Electronic Supplementary Information

Na Li^{a,b}, Junbiao Chang*^a, Lingheng Kong^c, Xingwei Li*^{a,c}

^aHenan Key Laboratory of Organic Functional Molecules and Drug Innovation,

School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang

453007, China

^bSchool of pharmacy, Xinxiang Medical University, 453003, China

^cDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,

China

Email: changjunbiao@zzu.edu.cn, xwli@dicp.ac.cn.

Table of Contents

1. General Remarks	S2
2. Experimental procedure and characterization	
3. References	S13
4. NMR Spectra	S14-S42

1. General Methods

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. All reactions were carried out using Schlenk techniques in absolute TFE under N₂. The ¹H NMR spectra were recorded on a 400 MHz or 600 MHz NMR spectrometer. The ¹³C NMR spectra were recorded at 100 MHz or 150 MHz. The ¹⁹F NMR spectra were recorded at 565 MHz. The chemical shift is given in dimensionless δ values and is frequency referenced relative to TMS in ¹H and ¹³C NMR spectroscopy. High resolution mass spectra were obtained on an Agilent Q-TOF 6540 spectrometer. Column chromatography was performed on silica gel (300-400 mesh) using ethyl acetate (EA) /petroleum ether (PE). Substrates **2a** was obtained from commercial sources. Arenes **1a-1s**¹ and olefins **2b-2m**² were synthesized according to literature reports.

Experimental procedure and characterization

General procedure for the synthesis of fluoroalkenes

Indole (0.2 mmol), *gem*-difluoroalkene (0.32 mmol), $[Ru(p-cymene)Cl_2]_2$ (5 mol %), Ca(OH)₂ (2.0 equiv), and TFE (1 mL) were charged into a pressure tube. The reaction mixture was stirred under Ar at 100 °C for 12 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA to afford the product.

(Z)-2-(2-(4-bromophenyl)- 1 -fluorovinyl)- 1 -(pyrimidin-2-yl)-1H-indole (3aa)

3aa was obtained according to the general procedure in 94% yield (73.8 mg). white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, *J* = 4.8 Hz, 2H), 8.38 (d, *J* = 8.4 Hz, 1H), 7.64 (d, *J* = 7.8 Hz, 1H), 7.49 – 7.43 (m, 4H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.25 (dd, *J* = 10.0, 4.5 Hz, 1H), 7.15 (t, *J* = 4.8 Hz, 1H), 6.99 (d, *J* = 2.0 Hz, 1H), 6.21 (d, *J* = 35.7 Hz, 1H). ¹⁹F NMR (565 MHz, CDCl₃) δ -99.11 (d, *J* = 35.6 Hz, 1F). The NMR data agree with those in a literature report.³ HRMS: [M + Na]⁺ calculated for C₂₀H₁₃BrFN₃Na⁺: 416.0169, found: 416.0165.

3ba (Z/E=8:1)

3ba was obtained according to the general procedure in 95% yield (77.3 mg). white solid; **Z** isomer ¹H NMR (600 MHz, CDCl₃) δ 8.70 (s, 2H), 8.46 (d, *J* = 7.1 Hz, 1H), 7.62 (d, *J* = 5.3 Hz, 1H), 7.48 (s, 4H), 7.38 (s, 1H), 7.27 (d, *J* = 7.0 Hz, 1H), 7.05 (s, 1H), 5.97 (d, *J* = 36.0 Hz, 1H), 2.46 (s, 3H). The NMR data agree with those in a literature report.⁴ **E** isomer (only clearly assignable signals are listed) ¹H NMR (600 MHz, CDCl₃) δ 8.69 (s, 2H), 8.59 (d, *J* = 7.4 Hz, 1H), 7.54 (d, *J* = 5.3 Hz, 1H), 7.48 (s, 4H), 7.38 (s, 1H), 7.22 (d, *J* = 7.0 Hz, 1H), 7.05 (s, 1H), 6.50 (d, *J* = 17.1 Hz, 1H), 2.00 (s, 3H). HRMS: [M + Na]⁺ calculated for C₂₁H₁₅BrFN₃Na⁺: 430.0326, found: 430.0336.

(Z)-2-(2-(4-bromophenyl)-1-fluorovinyl)-4-methyl-1-(pyrimidin-2-yl)-1H-indole (**3ca**) **3ca** was obtained according to the general procedure in 95% yield (77.3 mg). white solid, mp 79.0-83.1°C; ¹H NMR (600 MHz, CDCl₃) δ 8.77 (s, 2H), 8.19 (d, *J* = 8.2 Hz, 1H), 7.46 (s, 4H), 7.27 – 7.24 (m, 1H), 7.15 (d, *J* = 2.6 Hz, 1H), 7.07 – 7.02 (m, 2H), 6.23 (d, *J* = 35.6 Hz, 1H), 2.58 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.9 (d, *J* = 92.0 Hz), 157.7, 153.4, 151.8, 138.9, 132.9, 132.3 (d, *J* = 194.3 Hz), 130.4 (t, *J* = 15.5 Hz, 1H), 126.1, 121.0, 119.2, 117.7, 108.4 (d, *J* = 5.5 Hz), 107.6 (d, *J* = 10.3 Hz,), 107.1, 102.4, 55.5.¹⁹F NMR (565 MHz, CDCl₃) -99.23 (d, *J* = 35.7 Hz, 1F). HRMS: [M + Na]⁺ calculated for C₂₁H₁₅BrFN₃Na⁺: 430.0326, found: 430.0329.

