Supporting Information

Metal-Free Direct Oxidative C-C Bond Coupling of

Quinoxalinones and Pyrazolones

Saowanee Toonchue,^a Ladawan Sumunnee,^a Khamphee Phomphrai^b and Sirilata Yotphan^a*

^aCenter of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand E-mail: <u>sirilata.yot@mahidol.ac.th</u>

^bDepartment of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong, 21210, Thailand

Table of Contents

I.	General Procedure, Screening of Oxidants and Substrate Preparation	S-2
II.	Miscellaneous Experiment	S-4
III.	Characterization of Products	S-5
IV.	X-Ray Crystallography	S-12
V.	¹ H and ¹³ C Spectra of Products	S-13
VI.	References	S-34

I. General Procedure, Screening of Oxidants and Substrate Preparation

General Information:

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. All experiments were carried out under air atmosphere, and oven-dried glasswares were used in all cases. Column chromatography was performed over silica gel (SiO2; 60 Å silica gel, Merck Grade, 70–230 Mesh). ¹H and ¹³C NMR spectra were recorded on Bruker-AV400 spectrometers in DMSO-d₆ or acetone-d₆ solution, at 400 and 100 MHz, respectively. NMR chemical shifts are reported in ppm, and were measured relative to DMSO (2.50 ppm for ¹H and 39.51 ppm for ¹³C) or acetone (2. 05 ppm for ¹H and 29.92 ppm for ¹³C). IR spectra were recorded on Bruker FT-IR Spectrometer Model ALPHA by neat method, and only partial data are listed. Melting points were determined on Buchi Melting Point M-565 apparatus. High resolution mass spectroscopy (HRMS) data were analysed by a high-resolution micrOTOF instrument with electrospray ionization (ESI).

Í	$\begin{array}{c} & & \\$	oxidant CH ₃ CN, ri	H_{3}	C N-Ph OH
entry	oxidant	equiv.	time (h)	%yield ^b
1	<i>m</i> -CPBA	2	16	60
2	Oxone	2	16	56
3	Benzoquinone	2	16	29
4	H_2O_2	2	16	52
5	TBHP	2	16	22
6	DTBP	2	16	31
7	$(NH_4)_2S_2O_8$	2	1	96
8	$Na_2S_2O_8$	2	1	72
9	$K_2S_2O_8$	2	1	98
10	$K_2S_2O_8$	1	1	80
11	$K_2S_2O_8$	3	1	99
12	air		16	25
13	No oxidant (under Ar)		16	trace

Table S1.	Effect of	Oxidant. ^a
-----------	-----------	-----------------------

^aConditions: **1**a (0.1 mmol), **2**a (0.15 mmol), oxidant (1–3 equiv.), CH₃CN (0.4 mL), rt, under air. ^bNMR yield.

General Procedure for the Preparation of Quinoxalinones:

Ethyl 2- oxoacetate (1.1 equiv.) was added to a suspension of o-arylenediamine (4 mmol, 1 equiv.) in ethanol (1 mol/L). The reaction mixture was stirred and heated at reflux in an oil bath for 1 h, then at room temperature for 16 h. Upon completion (as monitored by

TLC), the precipitate was filtered and washed with ethanol, then dried to give quinoxalinone. For alkylation, the corresponding halogenoalkane (1.6 equiv.) was added to a suspension of quinoxalinone (1 equiv.) and potassium carbonate (1.2 equiv.) in DMF (16 mL). The mixture was stirred at room temperature for 16 h. Upon completion (as monitored by TLC), the reaction mixture was washed with saturated solution of ammonium chloride (NH₄Cl, 5 mL), ethyl acetate (10 mL) and water (10 mL). The organic layer was separated and the aqueous layer was extracted with ethyl acetate (2×10 mL). The combined organic layers were dried with anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The resulting organic residue was purified by flash chromatography column over silica gel (SiO₂) to afford the alkylated quinoxalinone.

