Supporting Information

Pd-Catalyzed One-Pot Dehydroxylative Coupling of Phenols with K4[Fe(CN)6]

Mediated by SO₂F₂: A Practical Method for Direct Converting Phenols to Aryl

nitriles

Chuang Zhao, Wan-Yin Fang, K. P. Rakesh, Hua-Li Qin*

School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei Province 430070, People's Republic of China

Table of Content

1. General Consideration	S2
2. Screening the optimized reaction conditions	S3
3. General procedure	
4. Product Characterization	
5. Reference	S21
6. NMR Spectra	S22

1. General considerations

All reactions were carried out in dried glassware. All reagents were purchased from commercial sources and used without further purification. Unless otherwise specified, NMR spectra were recorded in CDCl₃ or DMSO-d₆ on a 500 MHz (for ¹H), 471 MHz (for ¹⁹F), 126 MHz (for ¹³C) spectrometer. All chemical shifts were reported in ppm relative to TMS (¹H NMR, 0 ppm) as internal standards. The HPLC experiments were carried out on a Waters e2695 instrument (column: J&K, RP-C18, 5 μ m, 4.6 × 150 mm), and the yields of the products were determined by using the corresponding pure compounds as the external standards. The coupling constants were reported in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. MS experiments were performed on a TOF-Q ESI or CI/EI instrument. Melting points were measured and uncorrected.

2. Screening the optimized reaction conditions

K₄[Fe(CN)₆] 3H₂O OSO₂F OH CN SO₂F₂ (g), Et₃N (2.0 eq.) Catalyst, Ligand DMF, r.t., 2 h Na₂CO₃, 120 ^oC Ph Ph Ph 12 h, Ar 1a 2a 3a L1 R = H, **L3** R = Me, **L4** R = OMe, **L5** n = 2, **L7** (dppe) n = 3, **L8** (dppp) L2 L6 L10 L9 Entry Cat. (mol%) Ligand (mol%) Yield (**3a**, %)^b 1 L1 (10) 4 $Pd(OAc)_2(5)$ 2 $Pd(OAc)_2(5)$ L2 (10) 12 7 3 $Pd(OAc)_2(5)$ L3 (10) 4 $Pd(OAc)_2(5)$ L4 (10) 11 43 5 $Pd(OAc)_2(5)$ L5 (10) $Pd(OAc)_2(5)$ 85 6 L6 (10) 7 29 $Pd(OAc)_2(5)$ L7 (10) 8 $Pd(OAc)_2(5)$ L8 (10) 78 9 $Pd(OAc)_2(5)$ **L9** (10) trace 10 $Pd(OAc)_2(5)$ L10 (10) trace 3 11 $Pd(OAc)_2(5)$ / 12 $NiCl_2(5)$ L6 (10) trace 13 $Pd(OAc)_2(1)$ L6 (10) 36 14 $Pd(OAc)_2(3)$ L6 (10) 68

Table 1 Screening the Catalyst System^a

15	$Pd(OAc)_2(10)$	L6 (10)	86
	()=()		

^aReaction conditions: a mixture of 4-phenylphenol (**1a**, 0.2 mmol), Et₃N (0.4 mmol, 2.0 eq.), DMF (2.0 mL) was stirred at room temperature charged with an SO₂F₂ balloon for 2 hours before K₄[Fe(CN)₆]·3H₂O (0.4 mmol, 2.0 eq.), catalyst, ligand and Na₂CO₃ (0.4 mmol, 2.0 eq.) were added into the mixture to react for an additional 12 h under an argon atmosphere (an Ar balloon) at 120 °C. ^bThe yield was determined by HPLC using pure **3a** as the external standard ($t_R = 4.5 \text{ min}, \lambda_{max} = 268.9 \text{ nm}, \text{ water / methanol} = 20 : 80 (v / v)$).

Ph OH 1a	SO ₂ F ₂ (g), Et ₃ N (2.0 eq. DMF, r.t., 2 h) Ph 2a	K ₄ [Fe(CN) ₆] [·] 3H ₂ O Pd(OAc) ₂ , L6 Na ₂ CO ₃ , 120 °C 12 h, Ar	Ph CN 3a	
 Entry	K4[Fe(CN)6] ⁻ 3H2O Loading	(X eq.)	Yield (3a , %) ^b	_
1		1		66	
2		2		85	
3		4		86	
4		6		85	
5		8		65	
6		10		55	