(Z)-2-(2-(4-bromophenyl)-1-fluorovinyl)-4-methoxy-1-(pyrimidin-2-yl)-1H-indole (**3da**) **3da** was obtained according to the general procedure in 80% yield (67.7mg). white solid; ¹H NMR (600 MHz, CDCl₃) δ 8.81 – 8.68 (m, 2H), 7.94 (d, J = 8.3 Hz, 1H), 7.45 (dd, J = 15.7, 7.6 Hz, 4H),7.27(s,1H) 7.19 – 7.08 (m, 2H), 6.66 (d, J = 7.7 Hz, 1H), 6.21 (d, J = 35.7 Hz, 1H), 3.97 (s, 3H). The NMR data agree with those in a literature report.⁴ HRMS: [M + Na]⁺ calculated for C₂₁H₁₅BrFN₃ONa⁺: 446.0280, found: 446.0275.

COOMe

(Z)-methyl 2-(2-(4-bromophenyl)-1-fluorovinyl)-1-(pyrimidin-2-yl)-1H-indole-4-carboxylate (**3ea**) **3ea** was obtained according to the general procedure in 69% yield (62.2 mg). white solid; ¹H NMR (600 MHz, CDCl₃) δ 8.81 (d, *J* = 4.3 Hz, 2H), 8.57 (d, *J* = 8.3 Hz, 1H), 8.02 (d, *J* = 7.4 Hz, 1H), 7.70 (s, 1H), 7.52 – 7.45 (m, 4H), 7.40 (s, 1H), 7.24 (s, 2H), 6.35 (d, *J* = 35.9 Hz, 1H), 4.02 (s, 3H). The NMR data agree with those in a literature report.⁴ HRMS: [M + Na]⁺ calculated for C₂₂H₁₅BrFN₃O₂Na⁺: 474.0224, found: 474.0221.

3fa (Z/E=7:1)

3fa was obtained according to the general procedure in 88% yield (72.3 mg). white solid, mp 93.1-95.0°C **Z** isomer ¹H NMR (600 MHz, CDCl₃) δ 8.79 (d, *J* = 3.4 Hz, 2H), 8.14 (d, *J* = 8.1 Hz, 1H), 7.47 (dd, *J* = 16.6, 7.1 Hz, 4H), 7.30 – 7.24 (m, 2H), 7.22 (s, 1H), 7.08 (s, 1H), 6.94 (t, *J* = 8.4 Hz, 1H), 6.25 (d, *J* = 35.6 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 158.4, 157.4 156.9, 155.3, 152.9, 151.1, 139.6(d, *J* = 9.3 Hz), 131.7, 130.4 (d, *J* = 7.8 Hz), 125.7 (d, *J* = 7.6 Hz), 121.3, 118.0, 117.7 (d, *J* = 22.6 Hz), 110.2 (d, *J* = 3.6 Hz), 108.5 (d, *J* = 9.9 Hz), 107.5 (d, *J* = 18.3 Hz), 106.5 (d, *J* = 5.5 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -99.88 (d, *J* = 35.7 Hz, 1F), -121.58 (dd, *J* = 9.4, 5.4 Hz, 1F). **E isomer** (only clearly assignable signals are listed) ¹H NMR (600 MHz, CDCl₃) δ 8.76 (d, *J* = 3.6 Hz, 2H), 8.27 (d, *J* = 7.6 Hz, 1H), 7.17 (s, 1H), 7.06 (s, 1H), 6.42 (d, *J* = 17.6 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 158.3, 148.6,147.8, 132.6 (d, *J* = 4.0 Hz), 132.2 (d, *J* = 6.4 Hz), 132.0, 131.5, 130.0 (d, *J* = 2.5 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -91.27 (d, *J* = 17.4 Hz, 1F), -121.16 (d, *J* = 9.4 Hz,1F). HRMS: [M + Na]⁺ calculated for C₂₀H₁₂BrF₂N₃Na⁺: 434.0074, found: 434.0078.

3ga (Z/E=3:1)

3ga was obtained according to the general procedure in 71% yield (60.6 mg). white solid; **Z** isomer ¹H NMR (600 MHz, CDCl₃) δ 8.78 (s, 2H), 8.26 (d, *J* = 5.1 Hz, 1H), 7.46 (d, *J* = 8.7 Hz, 4H), 7.26 (s, 2H), 7.20 (s, 1H), 7.11 (s, 1H), 7.04 (d, *J* = 7.7 Hz, 1H) , 6.27 (d, *J* = 35.7 Hz, 1H). The NMR data agree with those in a literature report.⁴ **E** isomer ¹H NMR (600 MHz, CDCl₃) δ 8.74 (s, 1H), 8.38 (d, *J* = 7.8 Hz, 1H), 7.46 (d, *J* = 8.7 Hz, 4H), 7.26 (s, 2H), 7.46 (d, *J* = 8.7 Hz, 4H), 7.26 (s, 2H), 7.15 (s, 1H), 6.93 (s, 1H), 6.42 (d, *J* = 18.1 Hz, 1H). HRMS: [M + Na]⁺ calculated for C₂₀H₁₂BrClFN₃Na⁺: 449.9779, found: 449.9777.