Quinoxalinone substrates employed in this work are known compounds and their ¹H NMR data agreed with the literature.¹

Procedure for Preparation of Pyrazolone Substrates²:

A reaction mixture containing hydrazine (5 mmol), ethyl acetoacetate or ethyl 3-oxo-3-phenylpropanoate (5 mmol) and toluene(10 ml) was stirred at 120 °C in an oil bath. After 17 h, the reaction mixture was cooled to room temperature and the solvent was evaporated *in vacuo*. The organic residue was purified by flash column chromatography to yield a desired pyrazolone.

General Procedure for the Direct Oxidative C–C Bond Coupling of Pyrazolones and Quinoxalinones:

To a 2-dram vial equipped with a magnetic stir bar, quinoxalinone (0.5 mmol, 1.0 equiv.), pyrazolone (7.5 mmol, 1.5 equiv.), potassium persulfate ($K_2S_2O_8$) (270 mg, 1.0 mmol, 2.0 equiv.) and acetonitrile (CH₃CN) (2.00 mL) were added, respectively. The reaction mixture was stirred at room temperature or at 70 °C for 8 h. Upon completion, distilled deionized H₂O (10 mL) was added, and the mixture was extracted with ethyl acetate (EtOAc) (2 × 20 mL). The combined organic layer was washed with saturated NaCl, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude product was purified by SiO₂ column chromatography to afford the hydroxy-pyrazolylquinoxalinone product.

II. Miscellaneous Experiment

Control experiment in the absence of K₂S₂O₈

In the presence of $K_2S_2O_8$ oxidant, quinoxalinone and pyrazolone substrates underwent spontaneous C–C coupling to give the corresponding product. However, in the absence of $K_2S_2O_8$, approximately 25% of product **3a** was obtained from the reaction of **1a** and **2a** under air, and we could detect a reaction intermediate briefly by NMR. Meanwhile, the rest of starting materials could not be recovered from this reaction, indicating that a decomposition is likely to take place.

On the other hand, under an inert atmosphere of argon, we could not obtain the product from the reaction of 1a and 2a without the persulfate oxidant. However, we observed the possible reaction intermediate by NMR (shown below). This intermediate is unstable, could not be isolated, and underwent readily decomposition overtime. We suspected that this intermediate is likely to be the adduct (intermediate I or II) between quinoxalinone and pyrazolone.

III. Characterization of Products

3-(5-Hydroxy-3-methyl-1-phenyl-1*H***-pyrazol-4-yl)quinoxalin-2(1***H***)-one (3**a). Orange solid (156 mg, 98% yield); mp = 274.3–274.8 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 13.00 (s, 1H), 7.89 (d, J = 7.6 Hz, 2H), 7.68 (d, J = 8.0 Hz, 1H), 7.48–7.43 (m, 2H), 7.41 (d, J = 8.0 Hz, 1H), 7.35–7.31 (m, 8.4 Hz, 2H), 7.25 (t, J = 7.2 Hz, 1H), 2.57 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 159.7, 155.9, 148.7, 147.7, 138.3, 128.9 (2), 128.3, 127.7, 125.3, 124.6, 123.3, 119.9, 115.7, 98.3, 18.6; IR (neat, cm⁻¹): v = 3042, 2995, 2851, 1681, 1611, 1587, 1383, 1015, 873, 818, 739, 713, 688; HRMS (ESI): calcd for C₁₈H₁₅N₄O₂ [M+H]⁺ 319.1190, found 319.1199.

3-(1-(3,4-Dimethylphenyl)-5-hydroxy-3-methyl-1*H***-pyrazol-4-yl)quinoxalin-2(1***H***)-one (3b)**. Orange solid (170 mg, 98% yield); mp = 273.3–273.9 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 13.04 (s, 1H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.65 (s, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.45–7.41 (m, 1H), 7.36–7.33 (m, 2H), 7.20 (d, *J* = 8.0 Hz, 1H), 2.57 (s, 3H), 2.27 (s, 3H), 2.24 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 158.9, 156.0, 148.4, 147.9, 136.7, 136.1, 133.4, 129.7, 129.4, 128.3, 127.8, 124.7, 123.7, 121.2, 117.6, 115.8, 98.3, 19.6, 18.9, 18.4; IR (neat, cm⁻¹): *v* = 3039, 2920, 2870, 1682, 1605, 1499, 1382, 1125, 1016, 983, 870, 722, 671; HRMS (ESI): calcd for C₂₀H₁₉N₄O₂ [M+H]⁺ 347.1503, found 347.1509.

