45.2 CH	2.97 d (11.6)	39.9 CH
6a	4 50 br o	72.4 CH	2.34 brd (16.4)	35.4 CH ₂
6b	4.50 DI S		2.47 dd (16.4, 11.6)	
7		175.5 qC		172.9 qC
8		131.2 qC		130.9 qC
9	2.77 dd (9.2, 7.2)	43.9 CH	2.71 dd (9.6, 6.4)	43.1 CH
10		46.5 qC		46.2 qC
11α	1.96 m	21.1 CH ₂	1.91 m	21.1 CH ₂
11β	1.74 m		1.68 m	
12α	1.46 m	30.7 CH ₂	1.46 m	30.7 CH ₂
12β	1.60 m		1.65 m	
13		40.8 qC		41.0 qC
14		154.5 qC		155.3 qC
15		78.9 qC		78.9 qC
16		170.4 qC		170.1 qC
17	5.86 s	78.3 CH	5.88 s	78.2 CH

Table S3. ¹H (400 MHz) and ¹³C NMR (100 MHz) Data for Compound **3**, and **3'** (δ in ppm, J in Hz) in CDCl₃

18	1.09 s	13.3 CH ₃	1.07 s	13.0 CH ₃
19	1.31 s	20.3 CH ₃	1.01 s	19.5 CH ₃
20		121.3 qC		121.3 qC
21	7.43 br s	141.8 CH	7.44 br s	141.8 CH
22	6.38 br s	110.5 CH	6.40 br s	110.5 CH
23	7.40 br s	143.1 CH	7.40 br s	143.0 CH
28	0.93 s	15.4 CH ₃	0.84 s	14.8 CH ₃
29a	2.70 d (10.4)	42.4 CH ₂	2.14 d (11.2)	
29b	1.88 dd (10.4, 1.6)		1.98 dd (11.2, 1.6)	41.4 CH ₂
30		192.9 qC		192.7 qC
7-OMe-31	3.78 s	53.3 CH ₃	3.65 s	51.9 CH₃
1-isobutyryloxy				
32		175.7 qC		175.8 qC
33	2.41 m	34.3 CH	2.40 m	34.5 CH
34	1.24 d (7.2)	20.1 CH ₃	1.24 d (7.2)	19.8 CH ₃
35	1.08 d (7.2)	17.9 CH ₃	1.06 d (7.2)	18.1 CH ₃
3-isobutyryloxy				
36		176.5 qC		177.3 qC
37	2.89 m	33.0 CH	2.97 m	33.0 CH
38	1.18 d (6.8)	19.8 CH ₃	1.26 d (7.2)	20.3 CH ₃
39	1.16 d (6.8)	18.0 CH ₃	1.17 d (7.2)	18.3 CH ₃
1'		87.9 qC		88.0 qC
2'		75.7 qC		75.8 qC
3'	4.51 s	88.1 CH	4.67 s	86.6 CH

4'		44.3 qC		44.4 qC
5'	2.81 s	40.2 CH	2.83 dd (10.4, 4.0)	34.3 CH
6a'	4.00 hr a	74.0.011	2.29 d (16.0)	34.4 CH ₂
6b'	4.30 br s	/1.6 CH	2.30 dd (16.0, 10.4)	
7'		176.3 qC		173.2 qC
8'		103.1 qC		102.9 qC
9'	2.50 m	36.4 CH	2.43 m	35.3 CH
10'		47.3 qC		46.8 qC
11'α	1.96 m	20.4 CH ₂	1.85 m	20.1 CH ₂
11'β	1.49 m		1.48 m	
12'α	1.52 m	29.8 CH ₂	1.50 m	29.6 CH ₂
12'β	1.68 m		1.68 m	
13'		35.7 qC		35.8 qC
14'		156.4 qC		156.2 qC
15'		106.5 qC		106.6 qC
16'		163.3 qC		163.1 qC
17'	5.01 s	79.7 CH	4.99 s	79.8 CH
18'	1.17 s	21.0 CH ₃	1.15 s	20.6 CH ₃
19'	1.33 s	19.0 CH ₃	1.00 s	17.8 CH ₃
20'		119.9 qC		119.9 qC
21'	7.40 br s	141.2 CH	7.40 ^a	141.2 CH
22'	6.38 br s	109.9 CH	6.37 br s	109.9 CH
23'	7.40 br s	142.9 CH	7.40 ^a	142.8 CH
28'	1.02 s	15.6 CH ₃	0.90 s	14.8 CH ₃

29'a	2.94 d (11.2)	39.9 CH ₂	2.64 d (11.6)	39.0 CH ₂
29'b	2.28 d (11.2)		2.26 d (11.6)	
30'		155.3 qC		154.9 qC
7'-OMe-31'	3.84 s	53.1 CH₃	3.66 s	51.8 CH ₃
1'-isobutyryloxy				
32'		177.4ª qC		177.1 qC
33'	2.96 m	34.1 CH	2.45 m	34.0 CH
34'	1.20 d (6.8)	18.3 CH ₃	1.11 d (7.2)	18.9 CH ₃
35'	1.17 d (6.8)	20.5 CH ₃	1.06 d (7.2)	18.3CH ₃
3'-isobutyryloxy				
36'		177.4ª qC		177.9 qC
37'	2.47 m	34.0 CH	3.08 m	33.9 CH
38'	1.12 d (6.8)	18.9 CH ₃	1.23 d (7.2)	20.3 CH ₃
39'	1.07 d (6.8)	18.4 CH ₃	1.19 d (7.2)	17.9 CH ₃
2-OH	4.56 s		4.62 s	
6-OH	3.04 br s		/	
2'-OH	4.03 br s		3.96 br s	
6'-OH	3.00 br s			

^a Overlapped signals assigned by ¹H–¹H COSY, HSQC, and HMBC spectra without designating multiplicity.

	4		4	4′
Position	$\delta_{ m H}$	$\delta_{ extsf{C}}$	б _н	δc
1		86.7 qC		86.7 qC
2		77.6 qC		77.5 qC
3	4.76 s	84.6 CH	4.87 s	83.4 CH
4		44.1 qC		44.3 qC
5	2.83 s	42.1 CH	2.82 m	36.4 CH
6a	1.40 hr c	72.2 CH ₂	2.36 ª	34.5 CH ₂
6b	4.49 DIS		2.32 (16.8, 11.2)	
7		175.8 qC		173.4 qC
8		107.2 qC		107.1 qC
9	2.54 dd (10.8, 5.2)	36.8 CH	2.45 m	35.9 CH
10		48.0 qC		47.4 qC
11α	1.94 m	19.6 CH ₂	1.92 m	19.8 CH ₂
11β	1.71 m		1.62 m	
12α	1.35 m	28.9 CH ₂	1.35 m	29.1 CH ₂
12β	1.40 m		1.48 m	
13		38.8 qC		39.0 qC
14		159.1 qC		159.1 qC
15		122.5 qC		122.6 qC
16		163.1 qC		163.2 qC
17	5.01 s	78.4 CH	5.03 s	78.5 CH

Table S4.¹H NMR (400 MHz) and ¹³C NMR (100 MHz) Data for Compounds **4**, and **4'** (δ in ppm, *J* in Hz) in CDCl₃.

18	1.24 s	17.4 CH ₃	1.21 s	17.4 CH ₃
19	1.33 s	19.7 CH ₃	0.98 s	19.1 CH ₃
20		120.2 qC		120.2 qC
21	7.41 br s	140.9 CH	7.41 br s	141.0 CH
22	6.36 br s	109.8 CH	6.37 br s	109.8 CH
23	7.40 br s	142.9 CH	7.40 br s	142.9 CH
28	1.00 s	15.9 CH₃	0.86 s	14.8 CH ₃
29a	2.86 d (10.8)	40.2 CH ₂	2.51 ^a	39.3 CH ₂
29b	2.43 d (10.8)		2.40 ^a	
30		148.1 qC		148.0 qC
7-OMe-31	3.81 s	53.1 CH ₃	3.66 s	51.8 CH ₃
1-isobutyryloxy				
32		177.9 qC		177.5 qC
33	2.77 m	33.9 CH	2.85 m	34.3 CH
34	1.16 d (6.8)	19.8 CH ₃	1.13 d (6.8)	19.1 CH ₃
35	0.81 d (6.8)	18.2 CH ₃	1.07 d (6.8)	18.9 CH ₃
3-isobutyryloxy				
36		175.2 qC		175.6 qC
37	2.61 m	34.6 CH	2.65 m	34.6 CH
38	1.24 d (6.8)	19.3 CH ₃	1.28 d (6.8)	19.3 CH ₃
39	1.23 d (6.8)	18.2 CH ₃	1.25 d (6.8)	18.3 CH ₃
1'		85.7 qC		86.0 qC
2'		80.4 qC		80.2 qC
3'	4.80 s	85.5 CH	4.92 s	84.5 CH

4'		47.3 qC		47.2 qC
5'	2.76 s	45.2 CH	2.80 m	40.8 CH
6a'	4.55 hr -	74.0.011	2.43 ^a	33.2 CH ₂
6b'	4.55 br s	71.6 CH ₂	2.50 ª	
7'		174.8 qC		173.0 qC
8'		127.3 qC		127.3 qC
9'		174.5 qC		175.1 qC
10'		51.4 qC		50.9 qC
11'α	2.74 m	26.3 CH ₂	2.58 m	26.2 CH ₂
11'β	2.35 br d (19.2)		2.50 m	
12'α	1.42 m	30.1 CH ₂	1.40 m	30.1 CH ₂
12'β	1.15 ^a		1.22 m	
13'		39.8 qC		39.9 qC
14'		146.6 qC		146.8 qC
15'		124.2 qC		124.2 qC
16'		161.4 qC		161.4 qC
17'	5.19 s	77.2 CH	5.19 s	77.2 CH
18'	1.28 s	17.8 CH ₃	1.25 s	17.9 CH ₃
19'	1.53 s	17.6 CH ₃	1.24 s	17.7 CH ₃
20'		119.9 qC		119.8 qC
21'	7.43 br s	141.5 CH	7.42 br s	141.4 CH
22'	6.40 br s	109.7 CH	6.37 br s	109.7 CH
23'	7.41 br s	143.4 CH	7.40 br s	143.3 CH
28'	0.97 s	16.7 CH ₃	0.92 s	16.6 CH ₃

29'a	3.23 d (11.6)	40.3 CH ₂	2.65 ^b	39.1 CH ₂
29'b	2.65 br d (11.6)		2.65 ^b	
30'		193.4 qC		193.2 qC
7'-OMe-31'	3.79 s	53.3 CH ₃	3.68 s	52.2 CH₃
1'-isobutyryloxy				
32'		177.4 qC		177.9 qC
33'	2.85 m	34.2 CH	2.77 m	33.9 CH
34'	1.16 d (6.8)	19.5 CH ₃	1.15 d (6.8)	19.7 CH₃
35'	1.08 d (6.8)	18.3 CH ₃	0.83 d (6.8)	18.3 CH ₃
3'-isobutyryloxy				
36'		174.5 qC		174.8 qC
37'	2.57 m	34.3 CH	2.58 m	34.2 CH
38'	1.15 d (6.8)	19.3 CH ₃	1.18 d (7.2)	19.3 CH ₃
39'	1.08 d (6.8)	18.8 CH ₃	1.13 d (6.8)	18.3 CH₃
6-OH	2.90 s		/	/
30-OH	8.66 s		8.61 s	
2'-OH	3.38 br s		3.34 br s	
6'-OH	3.09 br s			

^a Overlapped signals assigned by ¹H–¹H COSY, HSQC, and HMBC spectra without designating multiplicity.