3ha (Z/E=14:1)

3ha was obtained according to the general procedure in 90% yield (73.3 mg). white solid; **Z** isomer ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 4.8 Hz, 2H), 8.19 (d, *J* = 8.6 Hz, 1H), 7.45 – 7.36 (m, 4H), 7.34 (s, 1H), 7.10 (d, *J* = 8.6 Hz, 1H), 7.06 (t, *J* = 4.8 Hz, 1H), 6.84 (d, *J* = 2.2 Hz, 1H), 6.13 (d, *J* = 35.7 Hz, 1H), 2.38 (s, 3H). ¹⁹F NMR (565 MHz, CDCl₃) -98.69 (d, *J* = 35.6 Hz, 1F). The NMR data agree with those in a literature report.⁴ **E** isomer (only clearly assignable signals are listed) ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, *J* = 4.8 Hz, 2H), 8.33 (d, *J* = 8.6 Hz, 1H), 7.48 – 7.42 (m, 4H), 7.30 (s, 1H), 7.03 – 6.94 (m, 2H), 6.64 (d, *J* = 3.5 Hz, 1H), 6.30 (d, *J* = 17.9 Hz, 1H), 2.36 (s, 3H). ¹⁹F NMR (565 MHz, CDCl₃) δ -90.04 (d, *J* = 17.8 Hz, 1F). HRMS: [M + Na]⁺ calculated for C₂₁H₁₅BrFN₃Na⁺: 430.0326, found: 430.0324.

(Z)-2-(2-(4-bromophenyl)-1-fluorovinyl)-5-methoxy-1-(pyrimidin-2-yl)-1H-indole (**3ia**) **3ia** was obtained according to the general procedure in 52% yield (43.9 mg). white solid; ¹H NMR (600 MHz, CDCl₃) δ 8.75 (d, *J* = 2.3 Hz, 2H), 8.32 (d, *J* = 9.0 Hz, 1H), 7.53 – 7.42 (m, 4H), 7.14 (s, 1H), 7.07 (s, 1H), 7.00 (d, *J* = 8.9 Hz, 1H), 6.91 (s, 1H), 6.19 (d, *J* = 35.5 Hz, 1H), 3.88 (s, 3H). The NMR data agree with those in a literature report.⁴ HRMS: [M + Na]⁺ calculated for C₂₁H₁₅BrFN₃ONa⁺: 446.0280, found: 446.0272.

(Z)-methyl 2-(2-(4-bromophenyl)-1-fluorovinyl)-1-(pyrimidin-2-yl)-1H-indole-5-carboxylate (**3ja**) **3ja** was obtained according to the general procedure in 41% yield (37.0 mg). white solid; ¹H NMR (600 MHz, CDCl₃) δ 8.82 (d, *J* = 3.0 Hz, 2H), 8.39 (d, *J* = 13.7 Hz, 2H), 8.06 (d, *J* = 8.4 Hz, 1H), 7.48 (dd, *J* = 18.3, 7.4 Hz, 4H), 7.26 (d, *J* = 16.3 Hz, 1H), 7.07 (s, 1H), 6.26 (d, *J* = 35.6 Hz, 1H), 3.97 (s, 3H). The NMR data agree with those in a literature report.⁴ HRMS: [M + Na]⁺ calculated for C₂₂H₁₅BrFN₃O₂Na⁺: 474.0224, found: 474.0229.

3ka (Z/E=7:1)

3ka was obtained according to the general procedure in 88% yield (82.9 mg). white solid; **Z** isomer ¹H NMR (600 MHz, CDCl₃) δ 8.78 (d, *J* = 4.7 Hz, 2H), 8.27 (d, *J* = 8.9 Hz, 1H), 7.77 (s, 1H), 7.46 (dt, *J* = 20.1, 9.9 Hz, 5H), 7.20 (s, 1H), 6.92 (s, 1H), 6.22 (d, *J* = 35.6 Hz, 1H). ¹⁹F NMR (565 MHz, CDCl₃) -99.64 (d, *J* = 35.7 Hz, 1F).The NMR data agree with those in a literature report.⁴ **E** isomer (only clearly assignable signals are listed)¹H NMR (600 MHz, CDCl₃) δ 8.75 (d, *J* = 4.7 Hz, 2H), 8.41 (d, *J* = 8.9 Hz, 1H), 7.69 (s, 1H), 7.27 (s, 1H), 7.16 (t, *J* = 4.7 Hz, 1H), 6.42 (d, *J* = 17.9 Hz, 1H). ¹⁹F NMR (565 MHz, CDCl₃) δ -91.38 (d, *J* = 18.0 Hz, 1H).HRMS: [M + Na]⁺ calculated for C₂₀H₁₂Br₂FN₃Na⁺: 495.9259, found: 495.9258.

3la (Z/E=11:1)

3la was obtained according to the general procedure in 49% yield (48.9 mg). white solid, mp 151.8-153.0 °C; **Z isomer** ¹H NMR (600 MHz, CDCl₃) δ 8.73 (d, *J* = 3.9 Hz, 2H), 8.32 (d, *J* = 8.9 Hz, 1H), 7.46 (dd, *J* = 13.2, 8.1 Hz, 6H), 7.39 (t, *J* = 6.7 Hz, 2H), 7.33 (d, *J* = 6.8 Hz, 1H), 7.13 (d, *J* = 13.4

