Three-Component Reaction to Synthesize *E*-Vinyl Silyl *Anti*-1,2-Diols via A Sequential [1,4]-O-to-O/[1,4]-C-to-O Silyl Migrations

Qiang Pu, Xiaoxiao Tang, Lu Gao* and Zhenlei Song*

Sichuan Engineering Laboratory for Plant-Sourced Drug and Research Center for Drug Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, P. R. China.

E-mail: lugao@scu.edu.cn; zhenleisong@scu.edu.cn

Supporting Information

Table of Contents

1. General Methods	
2. Experimental Procedures and Spectral Data of Products	
2.1. Preparation of Germinal Bis(silyl) Allyl Silyl Ether 1a	
2.2. General Procedure to Synthesize 6a-6h	
2.3. General Procedure to Synthesize 12a-12l	
2.4. Preparation of 5, 7, 9, 13	
3. ¹ H and ¹³ C NMR Spectral Data	

1. General Methods

Commercial reagents were used without any purification. All reactions were performed using common anhydrous, inert atmosphere techniques. Reactions were monitored by TLC which was performed on glass-backed silica plates and visualized using UV, KMnO₄ stains, H₃PO₄·12MoO₃/EtOH stains, H₂SO₄ (conc.)/anisaldehyde/ EtOH stains. Column chromatography was performed using silica gel (200-300 mesh) eluting with EtOAc/petroleum ether. ¹H NMR spectra were recorded at 400 MHz (Varian) and 600 MHz (Agilent), and ¹³C NMR spectra were recorded at 100 MHz (Varian) and 150 MHz (Agilent) using CDCl₃ (except where noted) with TMS or residual solvent as standard. Infrared spectra were obtained using KCl plates on a VECTOR22. High-resolution mass spectral analyses performed on Waters Q-TOF. CH₃CN, DMSO, DMF, CH₂Cl₂, TMEDA and Et₃N were distilled from CaH₂. Et₂O and THF were distilled from sodium. All spectral data obtained for new compounds are reported here.

2. Experimental Procedures and Spectral Data of Products

2.1. preparation of germinal bis(silyl) allyl silyl ether 1a

$$\begin{array}{c|c} SiEt_3 \\ Et_3Si & OH \end{array} \xrightarrow[CH_2Cl_2, rt, 2 h]{} SiEt_3 \\ \hline CH_2Cl_2, rt, 2 h \end{array} \xrightarrow[Et_3Si \\ \hline CH_3Si & OSiEt_3 \\ \hline 1a \end{array}$$

To a solution of $\mathbf{1s}^1$ (500 mg, 1.75 mmol), DMAP (21 mg, 0.175 mmol) in CH₂Cl₂ (10 mL) was added TESCl (342 mg, 2.3 mmol) at room temperature. The mixture was allowed to stir for 2 h before quenching with H₂O (5 mL) and extraction with Et₂O (3 × 5 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (eluent: petroleum ether) to afford **1a** as a colorless oil (666 mg, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.73 (t, *J* = 4.8 Hz, 1H), 4.32 (d, *J* = 4.7 Hz, 2H), 1.00 – 0.87 (m, 27H), 0.62 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 133.6, 65.1, 7.7, 7.5, 6.8, 5.0, 4.5, 4.2; IR (neat) cm⁻¹ 2952, 2909, 2874, 1561, 1457, 1415, 1235, 1097, 1002, 732, 680; HRMS (ESI-TOF, m/z) calcd for C₂₁H₄₈NaOSi₃ (M + Na)⁺: 423.2905, found 423.2908.

For the preparation of 1s, see: 1. Yan L. J.; Sun X. W.; Li H. Z.; Liu Z. J.; Song Z. L. Org. Lett. 2013, 15, 1104.

2.2. General Procedure to Synthesize 6a-6h

To a solution of **1a** (100.2 mg, 0.25 mmol) and HMPA(134.4 mg, 0.75 mmol) in anhydrous THF (1.0 mL) was slowly added *t*-BuLi (0.58 mL of 1.3 M solution in pentane, 0.75 mmol) at -78 °C. After 1.5 h, a solution of 4-methoxy-benzaldehyde (68 mg, 0.5 mmol) in anhydrous THF (0.5 mL) was added at -78 °C. The reaction was stirred for 20 min before quenching with sat. aq. NH₄Cl (5 mL) and extraction with Et₂O (3 × 5 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude residue and PPTS (6.3 mg, 0.025 mmol) reacted in MeOH (2 mL) at room temperature for 2 h before quenching with sat. aq. NaHCO₃ (5 mL) and extraction with Et₂O (3 × 5 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (gradient eluent: 0-30% of EtOAc/petroleum ether) to afford **6a** as a colorless oil (83 mg, 79%, [$dr \ge 95:5$]).