		5a		5b	
Position	δ_{H}	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	
1/1'		86.8 qC		87.1 qC	
2/2'		77.2 qC		77.9 qC	
3/3'	4.80 s	86.5 CH	4.59 s	84.6 CH	
4/4'		43.4 qC		43.9 qC	
5/5'	2.76 br s	41.6 CH	2.83 s	42.2 CH	
6/6'	4.51 br s	72.4 CH	4.46 br s	72.0 CH	
7/7'		175.1 qC		175.6 qC	
8/8'		103.3 qC		107.7 qC	
9/9'	2.57 m	37.1 CH	2.58 m	37.0 CH	
10/10'		48.8 qC		47.9 qC	
11α/11'α	1.82 m	19.2 CH ₂	1.96 m	19.5 CH ₂	
11β/11'β	1.68 m		1.67 m		
12α/12'α	1.20 m	29.5 CH ₂	1.30 m	29.0 CH ₂	
12β/12'β	1.45 m		1.30 m		
13/13'		40.0 ^a qC		39.2 qC	
14/14'		159.6 qC		156.2 qC	
15/15'		122.7 qC		122.9 qC	
16/16'		166.4 qC		161.5 qC	
17/17'	5.19 s	79.5 CH	5.02 s	78.3 CH	
18/18'	1.20 s	18.2 CH ₃	1.25 s	17.2 CH ₃	

Table S5. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) data for compounds **5a**, and **5b** (δ in ppm, J in Hz) in CDCl₃

19/19'	1.33 s	19.8 CH ₃	1.34 s	20.1 CH ₃
20/20'		119.5 qC		120.2 qC
21/21'	7.46 br s	141.1 CH	7.41 br s	141.2 CH
22/22'	6.37 br s	109.5 CH	6.37 br s	109.8 CH
23/23'	7.43 br s	143.4 CH	7.40 br s	143.1 CH
28/28'	1.01 s	15.6 CH ₃	1.01 s	15.9 CH ₃
29α/29'α	2.81 d (11.2)	40.0 ^a CH ₂	2.91 br d (10.4)	39.8 CH ₂
29β/29'β	2.56 d (11.2)	-	2.27 d (10.4)	
30/30'		148.9 qC		143.7 qC
7,7'-OMe-31,31'	3.79 s	53.2 CH ₃	3.81 s	53.2 CH ₃
1,1'-isobutyryloxy				
32/32'		177.1 qC		178.5 qC
33/33'	2.50 m	34.7 CH	2.93 m	34.1 CH
34/34'	1.14 d (6.8)	19.3 CH ₃	1.18 d (7.2)	18.4 CH ₃
35/35'	1.13 d (6.8)	19.3 CH ₃	1.00 d (7.2)	18.7 CH ₃
3,3'-isobutyryloxy				
36/36'		175.5 qC		176.3 qC
37/37'	2.52 m	34.5 CH	2.65 m	34.7 CH
38/38'	1.25 d (7.2)	19.1 CH ₃	1.22 d (7.2)	19.4 CH ₃
39/39'	1.23 d (7.2)	19.0 CH ₃	1.20 d (7.2)	19.5 CH ₃
2-OH/2'-OH	3.49 br s		3.23 br s	
6-OH/6'-OH	3.01 br s		2.93 br s	
30-OH/30'-OH	6.73 s		6.93 s	

^a Overlapped signals assigned by DEPT135, ¹H–¹H COSY, HSQC, and HMBC spectra without designating multiplicity.

Table S6. Cytotoxic assay results for **1-4**, **1'-4'**, **5a-5b**, **2a-2b** against six human tumor cells. The results are given as IC_{50} values (μ M).

Compound	Cell lines											
	MDA-MB-231	A375	AGS	HCT-8	HCT-8/T	A549						
1	81.46	6.8	82.72	78.85	>100	>100						
1′	83.49	55.1	98.6	>100	>100	>100						
2	ND	ND	ND	ND	ND	ND						
2'	ND	ND	ND	ND	ND	ND						
3	88.5	>100	>100	>100	>100	>100						
3'	>100	>100	>100	>100	>100	>100						
4	>100	>100	>100	>100	>100	>100						
4'	>100	>100	>100	>100	>100	>100						
5a	>100	>100	>100	>100	>100	>100						
5b	5.57	>100	73.1	8.81	39.5	14.59						
Cisplatin	6.25	18.12	9.26	21.98	28.15	12.13						

Atom	X	Y	Z	Atom	X	Y	Z	Atom	X	Y	Z
С	3.891	-6.834	-1.02	0	-8.038	-1.909	-1.032	Н	6.361	-2.67	0.764
С	2.002	-6.868	-2.724	С	-3.839	1.796	0.789	Н	6.104	-3.345	-0.833
С	2.708	-6.055	-1.633	0	0.271	-2.291	2.364	Н	-5.337	3.751	-0.267
С	3.222	-4.735	-2.196	С	-4.644	1.709	-0.552	Н	-6.5	2.548	0.287
С	3.44	3.918	-1.633	0	-1.815	-1.91	2.901	Н	-6.314	2.843	-1.432
С	0.942	4.205	-2.016	С	-4.694	1.348	1.988	Н	-5.778	-2.181	3.323
С	2.04	3.285	-1.474	С	4.271	-1.63	2.432	Н	0.625	-1.951	-2.26
С	2.001	1.931	-2.162	0	-5.485	-2.665	5.325	Н	5.92	3.103	2.099
С	8.52	2.767	-1.189	С	-3.888	1.308	3.28	Н	2.689	-0.142	-3.218
С	1.592	-1.278	-0.306	С	4.383	-0.143	2.757	Н	-2.396	-1.802	6.024
С	4.528	-2.006	-2.628	0	-0.497	1.438	-0.567	Н	2.83	3.359	5.14
С	5.338	0.415	-3.16	С	-2.644	0.409	3.209	Н	-4.607	-2.939	7.189
С	4.855	4.14	4.927	С	-1.864	0.64	1.91	Н	5.118	4.736	5.787
С	3.745	3.441	4.572	С	-0.539	-0.03	1.962	Н	-4.798	-1.272	-4.075
С	5.291	3.271	2.961	С	-0.631	-1.482	2.388	Н	-6.332	-0.983	-3.232
С	4.029	2.863	3.282	С	-3.018	-1.098	3.093	Н	-5.157	-2.142	-2.579
С	5.593	-3.034	0.079	С	-1.789	0.699	4.463	Н	4.92	0.344	-4.17
С	2.448	0.373	4.304	С	-5.767	2.771	-0.491	Н	6.397	0.156	-3.209
С	3.149	2.004	2.423	С	-3.777	-1.713	4.227	Н	5.249	1.459	-2.839
С	0.685	2.102	2.093	С	-5.066	-2.153	4.136	Н	-4.048	1.35	-3.912
С	0.673	0.604	1.889	С	-3.363	-1.989	5.581	Н	-5.575	1.758	-3.103
С	1.994	-0.059	1.848	С	-4.432	-2.562	6.193	Н	4.033	-2.16	-3.587
С	2.989	0.519	2.866	С	-5.267	-1.178	-3.089	Н	5.509	-2.48	-2.653
0	0.372	-1.352	-0.387	С	-4.579	1.341	-2.96	Н	-9.358	-3.414	-1.357

Table S7. Optimized coordinates of compound **2** at B3LYP/6-31G(d) level in CH_3CN .

0	5.813	4.042	3.955	С	-1.705	1.236	-0.489	Н	-8.685	-3.377	0.307
С	4.509	-1.966	-0.194	С	-8.463	-3.263	-0.756	Н	-7.679	-3.966	-1.046
0	1.87	2.698	2.345	С	-2.069	-2.402	-1.63	Н	9.471	2.742	-1.719
С	3.591	-1.876	1.072	С	-2.075	-3.523	-0.605	Н	8.654	3.138	-0.17
0	-0.301	2.811	2.12	С	-3.459	-4.209	-0.594	Н	7.798	3.392	-1.718
С	2.369	-0.983	0.92	С	-0.953	-4.528	-0.887	Н	-1.92	-3.061	0.375
0	8.059	1.397	-1.162	С	-3.432	4.179	-2.933	Н	1.87	3.102	-0.407
С	6.9	1.167	-0.536	С	-2.902	5.568	-2.596	Н	-4.258	-3.51	-0.335
0	6.23	2.031	0.001	С	-2.305	6.235	-3.84	Н	-3.457	-5.017	0.146
С	6.565	-0.33	-0.484	С	-4.042	6.415	-1.991	Н	-3.682	-4.651	-1.572
0	7.362	-1.11	-1.356	Н	-8.329	0.178	-1.643	Н	-0.045	3.744	-1.928
С	5.063	-0.579	-0.72	Н	-3.624	2.867	0.93	Н	1.115	4.437	-3.073
0	1.382	1.675	-3.178	Н	-0.724	1.522	-2.533	Н	0.939	5.146	-1.456
С	4.587	-0.521	-2.216	Н	-2.64	-0.568	-3.104	Н	0.022	-4.036	-0.93
0	2.787	1.022	-1.524	Н	-4.675	-0.452	-0.169	Н	-1.117	-5.036	-1.843
С	3.069	-0.22	-2.199	Н	-6.945	0.489	0.299	Н	-0.928	-5.285	-0.096
0	1.546	-2.095	-2.563	Н	5.255	-2.103	2.471	Н	4.222	3.295	-1.192
С	2.396	-1.517	-1.601	Н	3.669	-2.122	3.206	Н	3.456	4.893	-1.133
0	3.606	-4.576	-3.335	Н	-3.548	2.321	3.528	Н	3.676	4.08	-2.691
С	3.657	-2.432	-1.429	Н	-4.522	0.978	4.111	Н	-2.126	5.446	-1.833
0	3.245	-3.787	-1.223	Н	-1.928	7.231	-3.586	Н	2.001	-5.819	-0.831
С	-3.773	2.003	-1.822	Н	-3.06	6.341	-4.624	Н	1.143	-6.327	-3.133
0	-3.404	3.388	-1.831	Н	-1.474	5.648	-4.247	Н	1.643	-7.816	-2.309
С	-2.48	1.132	-1.808	Н	-5.532	2.038	2.121	Н	2.688	-7.088	-3.547
0	-3.864	3.85	-4.017	Н	-5.131	0.363	1.795	Н	-4.445	5.958	-1.082
С	-3.078	-0.285	-2.147	Н	4.979	0.361	1.99	Н	-4.861	6.535	-2.71