Table 2 Screening K₄[Fe(CN)₆][•]3H₂O Loading^a

^aReaction conditions: a mixture of 4-phenylphenol (**1a**, 0.2 mmol), Et₃N (0.4 mmol, 2.0 eq.), DMF (2.0 mL) was stirred at room temperature charged with an SO₂F₂ balloon for 2 hours before K₄[Fe(CN)₆]⁻3H₂O (X eq.), Pd(OAc)₂ (5 mol%), **L6** (10 mol%), and Na₂CO₃ (0.4 mmol, 2.0 eq.) were added into the mixture to react for an additional 12 h under an argon atmosphere (an Ar balloon) at 120 °C. ^bThe yield was determined by HPLC using pure **3a** as the external standard (t_R = 4.5 min, $\lambda_{max} = 268.9$ nm, water / methanol = 20 : 80 (v / v)).

Ph 1a	SO ₂ F ₂ (g), Et ₃ N (2.0 eq.) DMF, r.t., 2 h	Ph 23	K ₄ [Fe(CN) ₆]·3H ₂ O Pd(OAc) ₂ , L6 Base, 120 °C 12 h, Ar	Ph CN
		2a		54
Entry		Base (eq.)		Yield (3a , %) ^b
1		Et ₃ N (2.0)		trace
2		Cs ₂ CO ₃ (2.0)		40
3		KOAc (2.0)		54
4		K ₃ PO ₄ (2.0)		83
5		NaHCO ₃ (2.0)		trace
6		Na ₂ CO ₃ (2.0)		85
7		$K_2CO_3(2.0)$		89
8		K ₂ CO ₃ (0.2)		trace
9		K ₂ CO ₃ (0.5)		11
10		K ₂ CO ₃ (1.2)		68
11		K ₂ CO ₃ (3.0)		80

Table 3 Screening the Base^a

^aReaction conditions: a mixture of 4-phenylphenol (**1a**, 0.2 mmol), Et₃N (0.4 mmol, 2.0 eq.), DMF (2.0 mL) was stirred at room temperature charged with an SO₂F₂ balloon for 2 hours before K₄[Fe(CN)₆][·]3H₂O (0.4 mmol, 2.0 eq.), Pd(OAc)₂ (5 mol%), **L6** (10 mol%), and base were added into the mixture to react for an additional 12 h under an argon atmosphere (an Ar balloon) at 120 °C. ^bThe yield was determined by HPLC using pure **3a** as the external standard ($t_R = 4.5 \text{ min}, \lambda_{max} = 268.9 \text{ nm}, \text{water / methanol} = 20 : 80 (v / v)$).

Table 4 Screening the Solvent^a

Entry	Solvent	Yield (3a , %) ^b
1	DMF	89
2	DMSO	26
3	NMP	67
4	MeCN	trace
5	dioxane	trace

^aReaction conditions: a mixture of 4-phenylphenol (**1a**, 0.2 mmol), Et₃N (0.4 mmol, 2.0 eq.), Solvent (2.0 mL) was stirred at room temperature charged with an SO₂F₂ balloon for 2 hours before K₄[Fe(CN)₆]⁻3H₂O (0.4 mmol, 2.0 eq.), Pd(OAc)₂ (5 mol%), **L6** (10 mol%), and K₂CO₃ (0.4 mmol, 2.0 eq.) were added into the mixture to react for an additional 12 h under an argon atmosphere (an Ar balloon) at 120 °C. ^bThe yield was determined by HPLC using pure **3a** as the external standard (t_R = 4.5 min, $\lambda_{max} = 268.9$ nm, water / methanol = 20 : 80 (v / v)).

Ph OH 1a	SO ₂ F ₂ (g), Et ₃ N (2.0 eq.) DMF, r.t., 2 h	Ph 2a	$\begin{array}{c} K_4[Fe(CN)_6]^{\cdot}3H_2O \\ \hline Pd(OAc)_2, \ L6 \\ \hline K_2CO_3, \ T \ (^{\circ}C) \\ 12 \ h, \ Ar \end{array} \xrightarrow{Ph} \begin{array}{c} CN \\ Ph \\ \mathbf{3a} \end{array}$
Entry		T (°C)	Yield (3a , %) ^b
1		r.t.	trace
2		60	5
3		80	78
4		100	95
5		120	89
6		140	87

Table 5 Screening the Reaction Tempreture^a

^aReaction conditions: a mixture of 4-phenylphenol (**1a**, 0.2 mmol), Et₃N (0.4 mmol, 2.0 eq.), DMF (2.0 mL) was stirred at room temperature charged with an SO₂F₂ balloon for 2 hours before K₄[Fe(CN)₆]³H₂O (0.4 mmol, 2.0 eq.), Pd(OAc)₂ (5 mol%), **L6** (10 mol%), and K₂CO₃

(0.4 mmol, 2.0 eq.) were added into the mixture to react for an additional 12 h under an argon atmosphere (an Ar balloon) at corresponding temperature. ^bThe yield was determined by HPLC using pure **3a** as the external standard ($t_R = 4.5 \text{ min}$, $\lambda_{max} = 268.9 \text{ nm}$, water / methanol = 20 : 80 (v / v)).