Hz, 2H), 7.07 (d, J = 9.0 Hz, 1H), 6.89 (s, 1H), 6.18 (d, J = 35.5 Hz, 1H), 5.12 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 158.2, 157.5, 155.0, 153.5, 151.8, 137.3, 132.8, 132.8 (d, J = 5.3 Hz), 132.6, 132.4, 131.7, 130.4 (d, J = 7.8 Hz), 130.4 (d, J = 7.8 Hz), 129.1, 128.6, 127.9, 127.6 121.1, 117.4, 115.7, 115.4 (d, J = 15.7 Hz), 111.2 (d, J = 5.2 Hz), 107.9 (d, J = 10.2 Hz,) , 104.4, 70.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -98.69 (d, J = 35.4 Hz, 1F). **E isomer** (only clearly assignable signals are listed) ¹H NMR (600 MHz, CDCl₃) δ 8.71 (d, J = 4.1 Hz, 2H), 8.46 (d, J = 8.8 Hz, 1H), 7.39 (t, J = 6.7 Hz, 2H), 6.69 (s, 1H), 6.38 (d, J = 17.6 Hz, 1H), 5.10(s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 158.1, 157.3, 133.1, 131.5, 130.1 (d, J = 2.5 Hz), 116.2, 112.7 (d, J = 5.6 Hz), 110.24 (d, J = 31.5 Hz,), 60.4. ¹⁹F NMR (565 MHz, CDCl₃) δ -90.20 (d, J = 17.7 Hz, 1F). HRMS: [M + Na]⁺ calculated for C₂₇H₁₉BrFN₃ONa⁺: 522.0587, found: 522.0588.

3ma (Z/E=11:1)

3ma was obtained according to the general procedure in 94% yield (77.3 mg). white solid; **Z** isomer ¹H NMR (400 MHz, CDCl₃) δ 8.75 (dd, J = 10.7, 4.8 Hz, 2H), 8.36 (dd, J = 9.0, 4.5 Hz, 1H), 7.47 (q, J = 8.7 Hz, 4H), 7.27 (d, J = 8.6 Hz, 1H), 7.18 (t, J = 4.7 Hz, 1H), 7.09 (t, J = 8.5 Hz, 1H), 6.93 (s, 1H), 6.21 (d, J = 35.6 Hz, 1H). **E isomer** (only clearly assignable signals are listed) ¹H NMR (400 MHz, CDCl₃) δ 8.50 (dd, J = 8.6, 4.6 Hz, 1H), 6.41 (d, J = 17.9 Hz, 1H). The NMR data agree with those in a literature report.⁴ HRMS: [M + Na]⁺ calculated for C₂₀H₁₂BrF₂N₃Na⁺: 434.0074, found: 434.0080.

3na (Z/E=5:1)

3na was obtained according to the general procedure in 53% yield (48.9 mg). white solid, mp 118.5-122.1°C; **Z isomer** ¹H NMR (600 MHz, CDCl₃) δ 8.79 (d, *J* = 16.7 Hz, 2H), 8.45 (d, *J* = 8.7 Hz, 1H), 7.93 (s, 1H), 7.58 (d, *J* = 9.2 Hz, 1H), 7.47 (dd, *J* = 18.8, 8.0 Hz, 4H), 7.24 (s, 1H), 7.04 (s, 1H), 6.25 (d, *J* = 35.6 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 158.4, 152.6, 150.9, 138.9, 133.9,133.7, 132.4, 131.8, 130.4 (d, *J* = 7.8 Hz), 127.9, 121.7(d, *J* = 3.0 Hz), 118.8 (d, *J* = 4.0 Hz), 118.6, 114.6, 110.9(d, *J* = 5.4 Hz), 108.9 (d, *J* = 9.8 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -60.98 (s, 3F), -100.06 (d, *J* = 35.7 Hz, 1F). **E isomer**(only clearly assignable signals are listed) ¹H NMR (600 MHz, CDCl₃) δ 8.78 (s, 1H), 8.59 (d, *J* = 8.9 Hz, 1H), 7.86 (s, 1H), 6.45 (d, *J* = 18.0 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 157.2, 130.6 (d, *J* = 3.4 Hz), 128.0, 125.7, 125.0, 124.8 (d, *J* = 1.7 Hz), 123.9, 121.5 (d, *J* = 3.3 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -61.07 (s, 3F), -91.89 (d, *J* = 18.0 Hz, 1F). HRMS: [M + Na]⁺ calculated for C₂₁H₁₂BrF₄N₃Na⁺: 484.0043, found: 484.0043.

Me Br

3oa (Z/E=13:1)

30a was obtained according to the general procedure in 64% yield (52.1 mg). white solid; **Z isomer** ¹H NMR (600 MHz, CDCl₃) δ 8.78 (d, *J* = 2.2 Hz, 2H), 8.17 (s, 1H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.45 (q, *J* = 8.1 Hz, 4H), 7.16 (s, 1H), 7.09 (d, *J* = 7.8 Hz, 1H), 6.95 (s, 1H), 6.19 (d, *J* = 35.7 Hz, 1H), 2.51 (s, 3H). ¹⁹F NMR (565 MHz, CDCl₃), -99.05 (d, *J* = 35.7 Hz, 1F). The NMR data agree, with those in a literature report.⁴ **E isomer** (only clearly assignable signals are listed): ¹H NMR (600 MHz, CDCl₃) δ 8.74 (d, *J* = 2.6 Hz, 2H), 8.31 (s, 1H), 7.06 (d, *J* = 9.1 Hz, 1H), 6.75 (s, 1H), 6.36 (d, *J* = 18.0 Hz, 1H), 2.52 (s, 1H). ¹⁹F NMR (565 MHz, CDCl₃) δ -90.20 (d, *J* = 17.9 Hz, 1F). HRMS: [M + Na]⁺ calculated for C₂₁H₁₅BrFN₃Na⁺: 430.0326, found: 430.0329.