0	-1.645	1.547	-2.866	Н	4.919	0.002	3.701	Н	-3.666	7.411	-1.733
С	-4.603	-0.054	-2.298	Н	-3.612	-1.228	2.184	Н	4.377	-6.265	-0.221
0	-2.79	-1.332	-1.201	Н	3.558	1.992	1.408	Н	4.642	-7.064	-1.785
С	-5.155	0.241	-0.862	Н	-0.972	-0.013	4.61	Н	3.534	-7.779	-0.598
0	-1.528	-2.449	-2.719	Н	-2.422	0.665	5.355	Н	4.567	0.227	-0.178
С	-6.665	0.004	-0.65	Н	-1.359	1.701	4.391	Н	8.267	-0.759	-1.323
0	-7.431	0.542	-1.712	Н	1.485	0.873	4.446	Н	6.784	-0.594	0.565
С	-6.96	-1.475	-0.368	Н	3.156	0.793	5.023	Н	3.155	-2.886	1.134
0	-6.333	-2.146	0.433	Н	2.305	-0.685	4.544				
С	-2.448	1.143	0.787	Н	5.137	-3.918	0.533				

Atom	Х	Y	Z	Atom	Х	Y	Z	Atom	Х	Y	Z
С	2.206	6.779	0.75	0	-8.606	0.288	0.713	Н	4.778	2.906	-2.126
С	1.032	6.173	2.925	С	-2.805	1.261	1.092	Н	5.076	3.822	-0.663
С	1.64	5.638	1.622	0	-1.344	-3.912	-0.939	Н	-3.431	3.856	1.363
С	2.759	4.652	1.927	С	-3.945	2.016	0.325	Н	-4.758	2.981	2.13
С	5.54	-3.549	2.288	0	-2.47	-3.392	0.884	Н	-5.055	3.889	0.659
С	3.386	-4.264	3.454	С	-3.318	0.675	2.422	Н	-5.696	-2.346	2.962
С	4.03	-3.281	2.472	С	2.636	1.039	-2.464	Н	1.612	1.344	3.338
С	3.82	-1.845	2.924	0	-5.226	-3.812	4.361	Н	5.872	-2.794	-2.747
С	9.279	-1.203	-1.081	С	-2.306	-0.241	3.1	Н	4.356	0.5	3.333
С	1.81	0.558	1.252	С	3.12	-0.385	-2.717	Н	-2.092	-4.618	3.811
С	4.999	2.575	1.772	0	-0.863	0.159	-1.821	Н	2.094	-4.637	-3.837
С	6.721	0.634	2.013	С	-1.804	-1.393	2.215	Н	-4.206	-5.269	5.437
С	4.132	-4.718	-4.611	С	-1.405	-0.852	0.815	Н	4.185	-5.394	-5.451
С	3.124	-4.313	-3.795	С	-0.608	-1.922	0.167	Н	-6.695	1.069	-3.264
С	5.038	-3.327	-3.178	С	-1.463	-3.17	0.016	Н	-7.511	1.463	-1.74
С	3.713	-3.391	-2.855	С	-2.947	-2.395	1.85	Н	-6.918	-0.183	-2.037
С	4.337	3.205	-1.173	С	-0.686	-2.129	2.988	Н	6.798	0.83	3.089
С	1.068	-1.817	-3.09	С	-4.325	3.258	1.166	Н	7.535	1.161	1.512
С	3.064	-2.665	-1.714	С	-3.6	-3.15	2.965	Н	6.855	-0.443	1.865
С	1.316	-3.387	-0.142	С	-4.904	-2.978	3.336	Н	-4.759	2.95	-2.875
С	0.713	-2.001	-0.169	С	-3.084	-4.189	3.822	Н	-5.518	3.455	-1.353
С	1.601	-0.944	-0.723	С	-4.106	-4.547	4.642	Н	4.964	2.81	2.835
С	2.176	-1.436	-2.083	С	-6.701	0.882	-2.184	Н	5.666	3.279	1.274
0	0.851	0.231	1.945	С	-4.872	2.711	-1.818	Н	-10.515	-0.396	0.726

Table S8. Optimized coordinates of (P)-configured **2** at B3LYP/6-31G(d) level in CH_3CN .

0	5.308	-4.121	-4.251	С	-1.829	0.535	-1.16	Н	-9.395	-1.331	1.772
С	3.911	1.983	-0.326	С	-9.52	-0.829	0.811	Н	-9.334	-1.534	-0.001
0	2.338	-3.682	-0.96	С	-4.335	-1.81	-2.881	Н	10.293	-0.81	-1.106
С	2.611	1.382	-0.964	С	-4.488	-3.206	-2.306	Н	9.058	-1.765	-1.991
0	0.963	-4.231	0.662	С	-5.969	-3.422	-1.922	Н	9.131	-1.841	-0.207
С	1.988	0.237	-0.174	С	-3.998	-4.261	-3.304	Н	-3.89	-3.263	-1.393
0	8.42	-0.043	-0.995	С	-2.5	4.645	-1.783	Н	3.554	-3.386	1.491
С	7.103	-0.274	-0.951	С	-1.181	5.378	-1.586	Н	-6.297	-2.705	-1.164
0	6.603	-1.384	-0.978	С	-0.104	4.696	-2.457	Н	-6.097	-4.431	-1.514
С	6.297	1.033	-0.966	С	-1.324	6.867	-1.913	Н	-6.618	-3.327	-2.801
0	7.082	2.172	-0.67	Н	-8.027	2.393	0.842	Н	2.312	-4.08	3.556
С	5.069	0.94	-0.041	Н	-2.064	2.035	1.346	Н	3.841	-4.181	4.446
0	3.496	-1.494	4.04	Н	-1.509	1.308	-3.226	Н	3.524	-5.289	3.096
С	5.363	1.102	1.495	Н	-4.289	0.565	-3.35	Н	-2.936	-4.126	-3.533
0	4.082	-0.965	1.915	Н	-4.882	0.037	0.145	Н	-4.562	-4.204	-4.24
С	4.198	0.428	2.256	Н	-6.122	1.354	1.872	Н	-4.129	-5.262	-2.88
0	2.426	1.859	3.164	Н	3.247	1.753	-3.021	Н	5.973	-2.895	1.525
С	2.937	1.333	1.96	Н	1.615	1.143	-2.849	Н	5.689	-4.587	1.973
0	3.597	4.819	2.787	Н	-1.426	0.338	3.403	Н	6.083	-3.4	3.229
С	3.6	2.48	1.133	Н	-2.741	-0.66	4.014	Н	-0.897	5.255	-0.535
0	2.719	3.605	1.063	Н	0.871	5.16	-2.274	Н	0.874	5.107	1.048
С	-3.518	2.512	-1.1	Н	-0.341	4.807	-3.521	Н	0.599	5.364	3.525
0	-2.551	3.557	-0.97	Н	-0.031	3.628	-2.233	Н	0.239	6.894	2.701
С	-2.898	1.339	-1.911	Н	-3.565	1.489	3.11	Н	1.796	6.673	3.529
0	-3.371	4.978	-2.556	Н	-4.249	0.123	2.255	Н	-2.069	7.348	-1.272
С	-4.187	0.508	-2.266	Н	4.135	-0.507	-2.326	Н	-1.631	7.009	-2.954

0	-2.319	1.844	-3.096	Н	3.185	-0.58	-3.792	Н	-0.366	7.377	-1.765
С	-5.351	1.263	-1.58	Н	-3.73	-1.844	1.322	Н	2.621	6.398	-0.189
0	-4.134	-0.883	-1.896	Н	3.853	-2.307	-1.044	Н	2.997	7.316	1.284
С	-5.168	1.075	-0.036	Н	-0.347	-3.044	2.497	Н	1.411	7.492	0.508
0	-4.425	-1.524	-4.057	Н	-1.068	-2.395	3.977	Н	4.683	-0.067	-0.204
С	-6.438	1.273	0.82	Н	0.176	-1.477	3.12	Н	7.938	2.065	-1.116
0	-7.145	2.438	0.439	Н	0.378	-2.568	-2.696	Н	5.929	1.087	-2.005
С	-7.303	0.005	0.823	Н	1.525	-2.211	-4.001	Н	1.883	2.202	-0.857
0	-6.857	-1.116	0.991	Н	0.478	-0.938	-3.352				
С	-2.008	0.239	0.271	Н	3.464	3.827	-1.391				