<u>Preparation of 6a</u>

1a: ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 8.4 Hz, 2H), 6.87 (d, *J* = 8.4 Hz, 2H), 6.49 (d, *J* = 9.2 Hz, 1H), 4.68 (d, *J* = 4.4 Hz, 1H), 4.48 (dd, *J*₁ = 9.2 Hz, *J*₂ = 4.4 Hz, 1H), 3.80 (s, 3H), 2.04 (s, 2H), 0.91 – 0.84 (m, 18H), 0.70 – 0.66 (m, 6H), 0.58 (q, *J* = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 155.7, 142.6, 131.7, 128.3, 113.7, 76.1, 75.7, 55.3, 7.7, 7.5, 5.5, 4.1; IR (neat) cm⁻¹ 3405, 2951, 2908, 2873, 1612, 1512, 1247, 1101, 737; HRMS (ESI-TOF, m/z) calcd for C₂₃H₄₂NaO₃Si₂ (M + Na)⁺: 445.2565, found 445.2557.

Preparation of 6b

1b: Using the same procedure as that used for **6a** afforded **6b** as a colorless oil (77 mg, 76%, [dr = 85:15]). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 7.8 Hz, 2H), 7.14 (d, J = 7.8 Hz, 2H), 6.49 (d, J = 9.2 Hz,1H), 4.69 (d, J = 4.4 Hz, 1H), 4.48 (dd, $J_1 = 9.2$ Hz, $J_2 = 4.4$ Hz, 1H), 0.90 – 0.84 (m, 18H), 0.70 – 0.66 (m, 6H), 0.56 (q, J = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 142.6, 137.7, 136.6, 128.9, 127.0, 76.4, 75.7, 21.1, 7.7, 7.4, 5.5, 4.1; IR (neat) cm⁻¹ 3386, 2951, 2909, 2873, 1612, 1512, 1246, 1173, 1035, 1006, 892, 828; HRMS (ESI-TOF, m/z) calcd for C₂₃H₄₂NaO₂Si₂ (M + Na)⁺: 429.2616, found 429.2621.

Preparation of 6c

1c: Using the same procedure as that used for **6a** afforded **6c** as a colorless oil (79 mg, 77%, [*dr* = 85:15]). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* = 7.8 Hz, 2H), 7.14 (d, *J* = 7.8 Hz, 2H), 6.49 (d, *J* = 9.2 Hz, 1H), 4.69 (d, *J* = 4.4 Hz, 1H), 4.48 (dd, *J*₁ = 9.2 Hz, *J*₂ = 4.4 Hz, 1H), 0.90 – 0.84 (m, 18H), 0.70 – 0.66 (m, 6H), 0.56 (q, *J* = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, ¹*J*_{*C*-*F*} = 244 Hz), 154.9, 143.3, 135.3 (d, ⁴*J*_{*C*-*F*} = 3.1 Hz), 128.8 (d, ³*J*_{*C*-*F*} = 8.1 Hz), 115.2 (d, ²*J*_{*C*-*F*} = 21 Hz), 75.7, 75.6, 7.7, 7.4, 5.5, 4.1; IR (neat) cm⁻¹ 3394, 2952, 2908, 2873, 1605, 1563, 1509, 1226, 1001, 858, 820; HRMS (ESI-TOF, m/z) calcd for C₂₂H₃₉FNaO₂Si₂ (M + Na)⁺: 433.2365, found 433.2371.