3. General procedure

Phenol (1, 2.0 mmol, 1.0 eq.), Et₃N (404.8 mg, 4.0 mmol, 2.0 eq.), and DMF (20.0 mL) were added to an oven-dried reaction flask (50 mL) that was equipped with a stirring bar. The flask was fitted with a plastic stopper and SO₂F₂ gas was introduced into the stirring reaction mixture by bubbling from an SO₂F₂ balloon (ca. 5.5 eq.) at room temperature for 2-6 h. After the phenol was completely consumed (confirmed by TLC), K₄[Fe(CN)₆]'3H₂O (1.69 g, 4.0 mmol, 2.0 eq.), Pd(OAc)₂ (22.4 mg, 5 mol%), 2-(diphenylphosphino)-biphenyl (**L6**, 67.7 mg, 10 mol%), K₂CO₃ (552.8 mg, 4 mmol, 2.0 eq.) were added into the reaction mixture. Then the reaction was stirred at 100 °C for an additional 12 h under an argon atmosphere (an Argon balloon). Once the aryl fluorosulfonate had been completely consumed, the mixture was diluted with water and extracted with EtOAc (3×10 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated to dryness. The residue was purified by column chromatography on silica gel with PE / EA as eluent to afford the desired aryl nitrile (**3**).

4. Product Characterization

4-Biphenylcarbonitrile (**3a**). White solid (312 mg from **1a**, isolated yield 87%). HPLC yield 95% (using 4-biphenylcarbonitrile (**3a**) ($t_R = 4.495 \text{ min}$, $\lambda_{max} = 268.9 \text{ nm}$, water / methanol = 20 : 80 (v / v)) as the external standard). M.p. 79-80 °C. The NMR data is identical to that reported in literature.^[1] ¹H NMR (CDCl₃, 500 MHz) δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.68 (d, *J* = 8.3 Hz, 2H), 7.60 (d, *J* = 7.5 Hz, 2H), 7.49 (t, *J* = 7.2 Hz, 2H), 7.44 (t, *J* = 7.2 Hz, 1H). ¹³C NMR (CDCl₃, 126 MHz): δ 145.7, 139.2, 132.6, 129.2, 128.7, 127.8, 127.3, 119.0, 110.9.

Benzonitrile (**3b**). Colorless oil. HPLC yield 99% (using benzonitrile (**3b**) ($t_R = 3.548 \text{ min}$, $\lambda_{max} = 222.8 \text{ nm}$, water / methanol = 30 : 70 (v / v)) as the external standard). The NMR data is identical to that reported in literature.^[2] ¹H NMR (CDCl₃, 500 MHz) δ 7.62-7.57 (m, 3H), 7.44 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ 132.8, 132.0, 129.1, 118.8, 112.3.

3ca

4-Methylbenzonitrile (**3ca**). Colorless oil. HPLC yield 86% (using 4-methylbenzonitrile (**3ca**) (t_R = 4.354 min, $\lambda_{max} = 232.2$ nm, water / methanol = 30 : 70 (v / v)) as the external standard). The NMR data is identical to that reported in literature.^[2] ¹H NMR (CDCl₃, 500 MHz) δ 7.54 (d, *J* = 7.9 Hz, 2H), 7.27 (d, *J* = 7.8 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 143.8, 132.2, 129.9, 119.3, 109.4, 21.9.

3cb

3-Methylbenzonitrile (**3cb**). Colorless oil. HPLC yield 90% (using 3-methylbenzonitrile (**3cb**) (t_R = 4.623 min, $\lambda_{max} = 228.7$ nm, water / methanol = 30 : 70 (v / v)) as the external standard). The NMR data is identical to that reported in literature.^[3] ¹H NMR (CDCl₃, 500 MHz) δ 7.45-7.44 (m, 2H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 7.8 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 139.3, 133.7, 132.5, 129.3, 129.1, 119.1, 112.3, 21.2.