Atom	X	Y	Z	Atom	X	Y	Z	Atom	X	Y	Z
С	-3.28	2.268	-1.879	С	5.239	-3.315	-0.707	Н	-5.118	0.823	1.577
С	3.28	-2.264	-1.883	С	-4.225	-1.497	4.025	Н	5.117	-0.825	1.576
0	-2.695	3.577	-1.884	С	4.224	1.49	4.029	Н	-4.611	1.255	3.957
0	2.696	-3.573	-1.89	С	-3.929	-1.947	5.281	Н	4.611	-1.262	3.955
С	-2.116	1.227	-1.772	С	3.928	1.937	5.286	Н	-3.429	2.478	3.515
С	2.116	-1.223	-1.774	С	-5.651	-1.65	3.881	Н	3.429	-2.484	3.511
0	-1.164	1.473	-2.782	С	5.65	1.642	3.886	Н	-1.245	-0.194	4.654
0	1.165	-1.468	-2.784	С	-6.102	-2.168	5.054	Н	1.243	0.184	4.655
С	-2.874	-0.103	-2.135	С	6.1	2.158	5.059	Н	-2.662	0.607	5.338
С	2.874	0.107	-2.135	С	-5.098	-0.687	-3.244	Н	2.66	-0.617	5.337
0	-1.721	-2.546	-2.564	С	5.098	0.693	-3.242	Н	-1.423	1.561	4.504
0	1.721	2.551	-2.559	С	-4.08	1.704	-3.069	Н	1.422	-1.57	4.502
С	-4.335	0.335	-2.406	С	4.081	-1.699	-3.072	Н	-5.989	3.262	0.089
С	4.335	-0.331	-2.406	С	-1.433	1.306	-0.403	Н	5.99	-3.261	0.083
0	-2.815	-1.15	-1.148	С	1.433	-1.305	-0.405	Н	-5.773	3.397	-1.652
0	2.816	1.153	-1.146	С	-8.841	-2.157	-1.127	Н	5.773	-3.393	-1.658
С	-4.956	0.725	-1.022	С	8.841	2.159	-1.124	Н	-4.678	4.244	-0.555
С	4.957	-0.722	-1.023	С	-2.3	-2.355	-1.51	Н	4.678	-4.243	-0.562
0	-6.6	-1.436	0.124	С	2.3	2.358	-1.505	Н	-6.111	-0.348	-3.479
0	6.601	1.436	0.127	С	-2.605	-3.417	-0.469	Н	6.111	0.355	-3.478
С	-6.498	0.719	-0.988	С	2.605	3.417	-0.462	Н	-5.176	-1.65	-2.728
С	6.498	-0.717	-0.989	С	-4.014	-3.99	-0.744	Н	5.177	1.655	-2.725
0	-8.179	-0.902	-1.397	С	4.014	3.992	-0.736	Н	-4.579	-0.86	-4.194
0	8.18	0.905	-1.396	С	-1.539	-4.516	-0.46	Н	4.579	0.868	-4.192

Table S9. Optimized coordinates of compound **2'** at B3LYP/6-31G(d) level in CH_3CN .

	1		1				1				
С	-7.065	-0.657	-0.691	С	1.538	4.517	-0.45	Н	-3.488	1.634	-3.982
С	7.065	0.658	-0.69	С	-2.652	4.383	-2.974	Н	3.489	-1.627	-3.985
0	-0.216	1.457	-0.388	С	2.654	-4.378	-2.981	Н	-4.996	2.253	-3.293
0	0.216	-1.456	-0.391	С	-1.776	5.602	-2.721	Н	4.996	-2.247	-3.296
С	-2.274	1.282	0.815	С	1.778	-5.597	-2.73	Н	-9.718	-2.166	-1.773
С	2.273	-1.283	0.813	С	-0.541	5.52	-3.639	Н	9.718	2.169	-1.77
0	-0.153	-2.552	2.357	С	0.542	-5.512	-3.648	Н	-9.136	-2.212	-0.077
0	0.152	2.547	2.362	С	-2.583	6.887	-2.973	Н	9.137	2.213	-0.074
С	-3.572	2.097	0.728	С	2.583	-6.882	-2.986	Н	-8.18	-2.993	-1.366
С	3.572	-2.098	0.725	Н	-0.316	1.681	-2.337	Н	8.18	2.995	-1.362
0	-2.202	-1.926	2.839	Н	0.316	-1.677	-2.34	Н	-4.238	-4.771	-0.009
0	2.201	1.92	2.844	Н	-2.405	-0.472	-3.048	Н	4.237	4.771	0.001
С	-4.271	2.111	-0.675	Н	2.406	0.478	-3.047	Н	-4.063	-4.441	-1.742
С	4.271	-2.11	-0.678	Н	-4.642	-0.022	-0.291	Н	4.062	4.445	-1.732
0	-5.059	-2.359	5.918	Н	4.642	0.022	-0.29	Н	-4.787	-3.22	-0.665
0	5.058	2.348	5.924	Н	-3.248	3.135	0.908	Н	4.787	3.222	-0.659
С	-4.566	1.729	1.847	Н	3.248	-3.136	0.903	Н	-0.547	-4.102	-0.261
С	4.566	-1.732	1.845	Н	-3.834	-0.994	2.014	Н	0.547	4.101	-0.252
0	-3.234	4.174	-4.017	Н	3.833	0.99	2.017	Н	-1.51	-5.041	-1.419
0	3.238	-4.168	-4.023	Н	-3.01	-2.061	5.834	Н	1.509	5.044	-1.408
С	-3.876	1.529	3.192	Н	3.008	2.05	5.838	Н	-1.771	-5.246	0.324
С	3.875	-1.535	3.19	Н	-6.238	-1.419	3.002	Н	1.77	5.244	0.335
С	-2.753	0.479	3.171	Н	6.237	1.413	3.006	Н	0.047	4.617	-3.441
С	2.752	-0.485	3.171	Н	-7.075	-2.453	5.421	Н	-0.044	-4.61	-3.448
С	-1.852	0.658	1.95	Н	7.074	2.443	5.428	Н	0.102	6.391	-3.474
С	1.851	-0.662	1.949	Н	-2.628	-2.923	0.506	Н	-0.102	-6.383	-3.485

С	-0.65	-0.206	2.029	Н	2.628	2.921	0.512	Н	-0.847	5.513	-4.691
С	0.65	0.202	2.03	Н	-1.448	5.576	-1.677	Н	0.848	-5.503	-4.7
С	-0.956	-1.643	2.377	Н	1.45	-5.573	-1.687	Н	-1.946	7.764	-2.817
С	0.955	1.639	2.381	Н	-6.856	1.347	-0.165	Н	1.946	-7.759	-2.832
С	-3.303	-0.967	2.969	Н	6.856	-1.346	-0.166	Н	-3.439	6.964	-2.294
С	3.301	0.961	2.972	Н	-6.951	1.119	-1.898	Н	3.44	-6.961	-2.307
С	-1.966	0.612	4.494	Н	6.951	-1.115	-1.899	Н	-2.957	6.909	-4.001
С	1.965	-0.621	4.493	Н	-5.311	2.523	1.956	Н	2.957	-6.902	-4.014
С	-5.239	3.317	-0.702	Н	5.311	-2.526	1.952				

Atom	X	Υ	Z	Atom	Х	Υ	Z	Atom	Х	Υ	Z
С	3.766	2.545	1.017	С	0.448	4.846	2.308	Н	-0.119	-2.685	2.582
0	2.883	3.661	0.886	С	1.8	6.983	1.991	Н	-0.829	-2.055	4.076
С	3.058	1.427	1.84	С	-5.273	0.958	0.044	Н	0.267	-1.048	3.117
0	2.511	1.982	3.017	С	-6.56	1.047	0.888	Н	-4.999	2.909	2.23
С	4.278	0.511	2.216	С	-7.279	-0.286	0.981	Н	-5.473	3.737	0.756
0	4.702	-1.463	4.016	С	-2.107	0.371	0.347	Н	-3.835	3.928	1.386
С	5.49	1.151	1.496	С	-2.945	1.361	1.171	Н	-7.67	1.206	-1.624
0	4.088	-0.882	1.907	С	-4.145	2.01	0.405	Н	-6.971	-0.394	-1.919
С	5.273	0.958	-0.044	С	-3.398	0.763	2.515	Н	-6.853	0.867	-3.153
0	6.723	-1.359	-1.15	С	-2.298	-0.049	3.186	Н	-5.055	2.898	-2.778
С	6.56	1.046	-0.888	С	-1.752	-1.198	2.323	Н	-5.834	3.331	-1.25
0	8.611	-0.148	-0.909	С	-1.459	-0.698	0.883	Н	-10.428	-1.043	0.986
С	7.279	-0.286	-0.981	С	-0.642	-1.753	0.226	Н	-9.189	-1.815	2.029
0	0.895	0.513	1.701	С	-1.385	-3.078	0.224	Н	-9.143	-2.063	0.263
С	2.107	0.371	-0.347	С	-2.823	-2.31	2.088	Н	-5.513	-4.609	-1.283
0	1.244	-3.891	0.67	С	-0.528	-1.791	3.058	Н	-6.432	-3.555	-2.373
С	2.946	1.361	-1.171	С	-4.647	3.211	1.242	Н	-5.804	-2.917	-0.836
0	2.31	-3.328	-1.17	С	-3.349	-3.024	3.297	Н	-3.008	-3.916	-4.025
С	4.146	2.01	-0.405	С	-2.751	-3.989	4.058	Н	-4.743	-4.149	-4.296
0	3.587	-4.398	-5.051	С	-4.658	-2.832	3.868	Н	-3.873	-5.196	-3.155
С	3.398	0.763	-2.515	С	-4.744	-3.681	4.925	Н	-0.318	3.808	-1.985
0	3.748	4.976	2.537	С	-6.822	0.681	-2.074	Н	0.488	5.386	-2.131
С	2.298	-0.049	-3.186	С	-5.136	2.638	-1.723	Н	-0.644	4.847	-3.386
0	-2.883	3.661	-0.886	С	-1.931	0.722	-1.074	Н	-0.877	7.552	-1.839

Table S10. Optimized coordinates of (P)-configured **2'** at B3LYP/6-31G(d) level in CH_3CN .