<u>Preparation of 6d</u>

6d: Using the same procedure as that used for **6a** afforded **6d** as a colorless oil (75 mg, 68%, [dr = 90:10]). ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.80 (m, 4H), δ 7.50 – 7.46 (m, 3H), 6.55 (d, J = 9.2 Hz, 1H), 4.93 (d, J = 4.4 Hz, 1H), 4.60 (dd, $J_I = 9.2$ Hz, $J_2 = 4.4$ Hz, 1H), 0.83 (q, J = 8.0 Hz, 18H), 0.69 – 0.65 (m, 6H), 0.55 (q, J = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 143.0, 137.0, 133.2, 133.1, 128.0, 127.9, 127.6, 126.2, 126.1, 125.9, 124.9, 76.6, 75.7, 7.7, 7.4, 5.5, 4.1; IR (neat) cm⁻¹ 3388, 2951, 2907, 2872, 1563, 1509, 1459, 1416, 1376, 1234, 1002, 737, 682; HRMS (ESI-TOF, m/z) calcd for C₂₆H₄₂NaO₂Si₂ (M + Na)⁺: 465.2616, found 465.2622.

Preparation of 6e

6e: Using the same procedure as that used for **6a** afforded **6e** as a colorless oil (76 mg, 80%, [dr = 85:15]). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 7.8 Hz, 2H), 7.14 (d, J = 7.8 Hz, 2H), 6.49 (d, J = 9.2 Hz,1H), 4.69 (d, J = 4.4 Hz, 1H), 4.48 (dd, $J_1 = 9.2$ Hz, $J_2 = 4.4$ Hz, 1H), 0.90 – 0.84 (m, 18H), 0.70 – 0.66 (m, 6H), 0.56 (q, J = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 142.6, 137.7, 136.6, 128.9, 127.0, 76.4, 75.7, 21.1, 7.7, 7.4, 5.5, 4.1; IR (neat) cm⁻¹ 3389, 2951, 2902, 2873, 1605,1473, 1442, 1247, 1033, 903, 824, 837; HRMS (ESI-TOF, m/z) calcd for C₂₀H₃₈NaO₃Si₂ (M + Na)⁺: 405.2252, found 405.2261.

Preparation of 6f

6f: Using the same procedure as that used for **6a** afforded **6f** as a colorless oil (43 mg, 43%, [*dr* = 90:10]). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 4.8 Hz, 1H), 7.02 (d, *J* = 2.8 Hz, 1H), 6.98 (d, *J* = 4.8 Hz, 1H), 6.45 (d, *J* = 9.2 Hz, 1H), 4.94 (d, *J* = 4.2 Hz, 1H), 4.58 (dd, *J*₁ = 9.2 Hz, *J*₂ = 4.4 Hz, 1H), 2.09 (s, 2H), 0.93(t, *J* = 7.8 Hz, 9H), 0.84 (t, *J* = 7.8Hz, 9H), 0.71 (q, *J* = 7.8, 6H), 0.56 (q, *J* = 7.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 143.0, 142.4, 126.4, 126.0, 125.7, 75.4, 72.9,

7.8, 7.4, 5.5, 4.1; IR (neat) cm⁻¹ 3396, 2951, 2908, 2873m, 1565, 1458, 1417, 1233, 1002, 857, 843, 739, 695; HRMS (ESI-TOF, m/z) calcd for C₂₀H₃₈NaO₂SSi₂ (M + Na)⁺: 421.2023, found 421.2026.

Preparation of 6g

6g: Using the same procedure as that used for **6a** afforded **6g** as a colorless oil (59 mg, 66%, $[dr \ge 95:5]$). ¹H NMR (400 MHz, CDCl₃) δ 6.75 (d, J = 8.8 Hz, 1H), 4.28 (dd, $J_1 = 8.8$ Hz, $J_2 = 6.4$ Hz, 1H), 3.42 (dd, $J_1 = J_2 = 6.4$ Hz, 1H), 1.92 (m, 1H), 0.99 – 0.88 (m, 24H), 0.74 (q, J = 7.8 Hz, 6H), 0.65 (q, J = 7.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 156.7, 143.2, 78.0, 73.1, 28.9, 19.9, 16.6, 7.8, 7.5, 5.5, 4.2; IR (neat) cm⁻¹ 3432, 2953, 2873, 1460, 1417, 1377, 1001, 966, 852, 816; HRMS (ESI-TOF, m/z) calcd for C₁₉H₄₂NaO₂Si₂ (M + Na)⁺: 381.2616, found 381.2615.