3cc

3-Methylbenzonitrile (**3cc**). Colorless oil. HPLC yield 99% (using 3-methylbenzonitrile (**3cc**) (t_R = 4.493 min, $\lambda_{max} = 227.5$ nm, water / methanol = 30 : 70 (v / v)) as the external standard). The NMR data is identical to that reported in literature.^[3] ¹H NMR (CDCl₃, 500 MHz) δ 7.59 (d, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 1H), 7.31 (d, *J* = 7.8 Hz, 1H), 7.26 (t, *J* = 7.5 Hz, 1H), 2.54 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 142.0, 132.7, 132.6, 130.3, 126.3, 118.2, 112.8, 20.5.

3da

4-Methoxybenzonitrile (**3da**). White solid (162 mg from **1da**, isolated yield 61%). M.p. 53-55 °C. The NMR data is identical to that reported in literature.^[1] ¹H NMR (CDCl₃, 500 MHz) δ 7.58 (d, J = 8.7 Hz, 2H), 6.95 (d, J = 8.7 Hz, 2H), 3.85 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 163.0, 134.1, 119.3, 114.9, 104.1, 55.7.

3-Methoxybenzonitrile (**3db**). Colorless oil. HPLC yield 91% (using 3-methoxybenzonitrile (**3db**) ($t_R = 4.216 \text{ min}, \lambda_{max} = 230.0 \text{ nm}, \text{ water / methanol} = 30 : 70 (v / v)$) as the external standard). The NMR data is identical to that reported in literature.^[2] ¹H NMR (CDCl₃, 500 MHz) δ 7.37 (t, J = 8.7 Hz, 1H), 7.24 (d, J = 7.5 Hz, 1H), 7.14-7.12 (m, 2H), 3.83 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 159.7, 130.4, 124.6, 119.4, 118.8, 116.9, 113.3, 55.6.

3dc

2-Methoxybenzonitrile (**3dc**). Yellow liquid. HPLC yield 61% (using 2-methoxybenzonitrile (**3dc**) ($t_R = 3.662 \text{ min}$, $\lambda_{max} = 231.1 \text{ nm}$, water / methanol = 30 : 70 (v / v)) as the external standard). The NMR data is identical to that reported in literature.^{[2] 1}H NMR (CDCl₃, 500 MHz) δ 7.56-7.52 (m, 2H), 7.02-6.96 (m, 2H), 3.93 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 161.3, 134.5, 133.8, 120.8, 116.6, 111.4, 101.8, 56.1.

1,4-Dicyanobenzene (**3ea**). White solid. HPLC yield 92% (using 1,4-dicyanobenzene (**3ea**) (t_R = 3.192 min, λ_{max} = 246.4 nm, water / methanol = 40 : 60 (v / v)) as the external standard). M.p. 220-222 °C. The NMR data is identical to that reported in literature.^{[3] 1}H NMR (DMSO-d₆, 500 MHz) δ 8.07 (s, 4H). ¹³C NMR (DMSO-d₆, 126 MHz): δ 133.2, 117.5, 115.7.

1,3-Dicyanobenzene (**3eb**). Light yellow solid. HPLC yield 45% (using 1,3-dicyanobenzene (**3eb**) ($t_R = 3.307 \text{ min}, \lambda_{max} = 230.0 \text{ nm}, \text{water / methanol} = 40 : 60 (v / v)$) as the external standard). M.p. 160-162 °C. The NMR data is identical to that reported in literature.^[4] ¹H NMR (CDCl₃, 500 MHz) δ 7.96 (s, 1H), 7.90 (d, J = 8.0 Hz, 2H), 7.66 (t, J = 7.9 Hz, 1H). ¹³C NMR (CDCl₃, 126 MHz) δ 136.1, 135.5, 130.5, 116.7, 114.2.

4-Fluorobenzonitrile (**3fa**). Colorless oil. HPLC yield 50% (using 4-fluorobenzonitrile (**3fa**) (t_R = 3.390 min, $\lambda_{max} = 225.2$ nm, water / methanol = 30 : 70 (v / v)) as the external standard). The NMR data is identical to that reported in literature.^[3] ¹H NMR (CDCl₃, 500 MHz) δ 7.69-7.67 (m, 2H), 7.19-7.16 (m, 2H). ¹⁹F NMR (CDCl₃, 471MHz) δ -102.4 (s, 1F). ¹³C NMR (CDCl₃, 126 MHz) δ 165.2 (d, *J* = 256.1 Hz), 134.8 (d, *J* = 9.1 Hz), 118.1, 117.0 (d, *J* = 22.7 Hz), 108.7 (d, *J* = 3.6 Hz).