(Z)-2-(2-(4-bromophenyl)-1-fluorovinyl)-6-fluoro-1-(pyrimidin-2-yl)-1H-indole (3pa)

3pa was obtained according to the general procedure in 77% yield (63.3 mg). white solid; ¹H NMR (600 MHz, CDCl₃) δ 8.75 (d, *J* = 3.2 Hz, 2H), 8.15 (d, *J* = 10.6 Hz, 1H), 7.56 – 7.52 (m, 1H), 7.44 (dd, *J* = 15.6, 7.9 Hz, 4H), 7.17 (t, *J* = 3.7 Hz, 1H), 7.00 (t, *J* = 8.8 Hz, 1H), 6.93 (s, 1H), 6.17 (d, *J* = 35.4 Hz, 1H). The NMR data agree with those in a literature report.⁴ HRMS: [M + Na]⁺ calculated for C₂₀H₁₂BrF₂N₃Na⁺: 434.0074, found: 434.0079.

(Z)-2-(2-(4-bromophenyl)-1-fluorovinyl)-1-(pyridin-2-yl)-1H-indole (3qa)

3qa was obtained according to the general procedure in 31% yield (24.3mg). white oil; ¹H NMR (600 MHz, CDCl₃) δ 8.66 (d, J = 4.4 Hz, 1H), 7.88 (t, J = 7.7 Hz, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.51 (d, J = 8.3 Hz, 1H), 7.46 – 7.42 (m, 3H), 7.41 – 7.31 (m, 3H), 7.29 – 7.25 (m, 2H), 7.21 (t, J = 7.4 Hz, 1H), 7.02 (s, 1H), 5.95 (d, J = 37.4 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 152.4, 151.6, 150.6, 149.6, 138.7, 138.5, 132.3 (d, J = 3.7 Hz), 131.9, 131.8, 131.7, 130.3 (d, J = 8.1 Hz), 127.7, 124.5, 122.5, 121.7, 121.4, 120.6, 111.2, 108.8 (d, J = 9.5 Hz), 107.7 (d, J = 4.5 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -105.02 (s, 1F). HRMS: [M + H]⁺ calculated for C₂₄H₁₆BrFN₃H⁺: 393.0397, found: 393.0407.

(Z) - 2 - (2 - (4 - bromophenyl) - 1 - fluorovinyl) phenyl) pyridine (3ra)

3ra was obtained according to the general procedure in 33% yield (23.3 mg). green oil; ¹H NMR (600 MHz, CDCl₃) δ 8.68 (d, J = 4.6 Hz, 1H), 7.70 (t, J = 7.6 Hz, 1H), 7.61 (dd, J = 12.0, 7.7 Hz, 2H), 7.51 (t, J = 7.1 Hz, 2H), 7.45 (t, J = 7.6 Hz, 1H), 7.42 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.3 Hz, 2H), 7.26 – 7.22 (m, 2H), 5.82 (d, J = 37.6 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 159.4, 158.9, 157.7, 149.5, 139.5, 136.3, 132.7 (d, J = 3.5 Hz), 132.0, 131.9, 131.6, 130.6, 130.2 (d, J = 8.1 Hz), 129.80 (s, 1H), 129.2 (d, J = 4.7 Hz), 128.4, 123.4, 122.1, 121.0 (d, J = 3.4 Hz), 109.2 (d, J = 10.1 Hz). ¹⁹F NMR (565

MHz, CDCl₃) δ -96.16 (s, 1F). HRMS: [M + H]⁺ calculated for C₁₉H₁₃BrFNH⁺: 354.0288, found: 354.0287.

(Z)-2-(2-(2-(4-bromophenyl)-1-fluorovinyl)phenyl)pyrimidine(3sa)

3sa was obtained according to the general procedure in 42% yield (29.7 mg). white oil; ¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, *J* = 4.9 Hz, 2H), 7.82 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.58 – 7.51 (m, 1H), 7.50 – 7.39 (m, 2H), 7.37 – 7.32 (m, 2H), 7.32 – 7.26 (m, 2H), 7.13 (t, *J* = 4.9 Hz, 1H), 5.90 (d, *J* = 37.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 160.6, 157.9, 157.1, 137.7, 132.9 (d, *J* = 3.5 Hz), 132.9, 132.6, 131.6, 130.9, 130.3 (d, *J* = 8.0 Hz), 129.8, 129.7 (d, *J* = 4.5 Hz), 129.6, 120.9 (d, *J* = 3.6 Hz), 119.1, 108.0 (d, *J* = 10.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -94.45 (d, *J* = 37.4 Hz,1F). HRMS: [M + H]⁺ calculated for C₁₈H₁₂BrFN₂H⁺: 355.0241, found: 355.0238.