3-(1-(4-Chlorophenyl)-5-hydroxy-3-methyl-1*H***-pyrazol-4-yl)quinoxalin-2(1***H***)-one (3c). Orange solid (123 mg, 70% yield); mp = 272.0–272.4 °C; ¹H NMR (400 MHz, DMSO-d₆): \delta 12.95 (s, 1H), 7.96 (d,** *J* **= 8.8 Hz, 2H), 7.68 (d,** *J* **= 8.0 Hz, 1H), 7.52 (d,** *J* **= 9.2 Hz, 2H), 7.44–7.40 (m, 1H), 7.35–7.31 (m, 2H), 2.58 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): \delta 160.3, 155.5, 148.8, 147.3, 137.0, 129.5, 128.9, 128.6, 128.2, 127.4, 124.3, 122.6, 121.0, 120.1, 115.6, 108.2, 98.1, 18.2; IR (neat, cm⁻¹): v = 3099, 2954, 2918, 2849, 1681, 1611, 1382, 1088, 1016, 866, 737, 666, 563; HRMS (ESI): calcd for C₁₈H₁₄ClN₄O₂ [M+H]⁺ 353.0800, found 353.0802.**

3-(1-(2-Chlorophenyl)-5-hydroxy-3-methyl-1H-pyrazol-4-yl)quinoxalin-2(1H)-one (3d). Orange solid (74 mg, 42% yield); mp = 304.9 °C (decomposed); ¹H NMR (400 MHz, DMSO-d₆): δ 13.16 (s, 1H), 7.71–7.66 (m, 2H), 7.56–7.49 (m, 3H), 7.48–7.43 (m, 1H), 7.38–7.34 (m, 2H), 2.55 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 158.3, 156.3, 149.1, 148.5, 135.1, 131.2, 130.7, 130.5, 130.1, 129.9,128.4, 128.1, 128.0, 124.9, 124.8, 115.8, 97.3, 18.1; IR (neat, cm⁻¹): v = IR; 3169, 2925, 2849, 1693, 1601, 1486, 1366, 1261, 1013, 797, 754, 736, 644; HRMS (ESI): calcd for C₁₈H₁₄CIN₄O₂ [M+H]⁺ 353.0800, found 353.0813.

3-(5-Hydroxy-1-(4-methoxyphenyl)-3-methyl-1*H***-pyrazol-4-yl)quinoxalin-2(1***H***)-one (3e). Orange solid (173 mg, 99% yield); mp = 175.1–175.6 °C; ¹H NMR (400 MHz, DMSO-d₆): \delta 13.08 (s, 1H), 7.73 (d,** *J* **= 8.8 Hz, 2H), 7.70 (d,** *J* **= 8.0 Hz, 1H), 7.46–7.42 (m, 1H), 7.37–7.33 (m, 2H), 7.02 (d,** *J* **= 8.8 Hz, 2H), 3.79 (s, 3H), 2.56 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): \delta 158.0, 157.0, 156.1, 148.4, 148.1, 131.5, 129.5, 128.4, 127.9, 124.7, 124.2, 122.0, 115.8, 114.0, 98.3, 55.3, 18.3; IR (neat, cm⁻¹):** *v* **= 3039, 2919, 2773, 1682, 1504, 1383, 1297, 1242, 1163, 875, 754, 723, 666; HRMS (ESI): calcd for C₁₉H₁₇N₄O₃ [M+H]⁺ 349.1295, found 349.1303.**