3fb

2-Fluorobenzonitrile (**3fb**). Colorless oil. HPLC yield 44% (using 2-fluorobenzonitrile (**3fb**) (t_R = 3.757 min, $\lambda_{max} = 222.8$ nm, water / methanol = 30 : 70 (v / v)) as the external standard). The NMR data is identical to that reported in literature.^[3] ¹H NMR (CDCl₃, 500 MHz) δ 7.65-7.60 (m, 2H), 7.27 (td, $J_1 = 7.7$ Hz, $J_2 = 0.8$ Hz, 1H), 7.22 (t, J = 8.7 Hz, 1H). ¹⁹F NMR (CDCl₃, 471MHz) δ -106.2 (s, 1F). ¹³C NMR (CDCl₃, 126 MHz) δ 163.3 (d, J = 258.8 Hz), 135.2 (d, J = 8.2 Hz), 133.7, 124.9 (d, J = 3.6 Hz), 116.6 (d, J = 19.1 Hz), 114.0, 101.6 (d, J = 15.4 Hz).

3ga

4-Chlorobenzonitrile (**3ga**). White solid. HPLC yield 77% (using 4-chlorobenzonitrile (**3ga**) (t_R = 3.076 min, $\lambda_{max} = 234.6$ nm, water / methanol = 20 : 80 (v / v)) as the external standard). M.p. 90-92 °C. The NMR data is identical to that reported in literature.^[4] ¹H NMR (CDCl₃, 500 MHz) δ 7.60 (d, *J* = 8.4 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ 139.7, 133.5, 129.8, 118.1, 110.9.

3gb

2-Chlorobenzonitrile (**3gb**). Yellowish solid. HPLC yield 83% (using 2-chlorobenzonitrile (**3gb**) ($t_R = 4.460 \text{ min}$, $\lambda_{max} = 229.9 \text{ nm}$, water / methanol = 30 : 70 (v / v)) as the external standard). M.p. 40-41 °C. The NMR data is identical to that reported in literature.^[4] ¹H NMR (CDCl₃, 500 MHz) δ 7.67 (dd, J = 7.8 Hz, J = 1.5 Hz, 1H), 7.57-7.50 (m, 2H), 7.38 (td, $J_1 = 7.4$ Hz, $J_2 = 1.3$ Hz, 1H). ¹³C NMR (CDCl₃, 126 MHz) δ 137.0, 134.1, 134.0, 130.2, 127.3, 116.1, 113.5.

3h

3-(Dimethylamino)benzonitrile (**3h**). Colorless oil (250 mg from **1h**, isolated yield 86%). The NMR data is identical to that reported in literature.^[2] ¹H NMR (CDCl₃, 500 MHz) δ 7.29-7.26 (m, 1H), 6.95 (d, *J* = 7.3 Hz, 1H), 6.89-6.88 (m, 2H), 2.98 (s, 6H). ¹³C NMR (CDCl₃, 126 MHz) δ 150.3, 129.8, 119.9, 119.5, 116.3, 114.9, 112.8, 40.2.

4-Phenoxybenzonitrile (**3i**). White solid (330.4 mg from **1i**, isolated yield 85%). M.p. 31-33 °C. The NMR data is identical to that reported in literature.^{[5] 1}H NMR (CDCl₃, 500 MHz): δ 7.60 (d, J = 8.7 Hz, 2H), 7.42 (t, J = 8.0 Hz, 2H), 7.23 (t, J = 7.5 Hz, 1H), 7.07 (d, J = 7.9 Hz, 2H), 7.01 (d, J = 8.7 Hz, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ 161.8, 154.9, 134.2, 130.3, 125.2, 120.5, 118.9, 118.0, 105.9.

2-Biphenylcarbonitrile (**3j**). White solid (296 mg from **1j**, isolated yield 83%). M.p. 37-38 °C. The NMR data is identical to that reported in literature.^[3] ¹H NMR (CDCl₃, 500 MHz) δ 7.77 (d, J = 7.5 Hz, 2H), 7.67-7.64 (m, 1H), 7.58-7.57 (m, 2H), 7.54-7.49 (m, 3H), 7.47-7.43 (m, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ 145.6, 138.2, 133.8, 132.9, 130.2, 128.84, 128.81, 128.8, 127.6, 118.8, 111.3.

3k

4-(Phenylmethyl)benzonitrile (**3k**). White solid (239 mg from **1k**, isolated yield 62%). The NMR data is identical to that reported in literature.^[6] M.p. 41-44 °C. ¹H NMR (CDCl₃, 500 MHz) δ 7.58 (d, J = 8.2 Hz, 2H), 7.36-7.24 (m, 5H), 7.18 (d, J = 7.2 Hz, 2H), 4.05 (s, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ 146.8, 139.4, 132.4, 129.7, 129.1, 128.9, 126.8, 119.1, 110.1, 42.1.