3ab (Z/E=16:1)

3ab was obtained according to the general procedure in 94% yield (61.9 mg). white solid; **Z** isomer ¹H NMR (600 MHz, CDCl₃) δ 8.77 (d, *J* = 3.5 Hz, 2H), 8.35 (d, *J* = 8.3 Hz, 1H), 7.63 (d, *J* = 7.7 Hz, 1H), 7.49 (d, *J* = 7.4 Hz, 2H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 6.0 Hz, 1H), 7.19 – 7.13 (m, 3H), 6.97 (s, 1H), 6.25 (d, *J* = 36.5 Hz, 1H), 2.36 (s, 3H). **E** isomer (only clearly assignable signals are listed) ¹H NMR (600 MHz, CDCl₃) δ 8.73 (d, *J* = 3.5 Hz, 2H), 8.51 (d, *J* = 8.8 Hz, 1H), 7.56 (d, *J* = 7.8 Hz, 1H), 6.82 (s, 1H), 6.45 (d, *J* = 18.8 Hz, 1H), 2.24 (s, 1H). The NMR data agree with those in a literature report.³ HRMS: [M + Na]⁺ calculated for C₂₁H₁₆FN₃Na⁺: 352.1220, found: 352.1227.

(Z)-2-(1-fluoro-2-(4-methoxyphenyl)vinyl)-1-(pyrimidin-2-yl)-1H-indole (3ac)

3ac was obtained according to the general procedure in 60% yield (41.4 mg). white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, *J* = 4.8 Hz, 2H), 8.34 (d, *J* = 8.4 Hz, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 7.9 Hz, 1H), 7.25 (d, *J* = 7.6 Hz, 1H), 7.14 (t, *J* = 4.8 Hz, 1H), 6.95 (s, 1H), 6.89 (d, *J* = 8.4 Hz, 2H), 6.22 (d, *J* = 36.6 Hz, 1H), 3.82 (s, 3H). The NMR data agree with those in a literature report.⁴ HRMS: [M + Na]⁺ calculated for C₂₁H₁₆FN₃ONa⁺: 368.1170, found: 368.1169.

(Z)-2-(2-(4-chlorophenyl)-1-fluorovinyl)-1-(pyrimidin-2-yl)-1H-indole (3ad)

3ad was obtained according to the general procedure in 88% yield (61.4 mg). white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, *J* = 4.8 Hz, 2H), 8.38 (d, *J* = 8.4 Hz, 1H), 7.64 (d, *J* = 7.8 Hz, 1H), 7.51 (d, *J* = 8.3 Hz, 2H), 7.33 (dd, *J* = 13.7, 8.1 Hz, 3H), 7.26 (t, *J* = 6.7 Hz, 1H), 7.15 (t, *J* = 4.8 Hz, 1H), 6.99 (s, 1H), 6.23 (d, *J* = 35.7 Hz, 1H). The NMR data agree with those in a literature report.⁴ HRMS: [M + Na]⁺ calculated for C₂₀H₁₃ClFN₃Na⁺: 372.0674, found: 372.0679.

(Z)-2-(2-([1,1'-biphenyl]-4-yl)-1-fluorovinyl)-1-(pyrimidin-2-yl)-1H-indole (3ae)

3ae was obtained according to the general procedure in 80% yield (62.6 mg). white solid; ¹H NMR (600 MHz, CDCl₃) δ 8.78 (d, *J* = 3.9 Hz, 2H), 8.37 (d, *J* = 8.2 Hz, 1H), 7.69 – 7.58 (m, 7H), 7.44 (t, *J* = 7.0 Hz, 2H), 7.38 – 7.33 (m, 2H), 7.25 (dd, *J* = 13.3, 5.6 Hz, 1H), 7.16 (s, 1H), 7.01 (s, 1H), 6.32 (d, *J* = 36.2 Hz, 1H). The NMR data agree with those in a literature report.⁴ HRMS: [M + Na]⁺ calculated for C₂₆H₁₈FN₃Na⁺: 414.1377, found: 414.1379.

(Z)-2-(2-(4-(tert-butyl)phenyl)-1-fluorovinyl)-1-(pyrimidin-2-yl)-1H-indole (3af)

3af was obtained according to the general procedure in 66% yield (49.0 mg). white solid, mp 77.2-79.3°C; ¹H NMR (600 MHz, CDCl₃) δ 8.76 (d, *J* = 4.0 Hz, 2H), 8.35 (d, *J* = 8.1 Hz, 1H), 7.63 (d, *J* = 7.5 Hz, 1H), 7.54 (d, *J* = 7.4 Hz, 2H), 7.39 (d, *J* = 7.4 Hz, 2H), 7.34 (t, *J* = 7.3 Hz, 1H), 7.24 – 7.22 (m, 1H), 7.13 (d, *J* = 3.2 Hz, 1H), 6.97 (s, 1H), 6.26 (d, *J* = 36.6 Hz, 1H), 1.33 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 158.3, 152.5, 150.8, 150.5, 137.6, 132.7, 132.6 (d, *J* = 25.7 Hz), 131.1 (d, *J* = 3.9 Hz), 128.6 (d, *J* = 7.5 Hz), 125.5,124.9, 122.5, 121.2, 117.6, 114.0, 110.8(d, *J* = 5.1 Hz), 108.90 (d, *J* = 10.3 Hz), 34.7, 31.3. ¹⁹F NMR (565 MHz, CDCl₃) δ -101.53 (d, *J* = 36.6 Hz, 1F). HRMS: [M + Na]⁺ calculated for C₂₄H₂₂FN₃Na⁺:394.1690, found: 394.1697.