<u>Preparation of 6h</u>

6h: Using the same procedure as that used for **6a** afforded **6h** as a colorless oil (75 mg, 71%, [dr = 67:33]). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (t, J = 7.3 Hz, 2H), 7.20 – 7.19 (m, 3H), 6.68 (d, J = 9.2 Hz, 1H), 4.30 (dd, $J_1 = 9.2$ Hz, $J_2 = 4.4$ Hz, 1H), 3.64 (dt, $J_1 = 6.8$ Hz, $J_2 = 4.0$ Hz, 1H), 2.90 (dt, $J_1 = 7.2$ Hz, $J_2 = 6.8$ Hz, 1H), 2.69 (dt, J = 7.2 Hz, 6.8 Hz, 1H), 1.83 (s, 2H), 1.80 (t, J = 7.2 Hz, 1H), 1.78 (t, J = 7.2 Hz, 1H), 0.93 – 0.86 (m, 18H), 0.72 – 0.65 (m, 6H), 0.65 – 0.59 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 142.2, 141.8, 128.4, 128.3, 125.8, 75.4, 72.9, 33.0, 31.9, 7.7, 7.5, 5.6, 4.1; IR (neat) cm⁻¹ 3404, 2951, 2908, 2873, 1604, 1562, 1496, 1454, 1417, 1376, 1234, 1001, 847; HRMS (ESI-TOF, m/z) calcd for C₂₄H₄₄NaO₂Si₂ (M + Na)⁺: 443.2772, found 443.2777.

2.3. General Procedure to Synthesize 12a-12l

12a: To a solution of **1a** (100.2 mg, 0.25 mmol) and HMPA(134.4 mg, 0.75 mmol) in anhydrous THF (1 mL) was slowly added *t*-BuLi (0.58 mL of 1.3 M solution in pentane, 0.75 mmol) at -78 °C. After 1.5 h, a solution of 4-methoxy-benzaldehyde (68 mg, 0.5 mmol) in THF (0.5 mL) was added at -78 °C. The reaction was stirred for 20 min before adding a solution of CuI (143 mg, 0.75 mmol) in THF (1.5 mL) and HMPA (1.5 mL). The mixture was warmed to room temperature for 2 h before the addition of allyl chloride (57 mg, 0.75 mmol). After stirring for 8 h, the reaction was quenched with sat. aq. NH₄Cl (5 mL) and extracted with Et₂O (3 × 5 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude residue and PPTS (6.3 mg, 0.025 mmol) reacted in MeOH (2 mL) at room temperature for 2 h. The mixture was quenched with sat. aq. NaHCO₃ (5 mL) and extracted with Et₂O (3 × 5 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced pressure. The crude residue and PPTS (6.3 mg, 0.025 mmol) reacted in MeOH (2 mL) at room temperature for 2 h. The mixture was quenched with sat. aq. NaHCO₃ (5 mL) and extracted with Et₂O (3 × 5 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (gradient eluent: 0-30% of EtOAc/petroleum ether) to afford **12a** as a colorless oil (57 mg, 64%, [$dr \ge 95:5$]).

Preparation of 12a

12a: ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 5.73 (d, J = 8.8 Hz, 1H), 5.66 – 5.56 (m, 1H), 4.97 – 4.92 (m, 2H), 4.72 (d, J = 4.4 Hz, 1H), 4.64 (dd, $J_I = 8.8$ Hz, $J_2 = 4.4$ Hz, 1H), 3.79 (s, 3H), 2.80 (d, J = 5.6 Hz, 2H), 1.97 (s, 2H), 0.86 (t, J = 8.0 Hz, 9H), 0.55 (q, J = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 141.3, 139.3, 137.1, 131.9, 128.0, 115.2, 113.6, 76.0, 71.5, 55.3, 34.3, 7.3, 2.8; IR (neat) cm⁻¹ 3390, 2951, 2909, 2873, 1635, 1612,

1585, 1460, 1415, 1302, 1247, 1173, 1022, 909, 828; HRMS (ESI-TOF, m/z) calcd for $C_{20}H_{32}NaO_3Si (M + Na)^+$: 371.2013, found 371.2014.