3-(5-Hydroxy-3-methyl-4-(3-oxo-3,4-dihydroquinoxalin-2-yl)-1H-pyrazol-1-

yl)benzenesulfonamide (3f). Orange solid (197 mg, 99% yield); mp = 299.5–300.0 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 12.93 (s, 1H), 8.46 (s, 1H), 8.21–8.18 (m, 1H), 7.70 (d, *J* = 8.4, 1H), 7.68–7.63 (m, 2H), 7.47 (s, 2H), 7.44–7.40 (m, 1H), 7.36–7.31 (m, 2H), 2.60 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 161.8, 155.6, 149.3(2), 147.3, 144.9, 138.6, 129.8(2), 127.6, 124.6, 122.2, 121.9, 121.8, 116.2, 116.0, 98.1, 19.0; IR (neat, cm⁻¹): *v* = 3189, 2919, 2855, 1863, 1589, 1445, 1366, 1156, 881, 795, 756, 746, 681; HRMS (ESI): calcd for C₁₈H₁₅N₅NaO₄S [M+Na]⁺ 420.0737, found 420.0748.

3-(5-Hydroxy-1,3-dimethyl-1*H***-pyrazol-4-yl)quinoxalin-2(1***H***)-one (3g). Orange solid (110 mg, 86% yield); mp = 163.4–164.1 °C; ¹H NMR (400 MHz, DMSO-d₆): \delta 13.18 (s, 1H), 7.66 (d,** *J* **= 7.8 Hz, 1H), 7.45–7.41 (m, 1H), 7.36–7.32 (m, 2H), 3.47 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): \delta 156.6, 155.3, 149.2, 147.2, 132.4, 128.2, 128.1, 126.3, 124.8, 115.8, 97.4, 32.7, 17.4; IR (neat, cm⁻¹):** *v* **= 3041, 2995, 2850, 1681, 1612, 1588, 1490, 1384, 1124, 1015, 874, 740, 688; HRMS (ESI): calcd for C₁₃H₁₃N₄O₂ [M+H]⁺257.1033, found 257.1038.**

3-(5-Hydroxy-3-methyl-1*H***-pyrazol-4-yl)quinoxalin-2(1***H***)-one (3h). Yellow solid (89 mg, 73% yield); mp = 292.7–293.1 °C; ¹H NMR (400 MHz, DMSO-d₆): \delta 13.14 (s, 1H), 12.14 (s, 2H), 7.72 (d,** *J* **= 8.0 Hz, 1H), 7.49–7.45(m, 1H), 7.37 (d,** *J* **= 8.0 Hz, 2H), 2.53 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): \delta 156.4, 150.9, 133.0, 130.7, 128.8, 128.5, 127.3, 124.5, 123.2, 115.7, 100.4, 14.0; IR (neat, cm⁻¹): v = 3032, 2914, 2793, 1641, 1515, 1476, 1391, 1147, 1062, 946, 871, 762, 666; HRMS (ESI): calcd for C₁₂H₁₂N₄O₂ [M+H]⁺ 243.0877, found 243.0877.**

3-(5-Hydroxy-1-phenyl-3-propyl-1*H***-pyrazol-4-yl)quinoxalin-2(1***H***)-one (3i)**. Orange solid (121 mg, 70% yield); mp = 251.0–251.4 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 13.19 (s, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.69 (d, J = 7.6 Hz, 1H), 7.50–7.45 (m, 3H), 7.40–7.36 (m, 2H), 7.27 (t, J = 7.6 Hz, 1H), 3.02 (t, J = 7.6 Hz, 2H), 1.73–1.63 (m, 2H), 1.00 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 158.0, 156.2, 152.7, 148.1, 138.3, 130.5, 128.9, 128.3, 128.1, 125.6, 124.9, 124.6, 120.4, 115.8, 98.1, 32.9, 21.6, 14.1; IR (neat, cm⁻¹): v = 3047, 2954, 2864, 1683, 1589, 1498, 1381, 1168, 987, 882, 752, 688, 655; HRMS (ESI): calcd for C₂₀H₁₉N₄O₂ [M+H]⁺ 347.1503, found 347.1504.