4-Benzyloxybenzonitrile (**3l**). White solid (301 mg from **1l**, isolated yield 72%). M.p. 90-92 °C. The NMR data is identical to that reported in literature.^[7] ¹H NMR (CDCl₃, 500 MHz) δ 7.58 (d, J = 8.3 Hz, 2H), 7.42-7.38 (m, 5H), 7.03 (d, J = 8.3 Hz, 2H), 5.12 (s, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ 162.1, 135.8, 134.1, 128.9, 128.5, 127.6, 119.3, 115.7, 104.3, 70.4.

4-*tert*-Butylbenzonitrile (**3m**). Colorless oil. HPLC yield 45% (using 4-*tert*-butylbenzonitrile (**3m**) ($t_R = 8.418 \text{ min}$, $\lambda_{max} = 233.4 \text{ nm}$, water / methanol = 30 : 70 (v / v)) as the external standard). The NMR data is identical to that reported in literature.^[1] ¹H NMR (CDCl₃, 500 MHz) δ 7.59 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 1.33 (s, 9H). ¹³C NMR (CDCl₃, 126 MHz) δ 156.8, 132.1, 126.3, 119.3, 109.4, 35.4, 31.0.

[1,1'-Biphenyl]-4,4'-dicarbonitrile (**3n**). White solid (294 mg from **1n**, isolated yield 72%). M.p. 232-234 °C. HPLC yield 82% (using [1,1'-biphenyl]-4,4'-dicarbonitrile (**3n**) ($t_R = 4.227 \text{ min}$, $\lambda_{max} = 274.9 \text{ nm}$, water / methanol = 30 : 70 (v / v)) as the external standard). The NMR data is identical to that reported in literature.^[8] ¹H NMR (CDCl₃, 500 MHz) δ 7.78 (d, J = 7.3 Hz, 4H), 7.70 (d, J = 7.3 Hz, 4H). ¹³C NMR (CDCl₃, 126 MHz) δ 143.7, 133.0, 128.1, 118.5, 112.6.

4-(1-Methyl-1-phenylethyl)benzonitrile (**30**). Colorless liquid (272 mg from **10**, isolated yield 62%). The NMR data is identical to that reported in literature.^{[9] 1}H NMR (CDCl₃, 500 MHz) δ 7.56 (d, *J* = 7.6 Hz, 2H), 7.34-7.28 (m, 4H), 7.23-7.18 (m, 3H), 1.69 (s, 6H). ¹³C NMR (CDCl₃, 126 MHz) δ 156.4, 149.2, 132.0, 128.4, 127.8, 126.8, 126.3, 119.2, 109.7, 43.6, 30.5.

3,4-Dimethoxybenzonitrile (**3p**). White solid (218 mg from **1p**, isolated yield 67%). HPLC yield 82% (using 3,4-dimethoxybenzonitrile (**3p**) ($t_R = 3.065 \text{ min}$, $\lambda_{max} = 254.7 \text{ nm}$, water / methanol = 30 : 70 (v / v)) as the external standard). M.p. 61-63 °C. The NMR data is identical to that reported in literature.^[9] ¹H NMR (CDCl₃, 500 MHz) δ 7.27 (d, J = 8.3 Hz, 1H), 7.06 (s, 1H), 6.89 (d, J = 8.3 Hz, 1H), 3.91 (s, 3H), 3.88 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 152.9, 149.2, 126.5, 119.3, 114.0, 111.3, 103.9, 56.2, 56.1.

3q

Benzo[d][1,3]dioxole-5-carbonitrile (**3q**). White solid (232 mg from **1q**, isolated yield 79%). M.p. 87-89 °C. The NMR data is identical to that reported in literature.^[1] ¹H NMR (CDCl₃, 500 MHz) δ 7.21 (d, *J* = 8.1 Hz, 1H), 7.03 (s, 1H), 6.86 (d, *J* = 7.9 Hz, 1H), 6.07 (s, 2H). ¹³C NMR (CDCl₃, 126 MHz) δ 151.7, 148.2, 128.4, 119.0, 111.6, 109.3, 105.1, 102.3.