(Z) - 2 - (1 - fluoro - 2 - (4 - (trifluoromethyl)phenyl)vinyl) - 1 - (pyrimidin - 2 - yl) - 1 H - indole (3 ag)

3ag was obtained according to the general procedure in 80% yield (62.6 mg). white solid; ¹H NMR (600 MHz, CDCl₃) δ 8.76 (d, *J* = 3.8 Hz, 2H), 8.40 (d, *J* = 8.4 Hz, 1H), 7.66 (dd, *J* = 18.4, 7.8 Hz, 3H), 7.59 (d, *J* = 7.9 Hz, 2H), 7.37 (t, *J* = 7.4 Hz, 1H), 7.26 (t, *J* = 7.4 Hz, 1H), 7.14 (s, 1H), 7.02 (s, 1H), 6.30 (d, *J* = 35.3 Hz, 1H). The NMR data agree with those in a literature report.³ HRMS: [M + Na]⁺ calculated for C₂₁H₁₃F₄N₃Na⁺:406.0938, found: 406.0939.

(Z)-2-(2-(2-(benzyloxy)phenyl)-1-fluorovinyl)-1-(pyrimidin-2-yl)-1H-indole(3ah)

3ah was obtained according to the general procedure in 87% yield (73.3 mg). white oil; ¹H NMR (600 MHz, CDCl₃) δ 8.75 (d, *J* = 4.1 Hz, 2H), 8.36 (d, *J* = 8.2 Hz, 1H), 7.63 (d, *J* = 7.5 Hz, 1H), 7.43 (d, *J* = 7.1 Hz, 2H), 7.39 – 7.30 (m, 4H), 7.27 (d, *J* = 5.6 Hz, 2H), 7.25 – 7.22 (m, 1H), 7.15 (dd, *J* = 26.9, 5.7 Hz, 2H), 6.98 (s, 1H), 6.89 (d, *J* = 7.5 Hz, 1H), 6.24 (d, *J* = 35.9 Hz, 1H), 5.07 (s, 2H).¹³C NMR (151 MHz, CDCl₃) δ 158.9, 158.3, 157.6, 153.2, 151.4, 137.7, 137.07, 135.2 (d, *J* = 4.0 Hz), 132.4, 132.3, 129.5, 128.6 (d, *J* = 13.7 Hz), 128.0, 127.6, 125.1, 122.6, 121.9 (d, *J* = 6.9 Hz), 121.3, 117.6, 115.2 (d, *J* = 8.5 Hz), 114.1 (d, *J* = 4.3 Hz), 111.1 (d, *J* = 5.2 Hz), 108.9 (d, *J* = 9.7 Hz), 70.0. ¹⁹F NMR (565 MHz, CDCl₃) δ -99.52 (d, *J* = 35.9 Hz). HRMS: [M + Na]⁺ calculated for C₂₇H₂₀FN₃ONa⁺:444.1483, found: 444.1487.

(Z)-2-(2-(2-bromophenyl)-1-fluorovinyl)-1-(pyrimidin-2-yl)-1H-indole (3ai)

3ai was obtained according to the general procedure in 39% yield (30.7mg). white solid; ¹H NMR (600 MHz, CDCl₃) δ 8.79 (s, 2H), 8.38 (d, *J* = 7.9 Hz, 1H), 7.91 (d, *J* = 7.1 Hz, 1H), 7.63 (dd, *J* = 36.6, 7.2 Hz, 2H), 7.36 (s, 1H), 7.27 (dd, *J* = 20.1, 13.3 Hz, 2H), 7.16 (s, 1H), 7.09 (d, *J* = 14.9 Hz, 2H), 6.61 (d, *J* = 35.4 Hz, 1H). The NMR data agree with those in a literature report.⁴ HRMS: [M + Na]⁺ calculated for C₂₀H₁₃BrFN₃Na⁺:416.0169, found: 416.0167.

(Z)-2-(2-(2,3-dichlorophenyl)-1-fluorovinyl)-1-(pyrimidin-2-yl)-1H-indole (3aj)

3aj was obtained according to the general procedure in 34% yield (26.0mg). white solid, mp 93.9-95.0°C; ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 4.8 Hz, 2H), 8.37 (d, *J* = 8.4 Hz, 1H), 7.80 (d, *J* = 7.9 Hz, 1H), 7.64 (d, *J* = 7.8 Hz, 1H), 7.35 (t, *J* = 7.9 Hz, 2H), 7.28 – 7.22 (m, 1H), 7.16 (dt, *J* = 7.8, 6.5 Hz, 2H), 7.06 (s, 1H), 6.62 (d, *J* = 34.7 Hz, 1H).¹³C NMR (151 MHz, CDCl₃) δ 158.3, 157.6, 154.6, 152.9, 133.9, 131.8, 131.2, 128.5, 128.4, 125.4, 121.4, 114.3, 111.4 (d, *J* = 5.3 Hz), 104.9 (d, *J* = 8.5). ¹⁹F NMR (565 MHz, CDCl₃) δ -98.93 (d, *J* = 34.8 Hz, 1F). HRMS: [M + Na]⁺ calculated for C₂₀H₁₂Cl₂FN₃Na⁺: 406.0284, found: 406.0276.

(Z)-2-(2-(3-chlorophenyl)-1-fluorovinyl)-1-(pyrimidin-2-yl)-1H-indole (3ak)

3akwas obtained according to the general procedure in 71% yield (49.6mg). white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, *J* = 4.7 Hz, 2H), 8.40 (d, *J* = 8.4 Hz, 1H), 7.68 – 7.62 (m, 2H), 7.45 (d, *J* = 7.5 Hz, 1H), 7.38 (t, *J* = 7.8 Hz, 1H), 7.29 (dd, *J* = 15.4, 7.7 Hz, 3H), 7.18 (d, *J* = 5.2 Hz, 1H), 7.01 (s, 1H), 6.24 (d, *J* = 35.4 Hz). The NMR data agree with those in a literature report.³ HRMS: [M + Na]⁺ calculated for C₂₀H₁₃ClFN₃Na⁺: 372.0680, found: 372.0680.