3-(5-Hydroxy-3-isopropyl-1-phenyl-1*H***-pyrazol-4-yl)quinoxalin-2(1***H***)-one (3j). Orange solid (85 mg, 49% yield); mp = 236.2–236.8 °C; ¹H NMR (400 MHz, DMSO-d₆): \delta 13.27 (s, 1H), 7.86 (d,** *J* **= 7.6 Hz, 2H), 7.72 (d,** *J* **= 7.2 Hz, 1H), 7.50–7.46 (m, 3H), 7.41–7.37 (m, 2H), 7.28 (t,** *J* **= 7.2 Hz, 1H),**

4.05–3.98 (m, 1H), 1.29 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, DMSO-d₆): δ 157.5, 156.4, 148.3, 138.4, 131.3, 129.9, 129.4, 128.9, 128.7, 128.2, 125.6, 125.3, 124.9, 120.5, 118.8, 116.1, 97.8, 28.3, 21.6; IR (neat, cm⁻¹): v = 3192, 3139, 2917, 2849, 1680, 1492, 1373, 1138, 1011, 925, 836, 738, 674; HRMS (ESI): calcd for C₂₀H₁₉N₄O₂ [M+H]⁺ 347.1503, found 347.1505.

1-Ethyl-3-(5-hydroxy-1,3-dimethyl-1*H***-pyrazol-4-yl)quinoxalin-2(1H)-one (4a)**. Yellow solid (103 mg, 72% yield); mp = 148.9–149.1 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.76–7.70 (m, 2H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.45–7.41 (m, 1H), 4.38 (q, *J* = 7.2 Hz, 2H), 3.50 (s, 3H), 2.46 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 155.6, 150.6, 133.3, 131.6, 130.4, 129.0, 127.8, 125.3, 123.8, 115.5, 115.1, 38.6, 33.2, 17.9, 12.7; IR (neat, cm⁻¹): v = 3078, 2961, 2920, 1663, 1550, 135, 131, 1165, 904, 821, 743, 688, 652; HRMS (ESI): calcd for C₁₅H₁₇N₄O₂ [M+H]⁺ 285.1346, found 285.1355.

3-(5-Hydroxy-1,3-dimethyl-1*H***-pyrazol-4-yl)-1-pentylquinoxalin-2(1***H***)-one (4b). Yellow solid (152 mg, 93% yield); mp = 274.3–274.8 °C; ¹H NMR (400 MHz, DMSO-d₆): \delta 7.74 (dd,** *J* **= 8.0, 1.2 Hz, 1H), 7.68 (d,** *J* **= 8.4 Hz, 1H), 7.57–7.53 (m, 1H), 7.45–7.41 (m, 1H), 4.32 (t,** *J* **= 7.6 Hz, 2H), 3.50 (s, 3H), 2.45 (s, 3H), 1.73–1.66 (m, 2H), 1.44–1.33 (m, 4H), 0.88 (t,** *J* **= 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO-d₆): \delta 155.4, 155.1, 148.3, 147.3, 132.8, 128.9, 128.5, 127.3, 124.8, 115.1, 97.3, 42.8, 32.8, 28.3, 26.5, 21.9, 17.4, 13.8; IR (neat, cm⁻¹):** *v* **= 3064, 2954, 2919, 2852, 1619, 1402, 1342, 1166, 901, 759, 692, 657, 576; HRMS (ESI): calcd for C₁₈H₂₃N₄O₂ [M+H]⁺ 327.1816, found 327.1825.**

3-(5-Hydroxy-1,3-dimethyl-1*H***-pyrazol-4-yl)-1-isopropylquinoxalin-2(1***H***)-one (4c). Orange solid (18 mg, 12% yield); mp = 103.4–103.7 °C; ¹H NMR (400 MHz, DMSO-d₆): \delta 7.84–7.82 (m, 1H), 7.74–7.72 (m, 1H), 7.60–7.53 (m, 2H), 5.57–5.51 (m, 1H), 3.48 (s, 3H), 2.28 (s, 3H), 1.41 (d,** *J* **= 6.4 Hz, 6H); ¹³C NMR (100 MHz, DMSO-d₆): \delta 157.4, 153.7, 144.7, 141.4, 136.7, 133.6, 127.9, 127.0, 126.1, 124.0, 94.9, 69.7, 32.1, 21.4, 16.5; IR (neat, cm⁻¹):** *v* **= 3066, 2954, 2853, 1731, 1595, 1538, 1463,**

1375, 1178, 1106, 939, 755, 628; HRMS (ESI): calcd for $C_{16}H_{19}N_4O_2$ [M+H]⁺ 299.1503, found 299.1512.