3r

2,4-Dimethylbenzonitrile (**3r**). White solid. HPLC yield 75% (using 2,4-dimethylbenzonitrile (**3r**) ($t_R = 5.746 \text{ min}$, $\lambda_{max} = 235.8 \text{ nm}$, water / methanol = 30 : 70 (v / v)) as the external standard). M.p. 20-22 °C. The NMR data is identical to that reported in literature.^[1] ¹H NMR (CDCl₃, 500 MHz) δ 7.47 (d, *J* = 7.9 Hz, 1H), 7.12 (s, 1H), 7.06 (d, *J* = 7.8 Hz, 1H), 2.49 (s, 3H), 2.37 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 143.6, 141.9, 132.5, 131.1, 127.1, 118.6, 109.8, 21.8, 20.4.

2,6-Dimethylbenzonitrile (**3s**). White solid. HPLC yield 52% (using 2,6-dimethylbenzonitrile (**3s**) ($t_R = 5.762 \text{ min}, \lambda_{max} = 232.3 \text{ nm}, \text{ water / methanol} = 30 : 70 (v / v))$ as the external standard). M.p. 86-88 °C. The NMR data is identical to that reported in literature.^[10] ¹H NMR (CDCl₃, 500 MHz) δ 7.34 (t, J = 7.8 Hz, 1H), 7.12 (d, J = 7.8 Hz, 2H), 2.53 (s, 6H). ¹³C NMR (CDCl₃, 126 MHz) δ 142.2, 132.2, 127.4, 117.4, 113.5, 20.9.

3t

3,4-Dimethylbenzonitrile (**3t**). White solid (191 mg from **1t**, isolated yield 73%). M.p. 62-64 °C. HPLC yield 89% (using 3,4-dimethylbenzonitrile (**3t**) ($t_R = 5.663 \text{ min}$, $\lambda_{max} = 235.8 \text{ nm}$, water / methanol = 30 : 70 (v / v)) as the external standard). The NMR data is identical to that reported in literature.^[1] ¹H NMR (CDCl₃, 500 MHz) δ 7.40-7.37 (m, 2H), 7.21 (d, *J* = 7.6 Hz, 1H), 2.32 (s, 3H), 2.28 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 142.6, 138.0, 132.9, 130.4, 129.7, 119.4, 109.6, 20.2, 19.6.

3-Fluoro-4-methoxybenzonitrile (**3u**). White solid (173 mg from **1u**, isolated yield 57%). M.p. 94-96 °C. HPLC yield 77% (using 3-fluoro-4-methoxybenzonitrile (**3u**) (t_R = 3.818 min, λ_{max} = 246.4 nm, water / methanol = 30 : 70 (v / v)) as the external standard). The NMR data is identical to that reported in literature.^[2] ¹H NMR (CDCl₃, 500 MHz) δ 7.43 (d, *J* = 8.5 Hz, 1H), 7.35 (d, *J* = 10.7 Hz, 1H), 7.02 (t, *J* = 8.4 Hz, 1H), 3.95 (s, 3H). ¹⁹F NMR (CDCl₃, 471MHz) δ -131.9--132.0 (m, 1F). ¹³C NMR (CDCl₃, 126 MHz) δ 151.9 (d, *J* = 10.9 Hz), 151.8 (d, *J* = 249.8 Hz), 129.8 (d, *J* = 3.6 Hz), 119.6 (d, *J* = 21.8 Hz), 118.1 (d, *J* = 2.8 Hz), 113.7 (d, *J* = 1.9 Hz), 104.0 (d, *J* = 8.1 Hz), 56.5.

3v

1-Cyanonaphthalene (**3v**). Yellowish oil (277 mg from **1v**, isolated yield 91%). The NMR data is identical to that reported in literature.^[1] ¹H NMR (CDCl₃, 500 MHz) δ 8.23 (d, *J* = 8.3 Hz, 1H), 8.07 (d, *J* = 8.3 Hz, 1H), 7.93-7.90 (m, 2H), 7.71-7.67 (m, 1H), 7.63-7.60 (m, 1H), 7.53-7.50 (m, 1H). ¹³C NMR (CDCl₃, 126 MHz) δ 133.4, 133.0, 132.7, 132.4, 128.8, 128.7, 127.7, 125.2, 125.0, 117.9, 110.3.

3w

2-Naphthonitrile (**3w**). Yellowish solid (265 mg from **1w**, isolated yield 87%). M.p. 59-61 °C. The NMR data is identical to that reported in literature.^[1] ¹H NMR (CDCl₃, 500 MHz) δ 8.23 (s, 1H), 7.92-7.89 (m, 3H), 7.65-7.60 (m, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ 134.8, 134.3, 132.4,

129.3, 129.2, 128.5, 128.2, 127.8, 126.5, 119.4, 109.5.