Preparation of 12b

12b: Using the same procedure as that used for **12a** afforded **12b** as a colorless oil (38 mg, 42%). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 8.4 Hz, 2H), 6.86 (d, *J* = 8.4 Hz, 2H), 5.83 (d, *J* = 8.4 Hz, 1H), 4.72 (s, 2H), 4.54 (s, 2H), 3.79 (s, 3H), 2.69 (s, 2H), 1.68 (s, 3H), 0.86 (t, *J* = 7.8 Hz, 9H), 0.53 (q, *J* =7.8 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 159.2, 144.4, 141.3, 139.7, 131.9, 128.0, 113.6, 111.0, 77.2, 76.0, 71.6, 55.3, 37.6, 23.4, 7.4, 2.9; IR (neat) cm⁻¹ 3391, 2950, 2908, 2873, 1564, 1514, 1457, 1416, 1377, 1233, 1001, 856; HRMS (ESI-TOF, m/z) calcd for C₂₁H₃₄NaO₃Si (M + Na)⁺:385.2169, found 385.2173.

Preparation of 12c

12c: Using the same procedure as that used for **12a** afforded **12c** as a colorless oil (54 mg, 51%). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.30(m, 5H), 7.27 (d, *J* = 8.8 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H) 5.93 (d, *J* = 8.8 Hz, 1H), 5.28 (s, 1H), 4.81 (s, 1H), 4.73 (d, *J* = 4.0 Hz, 1H), 4.53 (dd, *J_I* = 8.8 Hz, *J₂* = 4.0 Hz, 1H), 3.80 (s, 3H), 3.12 (s, 2H), 2.04 (s, 2H), 0.85 (t, *J* = 8.0 Hz, 9H), 0.55 (q, *J* = 8.0 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 159.2, 146.1, 141.8, 140.8, 140.1, 131.9, 128.3, 128.2, 128.1, 128.0, 127.5, 125.8, 113.6, 113.3, 76.0, 71.8, 55.3, 34.7, 7.4, 3.0; IR (neat) cm⁻¹ 3387, 2951, 2911, 2873, 1612, 1512, 1247, 1173, 1034, 903, 828; HRMS (ESI-TOF, m/z) calcd for C₂₆H₃₆NaO₃Si (M + Na)⁺: 447.2326, found 447.2332.

Preparation of 12d

12d: Using the same procedure as that used for **12a** afforded **12d** as a colorless oil (62 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 8.4 Hz, 2H), 6.86 (d, *J* = 8.4 Hz, 2H), 5.91 (d, *J* = 8.8 Hz, 1H), 5.38 (d, *J* = 6.0 Hz, 2H), 4.78 (d, *J* = 4.0 Hz, 1H), 4.57 (dd, *J*₁ = 8.8 Hz, *J*₂ = 4.0 Hz, 1H), 3.80 (s, 3H), 3.11 (s, 2H), 2.19 (s, 2H), 0.88 (d, *J* = 8.0 Hz, 9H), 0.56 (q, *J* = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 141.5, 138.9, 131.8, 131.8, 127.9,117.5, 113.6, 75.9, 71.6, 55.3, 41.6, 7.3, 2.9; IR (neat) cm⁻¹ 3384, 2951, 2874, 1612, 1512, 1459, 1302, 1247, 1173, 1034, 891, 731; HRMS (ESI-TOF, m/z) calcd for C₂₀H₃₁BrNaO₃Si (M + Na)⁺: 449.1118, found 449.1109.

Preparation of 12e

12e: Using the same procedure as that used for **12a** afforded **12e** as a colorless oil (64 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 8.8 Hz, 3H), 6.86 (d, J = 8.8 Hz, 2H), 5.86 (dt, $J_I = 18.8$ Hz, $J_2 = 6.0$ Hz, 1H), 5.72 (d, J = 8.8 Hz, 1H), 5.57 (d, J = 18.8 Hz, 1H), 4.71 (d, J = 4.4 Hz, 1H), 4.64 (dd, $J_I = 8.8$ Hz, $J_2 = 4.4$ Hz, 1H), 3.79 (s, 3H), 2.91 (t, J = 4.8 Hz, 2H), 1.90 (s, 2H), 0.92 – 0.83(m, 18H), 0.57 – 0.49 (m, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 146.0, 141.3, 139.3, 131.9, 128.0, 127.1, 113.6, 76.0, 71.5, 55.2, 37.6, 7.3, 3.4, 2.8; IR (neat) cm⁻¹ 3388, 2951, 2908, 2873, 1612, 1512, 1459, 1247, 1009, 765, 717; HRMS (ESI-TOF, m/z) calcd for C₂₆H₄₆NaO₃Si₂ (M + Na)⁺: 485.2878, found 485.2882.