1-Benzyl-3-(5-hydroxy-1,3-dimethyl-1*H***-pyrazol-4-yl)quinoxalin-2(1***H***)-one (4d). Yellow solid (156 mg, 90% yield); mp = 161.0–161.9 °C; ¹H NMR (400 MHz, DMSO-d₆): \delta 7.73 (dd, J = 7.7, 1.3 Hz, 1H), 7.50 (d, J = 7.9 Hz, 1H), 7.45–7.38 (m, 2H), 7.36–7.31 (m, 4H), 7.28–7.26 (m, 1H), 5.61 (s, 2H), 3.48 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): \delta 155.9, 155.6, 148.3, 147.3, 135.2, 132.4, 129.0, 128.8, 128.2, 127.5, 126.8(2), 125.0, 115.5, 97.4, 46.0, 32.7, 17.6; IR (neat, cm⁻¹): v = 3078, 2958, 2918, 1554, 1439, 1375, 1330, 1116, 941, 857, 820, 755, 690; HRMS (ESI): calcd for C₂₀H₁₉N₄O₂ [M+H]⁺ 347.1503, found 347.1510.**

1-Allyl-3-(5-hydroxy-1,3-dimethyl-1*H***-pyrazol-4-yl)quinoxalin-2(1***H***)-one (4e). Yellow solid (101 mg, 68% yield); mp = 128.4–129.0 °C. ¹H NMR (400 MHz, DMSO-d₆): \delta 7.73 (d,** *J* **= 8.0 Hz, 1H), 7.56 (d,** *J* **= 8.0 Hz, 1H), 7.53–7.48 (m, 1H), 7.41 (t,** *J* **= 7.2 Hz, 1H), 6.03–5.93 (m, 1H), 5.22–5.13 (m, 2H), 4.99 (d,** *J* **= 4.8 Hz, 2H), 3.49 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): \delta 155.5, 155.4, 148.3, 147.2, 132.4, 131.1, 128.9, 128.3, 126.9, 124.9, 117.5, 115.5, 97.3, 45.0, 32.7, 17.5; IR (neat, cm⁻¹):** *v* **= 2980, 2925, 1721, 1690, 1622, 1411, 1342, 1164, 994, 912, 887, 758, 693; HRMS (ESI): calcd for C₁₆H₁₇N₄O₂ [M+H]⁺ 297.1346, found 297.1351.**

Ethyl 2-(3-(5-hydroxy-1,3-dimethyl-1*H***-pyrazol-4-yl)-2-oxoquinoxalin-1(2***H***)-yl)acetate (4f). Yellow solid (170 mg, 99% yield); mp = 191.9–192.4 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.80 (dd, J = 8.0, 1.2 Hz, 1H), 7.64 (d, J = 8.4 Hz, 1H), 7.55–7.51 (m, 1H), 7.47–7.43 (m, 1H), 5.23 (s, 2H), 4.20 (q, J = 7.2 Hz, 2H), 3.50 (s, 3H), 2.46 (s, 3H), 1.23 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 166.7, 155.6, 155.3, 147.6, 147.0, 131.8, 129.1, 128.2, 126.5, 124.9, 114.7, 97.0, 61.3, 44.6, 32.5,**

17.0, 13.7; IR (neat, cm⁻¹): v = 3011, 2978, 2918, 1741, 1554, 1383, 1168, 1114, 1024, 947, 874, 756, 692; HRMS (ESI): calcd for C₁₇H₁₉N₄O₄ [M+H]⁺ 343.1401, found 343.1408.