4,4'-(1-Methylethylidene)bis-benzonitrile (**3x**). White solid (294 mg from **1x**, isolated yield 60%). M.p. 138-140 °C. ¹H NMR (CDCl₃, 500 MHz) δ 7.58 (d, *J* = 8.2 Hz, 4H), 7.29 (d, *J* = 8.2 Hz, 4H), 1.70 (s, 6H). ¹³C NMR (CDCl₃, 126 MHz) δ 154.7, 132.3, 127.7, 118.8, 110.3, 44.1, 30.2. ESI-MS HRMS calculated for C₁₇H₁₅N₂ [M+H]⁺ 247.1230, found 247.1232.

4,4'-(Hex-3-ene-3,4-diyl)dibenzonitrile (**3y**). White solid (360 mg from **1y**, isolated yield 63%). M.p. 206-208 °C. ¹H NMR (CDCl₃, 500 MHz) δ 7.69 (d, J = 7.5 Hz, 4H), 7.32 (d, J = 7.4 Hz, 4H), 2.11 (q, J = 7.2 Hz, 4H), 0.76 (t, J = 7.0 Hz, 6H). ¹³C NMR (CDCl₃, 126 MHz) δ 146.9, 139.2, 132.2, 129.5, 119.0, 110.8, 28.3, 13.1. ESI-MS HRMS calculated for C₂₀H₁₉N₂ [M+H]⁺ 287.1543, found 287.1542.

4'-Methyl[1,1'-biphenyl]-2-carbonitrile (**3z**). Light grey solid (296 mg from **1z**, isolated yield 77%). M.p. 45-47 °C. The NMR data is identical to that reported in literature.^[11] ¹H NMR (CDCl₃, 500 MHz) δ 7.76 (dd, *J* = 7.8 Hz, *J* = 0.9 Hz, 1H), 7.63 (td, *J* = 7.8 Hz, *J* = 1.2 Hz, 1H), 7.51 (dd, *J* = 7.9 Hz, *J* = 0.6 Hz, 1H), 7.47 (d, *J* = 8.1 Hz, 2H), 7.42 (td, *J* = 7.6 Hz, *J* = 1.2 Hz,

1H), 7.31 (d, J = 7.9 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 145.6, 138.8, 135.4, 133.8, 132.9, 130.1, 129.6, 128.7, 127.4, 119.0, 111.3, 21.4.

5. Reference

- [1] P. Yu, B. Morandi, Angew. Chem. Int. Ed., 2017, 56, 15693.
- [2] W. Yin, C. Wang, Y. Huang, Org. Lett., 2013, 15, 1850.
- [3] S. Shi, M. Szostak, Org. Lett., 2017, 19, 3095.
- [4] G. Maestri, T. Cañeque, N. Della Ca', E. Derat, M. Catellani, G. P. Chiusoli, M. Malacria, *Org. Lett.*, 2016, **18**, 6108.
- [5] Y. L. Tnay, G. Y. Ang, S. Chiba, Beilstein J. Org. Chem., 2015, 11, 1933.
- [6] L. Whitaker, H. Y. Harb, A. P. Pulis, Chem. Commun., 2017, 53, 9364.
- [7] Y. Yan, S. Sun, J. Cheng, J. Org. Chem., 2017, 82, 12888.
- [8] Y. Masuda, N. Ishida, M. Murakami, Eur. J. Org. Chem., 2016, 2016, 5822.
- [9] R. Takise, K. Itami, J. Yamaguchi, Org. Lett., 2016, 18, 4428.
- [10] M. Barbero, S. Cadamuro, S. Dughera, Org. Biomol. Chem., 2015, 14, 1437.
- [11] N. D. Patel, D. Rivalti, F. G. Buono, A. Chatterjee, B. Qu, S. Braith, J.-N. Desrosiers, S.

Rodriguez, J. D. Sieber, N. Haddad, K. R. Fandrick, H. Lee, N. K. Yee, C. A. Busacca, C. H. Senanayake, *Asian J. Org. Chem.*, 2017, **6**, 1285.

6. NMR Spectra

3cc, ¹³C NMR, 126 MHz, CDCl₃

3k, ¹H NMR, 500 MHz, CDCl₃

3l, ¹³C NMR, 126 MHz, CDCl₃

30, ¹³C NMR, 126 MHz, CDCl₃

3u, ¹H NMR, 500 MHz, CDCl₃

3v, ¹³C NMR, 126 MHz, CDCl₃

3w, ¹H NMR, 500 MHz, CDCl₃