С	1.752	-1.198	-2.323	С	-9.387	-1.355	1.058	Н	-2.6	7.471	-1.425
0	-2.511	1.982	-3.017	С	-4.374	-1.785	-2.893	Н	-2.062	7.029	-3.053
С	1.459	-0.698	-0.884	С	-4.271	-3.212	-2.387	Н	6.31	1.297	-1.925
0	-4.704	-1.463	-4.016	С	-5.589	-3.589	-1.673	Н	7.249	1.821	-0.543
С	0.642	-1.753	-0.226	С	-3.954	-4.173	-3.538	Н	3.697	1.566	-3.194
0	-4.088	-0.882	-1.907	С	-2.873	4.719	-1.739	Н	4.284	0.136	-2.368
С	1.385	-3.078	-0.224	С	-1.601	5.532	-1.543	Н	2.659	-0.459	-4.136
0	-6.723	-1.358	1.15	С	-0.448	4.846	-2.307	Н	1.454	0.607	-3.426
С	2.823	-2.31	-2.088	С	-1.8	6.983	-1.991	Н	0.119	-2.684	-2.582
0	-8.611	-0.147	0.908	Н	1.623	1.575	3.097	Н	0.829	-2.055	-4.076
С	0.528	-1.79	-3.058	Н	4.399	0.602	3.295	Н	-0.267	-1.048	-3.117
0	-0.894	0.513	-1.701	Н	-1.623	1.576	-3.097	Н	4.999	2.908	-2.23
С	4.648	3.211	-1.242	Н	4.88	-0.049	-0.206	Н	5.473	3.737	-0.756
0	-1.244	-3.891	-0.67	Н	-4.399	0.602	-3.295	Н	3.835	3.928	-1.386
С	3.349	-3.024	-3.297	Н	-4.88	-0.049	0.207	Н	7.67	1.205	1.624
0	-2.31	-3.328	1.169	Н	2.255	2.188	-1.398	Н	6.971	-0.394	1.919
С	2.751	-3.989	-4.058	Н	-2.254	2.188	1.398	Н	6.853	0.867	3.153
0	-3.587	-4.398	5.05	Н	-3.678	-1.865	1.57	Н	5.056	2.898	2.778
С	4.658	-2.831	-3.868	Н	-1.797	-4.489	4.011	Н	5.834	3.331	1.25
0	-3.748	4.976	-2.537	Н	-5.428	-2.164	3.504	Н	10.427	-1.044	-0.987
С	4.744	-3.681	-4.925	Н	-5.514	-3.9	5.649	Н	9.189	-1.816	-2.03
С	-3.766	2.545	-1.017	Н	3.678	-1.865	-1.57	Н	9.143	-2.064	-0.263
С	-3.058	1.427	-1.84	Н	-3.462	-3.247	-1.652	Н	5.512	-4.609	1.284
С	-4.278	0.511	-2.216	Н	1.796	-4.489	-4.012	Н	6.431	-3.554	2.373
С	-5.49	1.151	-1.496	Н	5.428	-2.164	-3.504	Н	5.803	-2.917	0.837
С	6.822	0.681	2.074	Н	5.513	-3.899	-5.65	Н	3.008	-3.916	4.026

С	5.136	2.638	1.723	Н	-1.362	5.504	-0.474	Н	4.743	-4.149	4.297
С	1.931	0.722	1.074	Н	-6.31	1.297	1.925	Н	3.873	-5.196	3.156
С	9.386	-1.356	-1.059	Н	-7.249	1.821	0.543	Н	0.318	3.809	1.985
С	4.374	-1.785	2.893	Н	-3.697	1.566	3.194	Н	-0.488	5.386	2.131
С	4.271	-3.212	2.388	Н	-4.284	0.136	2.368	Н	0.644	4.848	3.386
С	5.588	-3.589	1.673	Н	-2.659	-0.459	4.136	Н	0.877	7.552	1.838
С	3.954	-4.173	3.539	Н	3.462	-3.248	1.653	Н	2.6	7.471	1.424
С	2.873	4.719	1.739	Н	-1.453	0.607	3.426	Н	2.062	7.03	3.052
С	1.601	5.532	1.543	Н	1.362	5.504	0.473				

Atom	Х	Y	Z	Atom	Х	Y	Z	Atom	Х	Y	Z
С	4.68	1.333	-0.241	С	3.172	-2.175	4.883	Н	-1.026	2.683	-3.931
С	3.398	1.332	0.65	0	4.509	2.053	-1.479	Н	-2.216	3.924	-3.508
С	3.998	0.9	2.04	0	2.818	2.63	0.752	Н	-2.675	2.214	-3.551
С	5.484	0.604	1.746	0	2.282	1.035	4.161	Н	-6.217	1.412	-1.797
С	5.516	-0.674	0.832	0	3.36	-0.244	2.633	Н	-6.744	-0.261	-1.571
С	2.49	-0.53	-0.81	0	1.143	0.706	0.777	Н	-5.358	0.103	-2.606
С	3.897	-0.911	-1.27	0	-1.7	-1.176	-3.245	Н	-0.076	5.779	0.473
С	5.074	-0.135	-0.597	0	-0.749	-2.918	-2.281	Н	-0.145	5.378	-3.85
С	4.108	-2.463	-1.215	0	0.324	-7.136	-1.207	Н	-0.102	7.988	-2.989
С	2.813	-3.251	-0.977	0	4.625	4.158	-0.636	Н	-6.088	-1.8	3.508
С	1.658	-2.726	-1.842	0	-4.288	-2.004	-1.482	Н	-7.302	-0.699	2.852
С	1.406	-1.252	-1.484	0	-2.926	-2.758	0.757	Н	-5.928	-0.054	3.766
С	0.211	-0.71	-1.878	0	-1.047	-0.835	0.612	Н	-6.704	-1.717	0.269
С	-0.804	-1.58	-2.521	0	1.72	1.188	-3.349	Н	-5.525	-2.809	1.022
С	0.342	-3.457	-1.478	0	0.869	2.937	-2.315	Н	-3.583	-2.898	-3.563
С	2	-2.876	-3.345	0	-0.094	7.149	-1.088	Н	-3.492	-4.919	-2.101
С	6.233	-0.134	-1.622	0	-6.367	-2.841	-1.901	Н	-3.685	-5.393	-3.795
С	0.309	-4.942	-1.677	Н	3.888	1.745	2.721	Н	-5.082	-5.441	-2.7
С	0.376	-5.878	-0.687	Н	4.767	-1.374	1.204	Н	-5.645	-2.367	-4.9
С	0.193	-5.685	-2.908	Н	6.938	-2.092	-0.008	Н	-6.376	-3.901	-4.393
С	0.207	-6.999	-2.562	Н	7.725	-0.76	0.805	Н	-4.937	-3.902	-5.433
С	6.328	0.578	3.017	Н	3.936	-0.626	-2.329	Н	3.51	3.292	0.553
С	5.78	1.752	0.755	Н	4.805	-2.733	-0.418	Н	0.407	0.09	0.537
С	2.294	0.424	0.144	Н	4.573	-2.793	-2.149	Н	-2.775	-3.102	-0.141

Table S11. Optimized coordinates of compound **4'** at B3LYP/6-31G(d) level in CH_3CN .

С	2.535	-0.058	3.694	Н	2.984	-4.313	-1.183	Н	2.775	-3.084	5.349
С	2.018	-1.379	4.241	Н	2.528	-3.176	0.081	Н	3.675	-1.591	5.662
С	1.287	-2.207	3.171	Н	0.117	-3.234	-0.428	Н	3.915	-2.467	4.135
С	4.553	3.393	-1.586	Н	2.821	-2.212	-3.628	С	6.861	-1.426	0.86
С	4.52	3.82	-3.044	Н	1.148	-2.629	-3.984	С	7.003	-2.338	2.064
С	3.979	5.246	-3.186	Н	2.307	-3.904	-3.566	Н	-7.07	1.888	0.067
С	5.932	3.679	-3.652	Н	5.933	0.407	-2.523	Н	-7.731	0.395	0.696
С	-4.595	-1.299	-0.27	Н	6.484	-1.155	-1.923	С	8.541	-3.311	3.574
С	-3.338	-1.408	0.62	Н	7.147	0.33	-1.241	С	-7.355	1.943	2.134
С	-3.897	-0.965	2.012	Н	0.46	-5.811	0.388	0	6.098	-2.97	2.576
С	-5.41	-0.722	1.76	Н	0.094	-5.283	-3.906	0	8.281	-2.411	2.477
С	-5.544	0.611	0.941	Н	0.142	-7.919	-3.123	Н	9.613	-3.243	3.758
С	-2.388	0.575	-0.763	Н	5.989	-0.208	3.7	Н	8.262	-4.332	3.305
С	-3.674	1.063	-0.784	Н	6.244	1.536	3.543	Н	7.98	-3.001	4.459
С	-4.909	0.221	-0.476	Н	7.389	0.412	2.805	С	-2.548	0.125	3.693
С	-3.915	2.514	-1.107	Н	5.632	2.74	1.195	0	-2.259	-0.93	4.216
С	-2.646	3.347	-0.921	Н	6.785	1.714	0.329	0	-3.276	0.215	2.541
С	-1.507	2.778	-1.78	Н	1.304	-1.101	5.023	С	-6.978	1.164	0.885
С	-1.278	1.3	-1.425	Н	0.893	-3.123	3.624	С	-2.223	1.512	4.223
С	-0.112	0.735	-1.861	Н	1.969	-2.492	2.364	Н	-1.917	2.117	3.361
С	0.893	1.604	-2.558	Н	0.447	-1.657	2.735	С	-9.154	2.599	3.521
С	-0.168	3.483	-1.451	Н	3.85	3.117	-3.552	0	-6.59	2.619	2.796
С	-1.875	2.909	-3.282	Н	3.954	5.528	-4.244	0	-8.669	1.837	2.395
С	-5.871	0.384	-1.681	Н	4.616	5.961	-2.655	Н	-10.223	2.394	3.57
С	-0.134	4.97	-1.621	Н	2.964	5.328	-2.787	Н	-8.974	3.665	3.364
С	-0.1	5.877	-0.602	Н	6.307	2.654	-3.571	Н	-8.659	2.276	4.439

С	-0.14	5.749	-2.835	Н	6.641	4.347	-3.15	Н	-3.278	3.148	5.182
С	-0.114	7.052	-2.452	Н	5.903	3.95	-4.712	Н	-3.869	1.549	5.663
С	-6.231	-0.818	3.043	Н	-3.732	-1.79	2.707	Н	-4.304	2.218	4.074
С	-5.699	-1.786	0.682	Н	-4.934	1.382	1.412	Н	-0.918	2.472	5.652
С	-2.151	-0.566	0.133	Н	-4.303	2.626	-2.127	Н	-0.154	1.111	4.82
С	-5.193	-2.742	-2.187	Н	-4.71	2.888	-0.452	Н	-1.357	0.81	6.09
С	-4.515	-3.434	-3.36	Н	-2.359	3.338	0.138	С	-3.504	2.141	4.815
С	-4.174	-4.884	-2.957	Н	-2.838	4.388	-1.198	С	-1.092	1.466	5.254
С	-5.426	-3.396	-4.595	Н	0.105	3.235	-0.419				