3-(5-Hydroxy-1,3-dimethyl-1*H***-pyrazol-4-yl)-6,7-dimethylquinoxalin-2(1***H***)-one (4g). Orange solid (93 mg, 65% yield); mp = 325.4-326.0 °C; ¹H NMR (400 MHz, DMSO-d₆): \delta 13.12 (s, 1H), 7.47 (s, 1H), 7.12 (s, 1H), 3.48 (s, 3H), 2.44 (s, 3H), 2.30 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): \delta 156.5, 154.8, 148.3, 147.0, 137.8, 133.7, 131.3, 126.6, 126.3, 115.8, 97.3, 32.8, 19.7, 19.1, 17.3; IR (neat, cm⁻¹): v = 3591, 2917, 2852, 1640, 1563, 1510, 1445, 1415, 1147, 928, 882, 722, 677; HRMS (ESI): calcd for C₁₅H₁₇N₄O₂ [M+H]⁺ 285.1346, found 285.1358.**

3-(5-Hydroxy-1,3-dimethyl-1*H***-pyrazol-4-yl)-6-nitroquinoxalin-2(1***H***)-one (4h). Orange solid (149 mg, 99% yield); mp = 144.5–144.9 °C; ¹H NMR (400 MHz, Acetone-d₆): \delta 14.42 (s, 1H), 8.31 (d, J = 2.4 Hz, 1H), 8.18 (dd, J = 8.8, 2.4 Hz, 1H), 7.90 (d, J = 8.8 Hz, 1H), 3.53 (s, 3H), 2.52 (s, 3H); ¹³C NMR (100 MHz, Acetone-d₆): \delta 156.2, 149.5, 129.0, 128.1, 125.8, 120.1, 119.5, 118.4, 116.5, 111.6, 99.5, 33.2, 18.2; IR (neat, cm⁻¹): v = 3079, 2918, 2849, 1638, 1562, 1518, 1339, 1161, 1085, 904, 817, 711, 660; HRMS (ESI): calcd for C₁₃H₁₂N₅O₄ [M+H]⁺ 302.0884, found 302.0885.**

6-Chloro-3-(5-hydroxy-1,3-dimethyl-1*H***-pyrazol-4-yl)quinoxalin-2(1***H***)-one (4i). Yellow solid (142 mg, 98% yield); mp = 327.5-328.1 \,^{\circ}C; ¹H NMR (400 MHz, DMSO-d₆): \delta 13.24 (s, 1H), 7.68 (d,** *J* **= 8.4 Hz, 1H), 7.37 (dd,** *J* **= 8.4, 2.4 Hz, 1H), 7.33 (d,** *J* **= 2.4 Hz, 1H), 3.48 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): \delta 156.7, 155.0, 149.7, 147.4, 131.8, 131.6, 129.3, 128.2, 124.9, 115.0, 97.4, 32.9, 17.4; IR (neat, cm⁻¹):** *v* **= 3128, 2915, 1645, 1562, 1545, 1483, 1118, 1004, 817, 738, 666, 615, 549; HRMS (ESI): calcd for C₁₃H₁₂ClN₄O₂ [M+H]⁺291.0643, found 291.0647.**

6,7-Dichloro-3-(5-hydroxy-1,3-dimethyl-1H-pyrazol-4-yl)quinoxalin-2(1H)-one (4j). Yellow solid 115 mg, 71% yield); mp = 334.7–335.4 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 13.32 (s, 1H), 7.92 (s, 1H), 7.47 (s, 1H), 3.49 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 156.6, 154.9, 150.8, 147.6, 132.5, 129.6, 128.2, 127.5, 126.6, 116.7, 97.6, 32.8, 17.3; IR (neat, cm⁻¹): *v* = 2924, 2769, 1684, 1562, 1148, 1114, 1052, 983, 899, 856, 766, 719, 669;HRMS (ESI): calcd for C₁₃H₁₁Cl₂N₄O₂ [M+H]⁺ 325.0254, found 325.0256.