(Z)-2-(1-fluoro-2-(m-tolyl)vinyl)-1-(pyrimidin-2-yl)-1H-indole (3al)

3al was obtained according to the general procedure in 64% yield (42.0mg). white solid; ¹H NMR (600 MHz, CDCl₃) δ 8.73 (d, *J* = 4.1 Hz, 2H), 8.32 (d, *J* = 8.2 Hz, 1H), 7.60 (d, *J* = 7.5 Hz, 1H), 7.38 (d, *J* = 10.6 Hz, 2H), 7.31 (t, *J* = 7.4 Hz, 1H), 7.22 (t, *J* = 7.3 Hz, 2H), 7.13 – 7.02 (m, 2H), 6.95 (s, 1H), 6.21 (d, *J* = 36.4 Hz, 1H), 2.33 (s, 3H). The NMR data agree with those in a literature report.³ HRMS: [M + Na]⁺ calculated for C₂₁H₁₆FN₃Na⁺: 352.1220, found: 352.1230.

(Z)-2-(1-fluoro-2-(naphthalen-2-yl)vinyl)-1-(pyrimidin-2-yl)-1H-indole (3am)

3am was obtained according to the general procedure in 82% yield (59.9mg). white solid; ¹H NMR (600 MHz, CDCl₃) δ 8.74 (d, J = 4.4 Hz, 2H), 8.37 (d, J = 8.3 Hz, 1H), 8.02 (s, 1H), 7.79 (d, J = 7.7 Hz, 3H), 7.74 (d, J = 8.4 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.48 – 7.41 (m, 2H), 7.36 (t, J = 7.6 Hz, 1H), 7.26 (t, J = 7.2 Hz, 1H), 7.10 (t, J = 4.4 Hz, 1H), 7.02 (s, 1H), 6.43 (d, J = 36.2 Hz, 1H). The NMR data agree with those in a literature report.³ HRMS: [M + Na]⁺ calculated for C₂₄H₁₆FN₃Na⁺: 388.1220, found: 388.1220.

Further Functionalization of 3aa

In a Schlenk tube, substrate **3aa** (98.3mg, 0.25 mmol, 1.0 equiv), sulfonyl azide (98.6 mg, 0.50 mmol, 2.0 equiv), $[IrCp*Cl_2]_2$ (5.0 mg, 2.5 mol %), AgNTf₂ (9.7 mg, 10.0 mol %) and DCE (2 mL) were added. Then the mixture was stirred at 60 °C (oil temperature) for 12 h under Ar atmosphere. After cooled to room temperature, the reaction mixture was diluted with EtOAc (20 mL) and the organic layer was washed by water (10 mL), dried over Na₂SO₄ and filtered through a plug of celite. The solvent was evaporated, and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate) to afford the desired product **5**.⁵

(Z)-N-(2-(2-(4-bromophenyl)-1-fluorovinyl)-1-(pyrimidin-2-yl)-1H-indol-7-yl)-4-methylbenzenesulfon amide (5)

5 was obtained according to the general procedure in 70% yield (98.4mg). white solid, mp 155.2-157.3°C; ¹H NMR (400 MHz, CDCl₃) δ 10.64 (s, 1H), 8.80 (d, J = 4.9 Hz, 2H), 7.53 (d, J = 7.8 Hz, 1H), 7.46 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 7.8 Hz, 1H), 7.36 (d, J = 8.4 Hz, 2H), 7.29 (t, J = 4.9 Hz, 6H), 7.21 (t, J = 7.8 Hz, 1H), 7.15 (d, J = 8.1 Hz, 2H), 6.95 (d, J = 7.9 Hz, 3H), 6.10 (d, J = 36.2 Hz, 1H), 2.26 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.35, 156.98, 143.34, 138.93 – 136.64, 132.31 (d, J = 24.9 Hz), 131.98 (d, J = 73.1 Hz), 130.87, 130.24 (d, J = 7.8 Hz), 129.62, 129.28, 126.48, 124.28, 123.34, 121.02, 118.89, 118.25, 112.00, 108.22 (d, J = 10.2 Hz), 99.99, 21.45. ¹⁹F NMR (565 MHz, CDCl₃) δ -101.31 (d, J = 36.2 Hz). HRMS: [M + Na]⁺ calculated for C₂₇H₂₀BrFN₄O₂S Na⁺: 585.0367, found: 585.0369.

2. References

- (1) a) L. Ackermann and A. V. Lygin, *Org. Lett.* **2011**, *13*, 3332. (b) M. Nishino, K. Hirano, Satoh and M. Miura, *Angew. Chem.* **2012**, *124*, 7099.
- (2) C. S. Thomoson, H. Martinez, and W. R. Dolbier Jr. J. Fluorine Chem. 2013, 150, 53.
- (3) P. Tian, C. Feng and T.-P. Loh, Nat. Commun. 2015, 6, 7472.
- (4) L.H. Kong, X.K. Zhou and X.W. Li, Org. Lett. 2016, 18, 6320.
- (5) T. Okada, K. Nobushige, T. Satoh and M. Miura, Org. Lett. 2016, 18, 1150.

4. NMR Spectra

10.5

10. 5