Atom	Х	Y	Z	Atom	Х	Y	Z	Atom	X	Y	Z
С	2.819	2.069	1.718	С	-2.785	0.785	0.509	Н	5.595	-4.311	0.218
0	1.523	2.683	1.908	С	-3.409	1.889	-0.339	Н	4.875	-2.712	-0.046
С	2.902	0.591	2.218	С	-3.107	0.846	1.98	Н	4.189	-3.805	1.173
0	2.238	0.408	3.462	С	-3.29	-0.568	2.534	Н	-0.62	3.797	2.063
С	4.463	0.432	2.394	С	-1.998	-1.379	2.38	Н	-1.771	4.836	4.028
0	5.293	-1.762	3.773	С	-1.451	-1.282	0.934	Н	-0.352	4.514	5.044
С	5.057	1.726	1.805	С	-0.439	-2.149	0.639	Н	-1.307	3.166	4.405
0	5.032	-0.728	1.77	С	-0.155	-3.286	1.567	Н	1.099	5.562	1.675
С	4.73	1.745	0.266	С	-2.296	-2.88	2.612	Н	1.099	5.956	3.408
0	2.249	-1.628	1.91	С	-0.939	-0.839	3.372	Н	-0.353	6.247	2.43
С	1.968	-0.196	-0.02	С	-2.995	3.251	0.264	Н	-4.781	-0.206	-3.356
0	-0.621	-4.215	-1.182	С	-2.886	-3.25	3.939	Н	-5.241	0.725	0.143
С	2.312	1.149	-0.667	С	-4.188	-3.595	4.159	Н	-2.32	1.378	2.529
0	1.169	-3.688	-2.35	С	-2.239	-3.329	5.225	Н	-4.021	1.424	2.137
С	3.181	2.119	0.201	С	-3.198	-3.704	6.111	Н	-4.116	-1.054	1.998
0	4.558	-3.876	-5.282	С	-6.684	1.434	-2.404	Н	-3.573	-0.524	3.59
С	2.958	0.948	-2.082	С	-4.268	2.41	-2.57	Н	-2.974	-3.213	1.817
0	1.695	3.001	4.153	С	-2.191	-0.554	-1.421	Н	-0.026	-1.437	3.375
С	3.277	-0.513	-2.403	С	-1.535	3.666	-2.654	Н	-1.348	-0.814	4.386
0	-1.718	2.427	-2.122	С	-0.115	3.817	-3.175	Н	-0.629	0.173	3.104
С	2.012	-1.379	-2.31	С	-0.067	3.251	-4.612	Н	-3.312	3.364	1.302
0	-2.474	0.321	-3.628	С	0.342	5.277	-3.119	Н	-3.415	4.077	-0.313
С	1.414	-1.257	-0.891	С	7.391	-2.375	1.117	Н	-1.906	3.345	0.236
0	-1.805	-1.584	-1.965	С	5.668	2.669	-0.535	Н	-5.047	-3.69	3.511

Table S12. Optimized coordinates of (P)-configured **4'** at B3LYP/6-31G(d) level in CH_3CN .

С	0.453	-2.174	-0.557	С	6.998	2.016	-0.869	Н	-1.196	-3.15	5.444
0	0.881	-3.939	1.503	С	9.275	2.434	-1.354	Н	-3.199	-3.898	7.173
С	0.27	-3.406	-1.375	С	-7.259	2.272	0.549	Н	-6.733	1.287	-3.489
0	-1.067	-3.65	2.482	С	-5.041	-2.254	-2.026	Н	-7.159	2.395	-2.182
С	2.366	-2.873	-2.488	С	-5.865	2.753	0.183	Н	-7.275	0.643	-1.929
0	-4.399	-3.866	5.476	С	-5.427	-3.298	-0.994	Н	-4.512	3.441	-2.322
С	0.987	-0.924	-3.378	С	-9.514	2.934	0.812	Н	-4.194	2.321	-3.658
0	-2.395	4.518	-2.732	С	-6.911	-3.671	-1.184	Н	0.533	3.201	-2.543
С	2.925	3.541	-0.35	С	-4.511	-4.526	-1.127	Н	-0.42	2.216	-4.643
0	7.169	0.828	-1.071	Н	4.659	0.37	3.465	Н	0.961	3.281	-4.988
С	2.995	-3.265	-3.792	Н	4.877	0.738	-0.13	Н	-0.693	3.85	-5.282
0	7.977	2.932	-0.968	Н	5.228	2.925	-1.506	Н	0.333	5.661	-2.093
С	4.313	-3.565	-3.978	Н	5.853	3.624	-0.037	Н	-0.314	5.912	-3.723
0	-4.88	-2.47	-3.21	Н	1.355	1.668	-0.818	Н	1.362	5.366	-3.507
С	2.375	-3.416	-5.085	Н	3.88	1.525	-2.167	Н	2.248	1.262	3.939
0	-4.912	-1.018	-1.466	Н	2.293	1.349	-2.853	Н	1.971	-2.364	1.324
С	3.364	-3.784	-5.941	Н	3.701	-0.587	-3.41	Н	-2.183	-0.608	-3.72
0	-7.533	1.154	0.943	Н	4.041	-0.89	-1.71	Н	7.883	-3.205	0.599
С	6.513	1.924	2.217	Н	3.046	-3.156	-1.674	Н	8.086	-1.989	1.871
0	-8.162	3.26	0.425	Н	-5.3	-2.85	-0.004	Н	7.197	-1.58	0.39
С	4.044	2.734	2.382	Н	0.535	0.036	-3.117	Н	-5.436	3.118	1.125
С	2.313	-0.439	1.272	Н	0.172	-1.641	-3.479	Н	-5.943	3.627	-0.469
С	5.427	-1.757	2.566	Н	1.479	-0.816	-4.35	Н	9.923	3.309	-1.392
С	6.082	-2.869	1.762	Н	1.878	3.816	-0.2	Н	9.222	1.952	-2.333
С	5.121	-3.458	0.715	Н	3.125	3.586	-1.424	Н	9.641	1.718	-0.615
С	1.14	3.218	3.086	Н	3.543	4.307	0.127	Н	-10.091	3.843	0.644

С	-0.042	4.155	2.92	Н	5.164	-3.602	-3.314	Н	-9.549	2.646	1.865
С	-0.92	4.165	4.176	Н	1.331	-3.282	-5.328	Н	-9.897	2.117	0.197
С	0.49	5.566	2.584	Н	3.391	-4.015	-6.995	Н	-7.201	-4.425	-0.444
С	-3.012	1.87	-1.857	Н	7.143	1.114	1.836	Н	-7.078	-4.087	-2.183
С	-2.993	0.402	-2.315	Н	6.595	1.925	3.31	Н	-7.563	-2.8	-1.058
С	-4.535	0.067	-2.329	Н	6.922	2.873	1.859	Н	-4.783	-5.275	-0.377
С	-5.233	1.389	-1.933	Н	4.021	2.729	3.472	Н	-3.457	-4.261	-0.984
С	-4.991	1.634	-0.408	Н	4.203	3.762	2.049	Н	-4.617	-4.977	-2.119
С	-2.062	-0.277	0.023	Н	6.32	-3.643	2.499				

Atom	X	Y	Z	Atom	X	Y	Z	Atom	X	Y	Z
С	4.74	1.337	-0.17	С	-2.247	-0.473	0.099	Н	3.635	3.27	-3.253
С	3.486	1.271	0.748	С	-6.165	3.855	3.538	Н	3.32	5.024	-1.515
С	4.087	0.792	2.106	С	-5.183	-3.098	-2.003	Н	3.493	5.769	-3.109
С	5.574	0.538	1.777	С	-4.509	-3.834	-3.155	Н	4.859	5.784	-1.976
С	5.611	-0.695	0.799	С	-4.5	-2.93	-4.406	Н	6.325	4.649	-3.853
С	6.96	-1.452	0.748	С	-5.207	-5.172	-3.421	Н	4.903	4.672	-4.917
С	7.203	-2.371	1.951	С	-2.38	-0.055	3.597	Н	5.753	3.148	-4.603
С	2.51	-0.495	-0.782	С	-1.807	1.25	4.135	Н	3.054	-2.065	4.406
С	3.908	-0.886	-1.256	С	-1.984	2.457	3.209	Н	0.392	-1.987	2.877
С	5.113	-0.116	-0.606	С	-2.405	1.506	5.535	Н	1.121	-3.423	3.62
С	4.093	-2.442	-1.222	0	4.376	2.199	-1.262	Н	1.936	-2.621	2.265
С	2.785	-3.207	-0.97	0	6.406	3.184	-1.583	Н	1.818	-0.699	6.166
С	1.626	-2.665	-1.822	0	2.961	2.586	0.987	Н	1.188	-2.346	5.976
С	1.397	-1.185	-1.464	0	3.494	-0.386	2.672	Н	0.308	-0.983	5.271
С	0.214	-0.626	-1.857	0	1.916	0.83	3.746	Н	-3.767	-1.863	2.663
С	-0.786	-1.495	-2.548	0	8.078	-0.594	0.612	Н	-4.734	1.274	1.194
С	0.299	-3.37	-1.441	0	8.27	-2.395	2.54	Н	-6.83	2.048	0.067
С	1.954	-2.832	-3.326	0	6.17	-3.169	2.22	Н	-3.886	0.593	-2.337
С	6.223	-0.085	-1.68	0	-1.598	-1.094	-3.362	Н	-4.551	2.747	-2.159
С	0.241	-4.857	-1.616	0	-0.781	-2.824	-2.256	Н	-4.846	2.661	-0.441
С	0.292	-5.777	-0.61	0	0.218	-7.042	-1.108	Н	-3.05	4.296	-1.097
С	0.111	-5.619	-2.834	0	1.157	0.739	0.75	Н	-2.595	3.139	0.15
С	0.103	-6.926	-2.466	0	-4.325	-2.204	-1.443	Н	-0.185	3.314	-0.289
С	6.421	0.47	3.045	0	-6.331	-3.263	-1.651	Н	-2.306	3.962	-3.473

Table S13. Optimized coordinates of compound **5a** at B3LYP/6-31G(d) level in CH_3CN .

