Supplementary Information

Designing of Rigid Cyclic Tripyrrins: The Importance of Intermolecular Interactions on Aggregation and Luminescence

Jun-Fei Wang,‡^a Yuhang Yao,‡^b Yingying Ning,^b Yin-Shan Meng,^b Chun-Liang Hou,^a Jing Zhang^{*a} and Jun-Long Zhang^{*b}

FAX: (86)10-62767034 Email: <u>zhangjunlong@pku.edu.cn</u> Email: <u>zhangj271@ucas.ac.cn</u>

- a College of Materials Science and Optoelectronics Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- $\ensuremath{{\scriptscriptstyle \pm}}$ These authors contributed equally to this work

Table of Contents

- Figure S1-S3. ¹H NMR spectrum of 1-3 in CDCl₃
- Figure S4-S6. ¹⁹F NMR spectrum of 1-3 in CDCI₃
- Figure S7-S9. ¹³C NMR spectrum of 1-3 in CDCl₃
- Figure S10-S12 IR spectrum of 1-3.
- Figure S13-S15 Single crystal structure of 1-3.
- Figure S16-S18 Cyclic voltammogram of 1-3.
- Figure S19 HOMO, LUMO and LUMO+1 energy levels of 1-3.
- Figure S20 Absorption spectra of 1-3 in PMMA films.
- Figure S21-S23 Decay spectrum of 1-3.
- Figure S24-S26 Absolute quantum yield of 1-3 in solid state.
- Figure S27-S29 Crystal packing of 1-3 along the (a) *a*, (b) *b* and (c) *c* directions.
- Figure S30 Fluorescence of 1-3 under the 365 nm UV lamp in crystalline (before grinding and
- after evaporating) and amorphous states (after grinding).
- Figure S31 Normalized emission spectra of 2-3 in amorphous state.

Figure S32 Normalized emission spectra of **1-3** in PMMA films. Insert: photograph taken under the 365 nm UV lamp.

Figure S33-S35 Absolute quantum yield of 1-3 in PMMA films.

Figure S36 Weak halogen bonds and π - π interaction of **1** (a) and **3** (b) in crystal. Up: top view in perpendicular direction of intramolecular N₃-plane, down: side view in parallel direction of intramolecular N₃-plane.

 Table S1-S3.
 X-ray crystallographic data of 1-3.

Table S4 Calculated energy levels of 1-3.

Table S5-S7. Calculated vertical excitation and configuration analysis of 1-3.

Table S8. Photophysical properties of 1-3.

Figure S1 ¹H NMR spectrum of 1 in CDCl₃.

Figure S2 ¹H NMR spectrum of 2 in CDCl₃.

Figure S3 ¹H NMR spectrum of 3 in CDCl₃.

Figure S9 ¹³C NMR spectrum of 3 in CDCl₃.

Figure S10 IR spectrum of 1.

Figure S13 Single crystal structure of 1 (CCDC 1581723).

Figure S14 Single crystal structure of 2 (CCDC 1581724).

Figure S15 Single crystal structure of 3 (CCDC 1581725).

Figure S16 Cyclic voltammogram of 1.

Figure S18 Cyclic voltammogram of 3.

Figure S19 HOMO, LUMO and LUMO+1 molecular orbital of 1-3.

Figure S20 Absorption spectra of 1-3 in PMMA films.

Figure S22 Decay spectrum of 2.

Figure S23 Decay spectrum of 3.

Figure S24 Absolute quantum yield of 1 in solid state.

Figure S25 Absolute quantum yield of 2 in solid state.

Figure S26 Absolute quantum yield of 3 in solid state.

Figure S27 Crystal packing of 1 along the (a) *a*, (b) *b* and (c) *c* directions with J-dimer in red

Figure S28 Crystal packing of 2 along the (a) a, (b) b and (c) c directions with J-dimer in red

Figure S29 Crystal packing of 3 along the (a) *a*, (b) *b* and (c) *c* directions.

Figure S30 Fluorescence of **1-3** under the 365 nm UV lamp in crystalline (before grinding and after evaporating) and amorphous states (after grinding).

Figure S31 Normalized emission spectra of 2-3 in amorphous state.

Figure S32 Normalized emission spectra of 1-3 in PMMA films. Insert: photograph taken under the 365 nm UV lamp.

Figure S33 Absolute quantum yield of 1 in PMMA films.

Figure S34 Absolute quantum yield of 2 in PMMA films.

Figure S35 Absolute quantum yield of 3 in PMMA films.

Figure S36 Weak halogen bonds and π - π interaction of 1 (a) and 3 (b) in crystal. Up: top view in perpendicular direction of intramolecular N₃-plane, down: side view in parallel direction of intramolecular N₃-plane.