Preparation of 12f

12f: Using the same procedure as that used for **12a** afforded **12f** as a colorless oil (66 mg, 58%). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 5.67 (d, J = 8.0 Hz, 1H), 4.83 (d, J = 4.0 Hz, 1H), 4.78 (dd, $J_I = 8.8$ Hz, $J_2 = 4.0$ Hz, 1H), 3.79 (s, 3H), 2.93 (s, 2H), 2.00 (s, 2H),0.96 (t, J = 8.0 Hz, 9H), 0.88 (t, J = 8.0 Hz, 9H), 0.57 (q, J = 8.0 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 140.5, 138.4, 131.8, 128.0, 113.6, 106.6, 82.7, 75.6, 71.7, 55.3, 20.5, 7.4, 7.3, 4.3, 2.7; IR (neat) cm⁻¹ 3391, 2952, 2874, 1612, 1513, 1459, 1248, 1013, 828, 726; HRMS (ESI-TOF, m/z) calcd for C₂₆H₄₄NaO₃Si₂ (M + Na)⁺: 483.2721, found 483.2709.

Preparation of 12g

12g: Using the same procedure as that used for **12a** afforded **12g** as a colorless oil (44 mg, 44%). ¹H NMR (400 MHz, CDCl₃) δ , 7.28 (d, *J* = 8.4 Hz, 2H), 7.20 – 7.11 (m, 3H), 6.93 (d, *J* = 6.8 Hz, 2H), 6.88(d, *J* = 8.4 Hz, 2H), 5.93 (d, *J* = 8.8 Hz, 1H), 4.75 (d, *J* = 4.4 Hz, 1H), 4.64 (dd, *J*₁ = 8.8 Hz, *J*₂ = 4.4 Hz, 1H), 3.81 (s, 3H), 3.38 (s, 2H), 2.49 (s, 1H), 2.00 (s, 1H), 0.78 (t, *J* = 8.0 Hz, 9H), 0.40 (q, *J* = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 142.1, 139.7, 131.9, 128.5, 128.2, 128.0, 113.7, 76.2, 71.8, 55.3, 35.8, 7.2, 2.9; IR (neat) cm⁻¹ 3385, 2951, 2908, 2873, 1612, 1512, 1453, 1302, 1247, 1173, 1032, 735; HRMS (ESI-TOF, m/z) calcd for C₂₄H₃₄NaO₃Si (M + Na)⁺: 421.2169, found 421.2180.

Preparation of 12h

12h: Using the same procedure as that used for 1**2a** afforded **12h** as a colorless oil (32 mg, 40%). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 8.4 Hz, 2H), 6.86 (d, *J* = 8.4 Hz, 2H), 5.59 (d, *J* = 7.6 Hz, 1H), 4.71 – 4.67 (m, 2H), 3.80 (s, 3H), 2.05 (s, 2H), 1.55 (s, 3H), 0.88 (t, *J* = 8.0 Hz, 9H), 0.55 (q, *J* = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 139.6, 137.4, 131.9, 128.0, 113.5, 76.2, 71.7, 55.3, 15.7, 7.4, 2.4; IR (neat) cm⁻¹ 3386, 2951, 2908, 2874, 1612, 1512, 1441, 1247, 1173, 1036, 1011, 730; HRMS (ESI-TOF, m/z) calcd for C₁₈H₃₀NaO₃Si (M + Na)⁺: 345.1856, found 345.1862.