С	5.842	1.727	0.829	0	-2.838	-2.727	0.701	Н	-2.751	2.253	-3.586
C	2.363	0.434	0.183	0	-3.254	0.133	2.581	Н	-1.088	2.742	-3.887
С	6.362	-4.129	3.287	0	-2.111	-1.148	4.06	Н	-6.465	1.102	-1.91
С	5.236	3.061	-1.874	0	-7.949	0.453	0.741	Н	-7.086	-0.427	-1.288
С	4.509	3.855	-2.949	0	-8.073	2.136	2.775	Н	-5.867	-0.412	-2.576
С	4.017	5.188	-2.344	0	-5.996	2.953	2.419	Н	-0.641	5.86	0.555
С	5.431	4.093	-4.152	0	1.766	1.394	-3.149	Н	-0.131	5.417	-3.734
С	2.458	-0.239	3.541	0	0.754	3.06	-2.118	Н	-0.298	8.036	-2.911
С	2.101	-1.57	4.181	0	-0.507	7.214	-1.014	Н	-7.262	-0.597	2.851
С	1.34	-2.451	3.166	0	-1.088	-0.778	0.72	Н	-5.856	0.061	3.713
С	1.306	-1.379	5.476	Н	3.978	1.61	2.82	Н	-6.059	-1.687	3.556
С	-4.635	-1.404	-0.286	Н	4.886	-1.428	1.154	Н	-5.487	-2.858	1.132
С	-3.342	-1.398	0.59	Н	6.921	-2.142	-0.11	Н	-6.715	-1.829	0.359
С	-3.9	-1.01	1.995	Н	3.924	-0.594	-2.314	Н	-7.022	4.509	3.365
С	-5.394	-0.73	1.738	Н	4.536	-2.77	-2.168	Н	-5.243	4.431	3.586
С	-5.474	0.558	0.832	Н	4.796	-2.739	-0.442	Н	-6.313	3.286	4.459
С	-6.828	1.308	0.883	Н	2.935	-4.271	-1.179	Н	-3.467	-4.011	-2.865
С	-7.029	2.155	2.145	Н	2.515	-3.13	0.091	Н	-4.056	-3.474	-5.247
С	-2.447	0.517	-0.812	Н	0.078	-3.124	-0.396	Н	-3.907	-2.028	-4.233
С	-3.863	0.87	-1.275	Н	1.109	-2.562	-3.965	Н	-5.52	-2.644	-4.69
С	-5.037	0.06	-0.623	Н	2.227	-3.87	-3.543	Н	-5.197	-5.814	-2.534
С	-4.113	2.416	-1.212	Н	2.794	-2.196	-3.617	Н	-4.697	-5.701	-4.233
С	-2.852	3.235	-0.913	Н	5.869	0.448	-2.567	Н	-6.25	-5.016	-3.714
С	-1.657	2.77	-1.758	Н	6.473	-1.102	-2	Н	-0.735	1.053	4.258
С	-1.363	1.297	-1.433	Н	7.14	0.389	-1.331	Н	-1.548	2.27	2.223
С	-0.14	0.807	-1.816	Н	0.376	-5.693	0.464	Н	-1.483	3.329	3.643

С	0.858	1.735	-2.411	Н	0.018	-5.232	-3.838	Н	-3.041	2.704	3.069
С	-0.38	3.542	-1.344	Н	0.021	-7.855	-3.011	Н	-1.929	2.381	5.988
С	-1.966	2.942	-3.266	Н	7.48	0.353	2.814	Н	-2.248	0.647	6.194
С	-6.19	0.074	-1.651	Н	6.108	-0.361	3.688	Н	-3.482	1.701	5.471
С	-0.398	5.031	-1.518	Н	6.298	1.394	3.621	Н	2.877	3.01	0.111
С	-0.528	5.947	-0.515	Н	5.657	2.699	1.297	Н	8.766	-0.963	1.2
С	-0.273	5.798	-2.733	Н	6.845	1.712	0.413	Н	1.284	1.559	1.274
С	-0.346	7.105	-2.367	Н	7.195	-4.793	3.047	Н	-2.671	-3.03	-0.21
С	-6.196	-0.731	3.036	Н	5.428	-4.685	3.344	Н	-8.613	0.783	1.377
С	-5.696	-1.862	0.732	Н	6.561	-3.609	4.226	Н	-0.382	-0.119	0.544

Atom	X	Y	Z	Atom	X	Y	Z	Atom	X	Y	Z
С	2.912	2.075	1.664	С	-8.295	0.49	1.867	Н	8.095	-0.88	-2.026
С	2.956	0.611	2.201	С	-5.324	-2.18	-2.098	Н	8.851	0.693	-2.442
С	4.513	0.402	2.342	С	-5.842	-3.175	-1.071	Н	7.666	-3.292	2.608
С	5.143	1.685	1.762	С	-7.24	-2.743	-0.579	Н	7.654	-3.942	0.956
С	4.829	1.707	0.223	С	-5.844	-4.597	-1.638	Н	7.785	-2.193	1.218
С	5.775	2.607	-0.611	С	-1.333	3.014	-3.402	Н	4.022	-4.25	1.97
С	7.154	1.986	-0.87	С	0.093	3.548	-3.356	Н	5.437	-5.153	1.396
С	2.019	-0.216	-0.012	С	0.054	5.025	-2.911	Н	5.392	-4.532	3.059
С	2.399	1.1	-0.696	С	0.767	3.393	-4.725	Н	-0.529	3.834	1.944
С	3.279	2.087	0.145	0	1.625	2.718	1.825	Н	1.206	5.551	1.431
С	3.032	0.838	-2.106	0	1.778	3.104	4.06	Н	-0.23	6.297	2.158
С	3.328	-0.638	-2.378	0	2.316	0.483	3.464	Н	1.229	6.051	3.136
С	2.048	-1.48	-2.256	0	5.004	-0.769	1.67	Н	-0.218	4.726	4.874
С	1.449	-1.284	-0.849	0	5.299	-1.873	3.632	Н	-1.646	5.001	3.855
С	0.457	-2.16	-0.496	0	5.966	3.892	-0.048	Н	-1.193	3.352	4.327
С	0.228	-3.372	-1.318	0	8.182	2.629	-0.744	Н	-2.358	-0.85	-3.682
С	2.381	-2.992	-2.356	0	7.093	0.731	-1.311	Н	-6.88	4.133	-0.328
С	1.029	-1.069	-3.346	0	-0.79	-4.054	-1.213	Н	-1.898	-2.524	-1.223
С	3.028	3.493	-0.445	0	1.162	-3.774	-2.195	Н	-4.818	-0.15	-3.384
С	3	-3.45	-3.644	0	3.253	-4.288	-5.707	Н	-4.967	0.745	0.112
С	2.359	-3.98	-4.726	0	2.223	-1.593	1.965	Н	-5.264	2.967	1.246
С	4.399	-3.435	-3.986	0	-1.643	2.367	-2.249	Н	-1.437	1.715	0.598
С	4.491	-3.948	-5.241	0	-2.09	3.199	-4.331	Н	-3.941	1.652	1.993
С	6.601	1.828	2.194	0	-2.419	0.113	-3.559	Н	-2.34	1.577	2.662

Table S14. Optimized coordinates of compound **5b** at B3LYP/6-31G(d) level in CH_3CN .

С	4.149	2.72	2.326	0	-5.049	-0.983	-1.514	Н	-3.7	-0.331	3.421
С	2.33	-0.429	1.295	0	-5.188	-2.395	-3.285	Н	-4.049	-0.799	1.758
С	8.354	0.113	-1.663	0	-5.941	3.896	-0.461	Н	-3.01	-3.031	1.878
С	5.332	-1.854	2.419	0	-8.136	2.792	0.507	Н	-1.431	-0.501	4.367
С	5.778	-3.015	1.546	0	-7.046	0.995	1.337	Н	-0.104	-1.285	3.482
С	5.114	-4.316	2.023	0	-1.124	-3.478	2.597	Н	-0.584	0.336	3.055
С	1.236	3.295	2.982	0	0.796	-3.914	1.606	Н	-3.605	4.225	-0.621
С	0.065	4.236	2.772	0	-4.519	-3.489	5.53	Н	-3.18	3.683	0.999
С	0.608	5.618	2.345	0	-2.219	-1.818	-1.828	Н	-1.937	3.748	-0.252
С	-0.799	4.331	4.034	Н	2.324	1.36	3.9	Н	-5.124	-3.384	3.546
С	-2.945	1.832	-1.965	Н	6.913	4.098	-0.179	Н	-1.302	-2.841	5.534
С	-3.012	0.314	-2.28	Н	1.937	-2.341	1.4	Н	-3.354	-3.471	7.251
С	-4.568	0.083	-2.348	Н	4.735	0.307	3.406	Н	-7.254	0.772	-1.836
С	-5.182	1.439	-1.941	Н	4.968	0.699	-0.172	Н	-7.067	2.513	-2.136
С	-4.828	1.681	-0.432	Н	5.343	2.714	-1.618	Н	-6.746	1.347	-3.428
С	-5.738	2.71	0.286	Н	1.453	1.632	-0.862	Н	-4.394	3.427	-2.489
С	-7.11	2.161	0.695	Н	3.961	1.398	-2.219	Н	-4.184	2.198	-3.754
С	-2.01	-0.223	-0.006	Н	2.368	1.221	-2.886	Н	-8.711	1.202	2.583
С	-2.387	1.171	0.507	Н	3.751	-0.75	-3.381	Н	-9.007	0.322	1.056
С	-3.273	2.046	-0.449	Н	4.081	-1.005	-1.668	Н	-8.041	-0.447	2.358
С	-3.007	1.09	1.945	Н	3.046	-3.252	-1.522	Н	-5.156	-3.122	-0.216
С	-3.289	-0.342	2.406	Н	1.515	-1.039	-4.326	Н	-7.962	-2.746	-1.404
С	-2.008	-1.189	2.377	Н	0.192	-1.768	-3.404	Н	-7.596	-3.442	0.184
С	-1.423	-1.176	0.951	Н	0.6	-0.085	-3.143	Н	-7.216	-1.74	-0.145
С	-0.436	-2.091	0.699	Н	3.631	4.267	0.03	Н	-4.843	-4.898	-1.964
С	-0.204	-3.202	1.657	Н	3.262	3.511	-1.513	Н	-6.183	-5.303	-0.873

С	-2.341	-2.673	2.67	Н	1.973	3.758	-0.337	Н	-6.516	-4.673	-2.499
С	-0.972	-0.631	3.381	Н	1.327	-4.213	-4.933	Н	0.644	2.975	-2.604
С	-2.989	3.516	-0.066	Н	5.219	-3.094	-3.369	Н	-0.403	5.137	-1.922
С	-2.963	-2.974	3.999	Н	5.315	-4.137	-5.912	Н	1.072	5.425	-2.863
С	-4.276	-3.28	4.207	Н	7.207	1	1.809	Н	-0.518	5.627	-3.625
С	-2.343	-3.009	5.301	Н	7.035	2.767	1.85	Н	0.211	3.942	-5.492
С	-3.328	-3.325	6.182	Н	6.669	1.802	3.287	Н	1.788	3.789	-4.688
С	-6.65	1.529	-2.351	Н	4.118	2.722	3.417	Н	0.819	2.342	-5.031
С	-4.202	2.372	-2.68	Н	4.344	3.734	1.977	Н	5.466	-2.799	0.519
С	-2.341	-0.591	-1.268	Н	8.997	0.047	-0.783	С	7.317	-3.112	1.586

Figure S1. ¹H-¹H COSY and HMBC correlations of compound 1.