6,7-Dibromo-3-(5-hydroxy-1,3-dimethyl-1*H*-**pyrazol-4-yl)quinoxalin-2(1***H***)-one (4k)**. Yellow solid (183 mg, 89% yield); mp = 160.5–160.8 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 13.29 (s, 1H), 8.04 (s, 1H), 7.62 (s, 1H), 3.49 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 156.4, 155.0, 150.5, 147.5, 132.9, 130.2, 128.5, 121.7, 119.7, 118.3, 97.4, 32.6, 17.0; IR (neat, cm⁻¹): *v* = 2922, 2757, 1645, 1557, 1514, 1178, 1096, 1005, 951, 886, 913, 659, 543; HRMS (ESI): calcd for C₁₃H₁₁Br₂N₄O₂ [M+H]⁺ 414.9223, found 414.9228.

IV. X-Ray Crystallography

Data integration was performed with the SAINT software,³ and intensity data were corrected based on the intensities symmetry-related reflections measured at different angular setting (SADABS).⁴ The space group was determined with the XPREP software. The crystal structure was solved by intrinsic phasing method (SHELXT)⁵ and refined by full-matrix least squares against F^2 using SHELXL⁶ based on ShelXle engine or Olex2 software package.⁷ All non-hydrogen atoms were refined anisotropically while the hydrogen atoms were placed in calculated positions and not refined. The crystallographic images were processed by Ortep3 program.⁸

Compound 4a:

Compound 4d:

(See CIF files for more detail)

3-(1-(2-Chlorophenyl)-5-hydroxy-3-methyl-1*H*-pyrazol-4-yl)quinoxalin-2(1*H*)-one (3d)

 $\label{eq:3-1} 3-(5-Hydroxy-3-methyl-4-(3-oxo-3,4-dihydroquinoxalin-2-yl)-1 H-pyrazol-1-yl) benzenesulfonamide (3f)$

3-(5-Hydroxy-3-methyl-1*H*-pyrazol-4-yl)quinoxalin-2(1*H*)-one (3h)

Г

3-(5-Hydroxy-1-phenyl-3-propyl-1*H*-pyrazol-4-yl)quinoxalin-2(1*H*)-one (3i)

3-(5-Hydroxy-3-isopropyl-1-phenyl-1*H*-pyrazol-4-yl)quinoxalin-2(1*H*)-one (3j)

3-(5-Hydroxy-1,3-dimethyl-1*H*-pyrazol-4-yl)-1-pentylquinoxalin-2(1*H*)-one (4b)

3-(5-Hydroxy-1,3-dimethyl-1*H*-pyrazol-4-yl)-1-isopropylquinoxalin-2(1*H*)-one (4c)

1-Benzyl-3-(5-hydroxy-1,3-dimethyl-1*H*-pyrazol-4-yl)quinoxalin-2(1*H*)-one (4d)

1-Allyl-3-(5-hydroxy-1,3-dimethyl-1*H*-pyrazol-4-yl)quinoxalin-2(1*H*)-one (4e)

Ethyl 2-(3-(5-hydroxy-1,3-dimethyl-1*H*-pyrazol-4-yl)-2-oxoquinoxalin-1(2*H*)-yl)acetate (4f)

3-(5-Hydroxy-1,3-dimethyl-1*H*-pyrazol-4-yl)-6,7-dimethylquinoxalin-2(1*H*)-one (4g)

S-29

6,7-Dichloro-3-(5-hydroxy-1,3-dimethyl-1*H*-pyrazol-4-yl)quinoxalin-2(1*H*)-one (4j)

6,7-Dibromo-3-(5-hydroxy-1,3-dimethyl-1*H*-pyrazol-4-yl)quinoxalin-2(1*H*)-one (4k)

VI. References

- 1. A. Carrër, J.-D. Brion, S. Messaoudi and M. Alami, Org. Lett., 2013, 15, 5606.
- 2. Y. Yang, H.Gong and C. Kuang, Eur. J. Org. Chem., 2013, 5276.
- 3. SAINT V8.34A, Bruker-AXS, Madison WI, USA, 2013.
- 4. SADABS-2014/5, Bruker AXS, Madison WI, USA, 2014.
- 5. G. M. Sheldrick, Acta Crystallogr. A, 2015, 71, 3-8.
- 6. G. M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112–122.
- 7. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339–341.
- 8. L. J. Farrugia, J. Appl. Crystallogr., 2012, 45, 849-854.