Complex	1·0.5THF
molecular formula	$C_{36}H_{11}CI_2F_{10}N_5O_{2.5}$
formula wt. (g mol ⁻¹)	814.40
temperature (K)	180.01(10)
radiation (λ, Å)	0.71073
crystal system	monoclinic
space group	P 21/m
a (Å)	6.3689(5)
b (Å)	19.2075(10)
c (Å)	14.4005(9)
α (°)	90
β (°)	96.153(7)
γ (°)	90
Volume (Å ³)	1751.5(2)
Z	2
$ ho_{ m calcd}$ (g cm ⁻³)	1.544
μ (mm ⁻¹)	0.282
F(000)	812
crystal size (mm ³)	0.41×0.25× 0.03
Theta range	3.214 to 24.997°
reflections collected	10154
independent reflections	3185 [R(int) = 0.0429]
Completeness	99.64 %
goodness-of-fit on F ²	1.117
final R indices	R1 ^a = 0.0683
R indices (all data)	R1 ^a = 0.0931
largest diff. peak and hole (e Å-3)	1.57 and -0.26

 Table S1. X-ray crystallographic data of 1 (CCDC 1581723)

Complex	2·THF
molecular formula	$C_{38}H_{15}Br_2F_{10}N_5O_3$
formula wt. (g mol ⁻¹)	939.37
temperature (K)	180(2)
radiation (λ, Å)	0.71073
crystal system	orthorhombic
space group	Pnma
a (Å)	18.5573(10)
b (Å)	18.3335(13)
c (Å)	14.8419(10)
α (°)	90
β (°)	90
γ (°)	90
Volume (Å ³)	5049.5(5)
Z	4
ρ calcd (g cm⁻³)	1.225
μ (mm ⁻¹)	1.676
F(000)	1816
crystal size (mm ³)	0.35×0.25× 0.24
Theta range	3.512 to 24.996°
reflections collected	52350
independent reflections	4591 [R(int) = 0.0646]
Completeness	99.58 %
goodness-of-fit on F ²	1.065
final R indices	R1ª = 0.0702
R indices (all data)	R1ª = 0.0938
largest diff. peak and hole (e Å-3)	0.68 and -0.62

 Table S2. X-ray crystallographic data of 2 (CCDC 1581724)

Complex	3
molecular formula	C32H7CI4F10N3O2
formula wt. (g mol ⁻¹)	797.21
temperature (K)	180.01(10)
radiation (λ, Å)	0.71073
crystal system	monoclinic
space group	P 21/m
a (Å)	6.4792(4)
b (Å)	25.1943(14)
c (Å)	10.1094(6)
α (°)	90
β (°)	106.673(6)
γ (°)	90
Volume (Å ³)	1580.88(16)
Z	2
hocalcd (g cm ⁻³)	1.675
μ (mm ⁻¹)	0.471
F(000)	788
crystal size (mm ³)	0.27×0.24× 0.06
Theta range	3.207 to 27.453°
reflections collected	11013
independent reflections	3708 [R(int) = 0.0325]
Completeness	99.73 %
goodness-of-fit on F ²	1.025
final R indices	R1 ^a = 0.0441
R indices (all data)	R1ª = 0.0694
largest diff. peak and hole (e Å ⁻³)	0.37 and -0.35

 Table S3. X-ray crystallographic data of 3 (CCDC 1581725)

Table S4. Calculated energy levels of 1-3

	1	2	3
LUMO+1/eV	-2.72	-2.70	-2.05
LUMO/eV	-3.38	-3.36	-3.16
HOMO/eV	-5.94	-5.91	-5.72

 Table S5. Calculated vertical excitation and configuration analysis of 1

No.	λ (nm)	Exp. (nm)	f	Major Contribution
S ₁	500.33	530	0.4395	HOMO -> LUMO (99.9%)
S ₂	466.28	500	0.0006	HOMO -> L+1 (99.8%)
S ₂₄	284.35	319	0.8392	H-10 -> LUMO (27.7%)
				HOMO -> L+2 (20.9%)
				H-5 -> LUMO (15.0%)
				HOMO -> L+5 (14.5%)
				H-1 -> LUMO (7.1%)
				H-9 -> LUMO (4.7%)
				H-3 -> LUMO (2.4%)

No.	λ (nm)	Exp. (nm)	f	Major Contribution
S ₁	502.80	530	0.4184	HOMO -> LUMO (99.8%)
S ₂	466.56	500	0.0008	HOMO -> L+1 (99.8%)
S ₂₆	283.21	319	0.7708	H-10 -> LUMO (33.2%)
				HOMO -> L+6 (19.9%)
				HOMO -> L+2 (17.7%)
				H-5 -> LUMO (9.0%)
				H-1 -> LUMO (7.9%)
				H-9 -> LUMO (4.4%)

Table S6. Calculated vertical excitation and configuration analysis of 2

Table S7. Calculated vertical excitation and configuration analysis of 3

No.	λ (nm)	Exp. (nm)	f	Major Contribution
S ₁	500.98	530	0.4445	HOMO -> LUMO (100%)
S ₁₈	283.96	319	0.8495	H-10 -> LUMO (32.9%)
				HOMO -> L+1 (19.2%)
				H-7 -> LUMO (16.3%)
				HOMO -> L+5 (10.2%)
				H-2 -> LUMO (5.3%)
				H-9 -> LUMO (4.9%)
				H-1 -> LUMO (4.5%)
				HOMO -> L+6 (2.1%)

	1	2	3
UV/nm	532	533	529
FL/nm	560	560	551
QY/% ^a	8.2	7.3	8.5
т/ps ^b	708	656	715
Solid FL/nm	627	622	582
Solid QY/% °	3.8	2.4	3.1
Solid т/ps ^d	364 (68%), 1014	304 (51%), 808 (49%)	227 (65%), 770 (35%)
	(32%)		

 Table S8. Photophysical properties of 1-3

^a Fluorescein as reference, excitation = 470 nm. ^b Lifetime experiments use 590 nm as

emission.

^c Absolute quantum yield. ^d **1** and **2** use 620 nm as emission, **3** uses 580 nm as emission.