Figure S2. ECD spectra of 2, 2' measured at the concentration of 250 μ g/mL in CHCl₃.

X-Ray Crystallographic Data.

6*R***-hydroxymoluccensin A (1):** Suitable crystals of **1** were obtained in chloroform/methanol (1:2) at room temperature. The measurement was made on an Agilent Xcalibur Atlas Gemini ultra diffractometer with mirror monochromated Cu-K α radiation (λ = 1.54184 Å) at 150 K. Orthorhombic, C₃₅H₄₄O₁₂, space group P2(1)2(1)2(1) with a = 9.18292(14) Å, b = 12.4621(2) Å, c = 28.4369(5) Å, V = 3254.29(9) Å³, Z = 4, D_{calcd} = 1.340 Mg/m³, m = 0.839 mm⁻¹ and *F*(000) = 1400. Crystal size: 0.35 × 0.30 × 0.25 mm³. Independent reflections: 4962 with *R*_{int} = 0.0193. The structure was solved by direct methods (SHELXS-97) and refined using full-matrix least-squares difference Fourier techniques. All non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were placed in idealized positions and refined as riding atoms with the relative isotropic parameters. The final agreement factors were *R*1 = 0.0268 and *wR*2 = 0.0674 [*I* > 2 σ (*I*)]. The absolute structure parameter is 0.00(11). CCDC 1818979 contains the supplementary crystallographic data for this paper (excluding structure factors). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Compound 2: Suitable crystals of **2** were obtained in chloroform/ acetonitrile (1:2) at room temperature. The measurement was made on an Agilent Xcalibur Atlas Gemini ultra diffractometer with mirror monochromated Cu-K α radiation (λ = 1.54184 Å) at 293 K. Triclinic, C_{77.37}H_{93.10}N₄O₂₄ [C₇₀H₈₄O₂₄, 4(CH₃CN)], space group P1 with a = 10.54064(16) Å, b = 14.6009(3) Å, c = 14.9312(2) Å, *V* = 1884.09(5) Å³, *Z* = 1, *D*_{calcd} = 1.289 Mg/m³, *m* = 0.796 mm⁻¹ and *F*(000) = 777. Crystal size: 0.30 × 0.20 × 0.10 mm³. Independent reflections: 12974 with *R*_{int} = 0.0333. The structure was solved by direct methods (SHELXS-97) and refined using full-matrix least-squares difference Fourier techniques. All non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were placed in idealized positions and refined as riding atoms with the relative isotropic parameters. The final agreement factors were *R*1 = 0.0506 and *wR*2 = 0.1346 [*I* > 2 σ (*I*)]. The absolute structure parameter is 0.05(12). CCDC 1818983 contains the supplementary crystallographic data for this paper (excluding structure factors). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Compound 2': Suitable crystals of **2'** were obtained in chloroform/ acetonitrile (1:2) at room temperature. The measurement was made on an Agilent Xcalibur Atlas Gemini ultra diffractometer with mirror monochromated Cu-K α radiation ($\lambda = 1.54178$ Å) at 150 K. Orthorhombic,

 $C_{78}H_{96}N_4O_{22}$ [$C_{70}H_{84}O_{22}$, 4(CH₃CN)], space group C222₁ with a = 10.70154(11) Å, b = 27.4281(3) Å, c = 26.4591(3) Å, V = 7766.36(14) Å³, Z = 4, $D_{calcd} = 1.233$ Mg/m³, m = 0.744 mm⁻¹ and F(000) = 3072. Crystal size: $0.35 \times 0.35 \times 0.30$ mm³. Independent reflections: 6934 with $R_{int} = 0.0357$. The structure was solved by direct methods (SHELXS-97) and refined using full-matrix least-squares difference Fourier techniques. All non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were placed in idealized positions and refined as riding atoms with the relative isotropic parameters. The final agreement factors were R1 = 0.0757 and wR2 = 0.2014 [$I > 2\sigma(I)$]. The absolute structure parameter is 0.02(3). CCDC 1818987 contains the supplementary crystallographic data for this paper (excluding structure factors). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Compound 3: Suitable crystals of **3** were obtained in chloroform/methanol (1:3) at room temperature. The measurement was made on an Agilent Xcalibur Atlas Gemini ultra diffractometer with mirror monochromated Cu-K α radiation (λ = 1.54178 Å) at 293 K. Hexagonal, C₇₀H₈₄O₂₄, space group P6(5) with a = 14.7018(1) Å, b = 14.7018(1) Å, c = 53.2893(2) Å, V = 9975.00(7) Å³, Z = 6, D_{calcd} = 1.308 Mg/m³, m = 0.821 mm⁻¹ and *F*(000) = 4176 . Crystal size: 0.47 × 0.45 × 0.40 mm³. Independent reflections: 11839 with *R*_{int} = 0.0334. The structure was solved by direct methods (SHELXS-97) and refined using full-matrix least-squares difference Fourier techniques. All non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were placed in idealized positions and refined as riding atoms with the relative isotropic parameters. The final agreement factors were *R*1 = 0.0724 and *wR*2 = 0.2119 [*I* > 2 σ (*I*)]. The absolute structure parameter is 0.01(2). CCDC 1818988 contains the supplementary crystallographic data for this paper (excluding structure factors). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Compound 4': Suitable crystals of 1 were obtained in dimethyl sulfoxide at room temperature. The measurement was made on an Agilent Xcalibur Atlas Gemini ultra diffractometer with mirror monochromated Cu-K α radiation ($\lambda = 1.54178$ Å) at 150 K. Monoclinic, C₇₆H₁₀₄O₂₆S₃, [C₇₀H₈₄O₂₂, 3(CH₃SOCH₃), 1H₂O] space group *P*2(1) with a = 13.7347(9) Å, b = 21.9890(14) Å, c = 13.7372 (11) Å, V = 3882.8(5) Å³, Z = 2, D_{calcd} = 1.308 Mg/m³, *m* = 1.531 mm⁻¹ and *F*(000) = 1632.0 Crystal size: 0.30 × 0.20 × 0.15 mm³. Independent reflections: 10068 with *R*_{int} = 0.0640. The structure was solved by direct methods (SHELXS-97) and refined using full-matrix least-squares difference Fourier

techniques. All non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were placed in idealized positions and refined as riding atoms with the relative isotropic parameters. The final agreement factors were R1 = 0.1161 and wR2 = 0.2152 [$I > 2\sigma(I)$]. The absolute structure parameter is 0.04(9). CCDC 1518171 contains the supplementary crystallographic data for this paper (excluding structure factors). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Compound 5a: Suitable crystals of **5a** were obtained in chloroform/ acetonitrile (1:1) at room temperature. The measurement was made on a Bruker Smart 1000 CCD system diffractometer with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at 296 K. Orthorhombic, C₇₄H₉₁N₂O₂₄ [C₇₀H₈₆O₂₄, 2(CH₃CN)], space group P2(1)2(1)2(1) with a = 15.2487(11) Å, b = 16.1229(11) Å, c = 29.1352(19) Å, V = 7163.0(9) Å³, Z = 4, D_{calcd} = 1.291 Mg/m³, m = 0.096 mm⁻¹ and *F*(000) = 2964. Crystal size: 0.34 × 0.32 × 0.28 mm³. Independent reflections: 15927 with $R_{int} = 0.0348$. The structure was solved by direct methods (SHELXS-97) and refined using full-matrix least-squares difference Fourier techniques. All non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were placed in idealized positions and refined as riding atoms with the relative isotropic parameters. The final agreement factors were *R*1 = 0.0548 and *wR*2 = 0.1445 [*I* > 2 σ (*I*)]. The absolute structure parameter is 0.4(7). CCDC 1818989 contains the supplementary crystallographic data for this paper (excluding structure factors). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Compound 5b: Suitable crystals of **5b** were obtained in chloroform/*n*-hexane (1:1) at room temperature. The measurement was made on an Agilent Xcalibur Atlas Gemini ultra diffractometer with mirror monochromated Cu-K α radiation ($\lambda = 1.54184$ Å) at 123 K. Orthorhombic, C₇₄H₉₀Cl₁₂O₂₄ [C₇₀H₈₆O₂₄,4(CHCl₃)], space group P2(1)2(1)2(1) with a = 15.8696(6) Å, b = 16.1185(5) Å, c = 32.0556(7) Å, V = 8199.6(4) Å³, Z = 4, D_{calcd} = 1.449 Mg/m³, m = 4.336 mm⁻¹ and *F*(000) = 3720. Crystal size: 0.42 × 0.40 × 0.39 mm³. Independent reflections: 13583 with *R*_{int} = 0.1210. The structure was solved by direct methods (SHELXS-97) and refined using full-matrix least-squares difference Fourier techniques. All non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were placed in idealized positions and refined as riding atoms with the relative isotropic parameters. The final agreement factors were *R*1 = 0.0812 and *wR*2 = 0.1738 [*I* > 2 σ (*I*)]. The

absolute structure parameter is 0.03(2). CCDC 1818990 contains the supplementary crystallographic data for this paper (excluding structure factors). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.