Preparation of 12i

12i: Using the same procedure as that used for **12a** afforded **12i** as a colorless oil (42 mg, 50%, [*dr* =85:15]). ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 7.8 Hz, 2H), 7.13 (d, *J* = 7.8 Hz, 2H), 5.73 (d, *J* = 8.6 Hz, 1H), 5.60 (ddt, *J*₁ = 15.2 Hz, *J*₂ = 8.4 Hz, *J*₃ = 5.6 Hz, 1H), 4.97 (d, *J* = 15.2 Hz, 1H) , 4.92 (d, *J* = 8.4 Hz, 1H), 4.73 (d, *J* = 4.2 Hz, 1H), 4.64 (dd, *J*₁ = 8.6 Hz, *J*₂ = 4.2 Hz, 1H), 2.79 (d, *J* = 5.6 Hz, 2H), 2.33 (s, 3H), 0.92 (s, 1H), 0.86 (t, *J* = 8.0 Hz, 9H), 0.55 (q, *J* = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 139.3, 137.5, 137.1, 136.8, 128.9, 126.8, 115.2, 76.3, 71.6, 34.3, 21.2, 7.4, 2.9; IR (neat) cm⁻¹ 3375, 2951, 2873, 1635, 1514, 1456, 1414, 1236, 1009, 907, 728; HRMS (ESI-TOF, m/z) calcd for C₂₀H₃₂NaO₂Si (M + Na)⁺: 355.2064, found 355.2073..

Preparation of 12j

12j: Using the same procedure as that used for **12a** afforded **12j** as a colorless oil (37 mg, 40%, [*dr* = 90:10]). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.8 Hz, 4H), 7.46 (d, *J* = 7.2 Hz, 3H), 5.79 (d, *J* = 8.4 Hz, 1H), 5.58 (ddt, *J*₁ = 15.2 Hz, *J*₂ = 10.5 Hz, *J*₃ = 6.0 Hz, 1H), 4.99 – 4.84 (m, 3H), 4.77 (dd, *J*₁ = 8.4 Hz, *J*₂ = 4.2 Hz, 1H), 2.77 (d, *J* = 6.0 Hz, 2H), 0.81 (t, *J* = 7.8 Hz, 9H), 0.52 (q, *J* = 7.8 Hz), 0.81 (t, *J* = 7.8 Hz), 9H), 0.52 (q, *J* = 7.8 Hz), 0.81 (t, *J* = 7.8 Hz), 9H), 0.52 (q, *J* = 7.8 Hz), 0.81 (t, *J* = 7.8 Hz), 9H), 0.52 (q, *J* = 7.8 Hz), 0.81 (t, *J* = 7.8 Hz), 9H), 0.52 (t, *J* = 7.8 Hz), 0.81 (t, *J* = 7.8 Hz), 0.52 (t, *J* = 7.8 Hz), 0.81 (t, *J* = 7.8 Hz), 0.81 (t, *J* = 7.8 Hz), 0.52 (t, *J* = 7.8 Hz), 0.81 (t, J = 7.8 Hz), 0.81 (t,

Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 139.0, 137.2, 137.0, 133.1, 133.0, 127.9, 127.8, 127.6, 126.1, 125.8, 125.7, 124.7, 115.2, 76.5, 71.5, 34.3, 7.3, 2.8; IR (neat) cm⁻¹3377, 3057, 2952, 2909, 2874, 1635, 1457, 1414, 1377, 1068, 1010, 817, 733; HRMS (ESI-TOF, m/z) calcd for C₂₃H₃₂NaO₂Si (M + Na)⁺: 391.2064, found 391.2061.

<u>Preparation of 12k</u>

12k: Using the same procedure as that used for **12a** afforded **12k** as a colorless oil (40 mg, 52%, [*dr* = 85:15]). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 2.0 Hz, 1H), 6.32 (dd, *J*₁ = 3.2 Hz, *J*₂ = 2.0 Hz, 1H), 6.32 (d, *J* = 3.2 Hz, 1H), 5.79 – 5.72 (m, 1H), 5.70 (d, *J* = 8.0 Hz, 1H), 5.03 (dd, *J*₁ = 17.6 Hz, *J*₂ = 1.6 Hz, 1H), 4.99 (dd, *J*₁ = 10.0 Hz, *J*₂ = 1.6 Hz, 1H), 4.80 (dd, *J*₁ = 8.4 Hz, *J*₂ = 4.5 Hz, 1H), 4.72 (d, *J* = 4.5 Hz, 1H), 2.93 (d, *J* = 5.8 Hz, 2H), 1.65 (s, 2H), 0.87 (t, *J* = 7.9 Hz, 9H), 0.56 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 142.2, 139.2, 137.1, 115.3, 110.3, 108.0, 70.5, 70.2, 34.3, 29.7, 7.3, 2.8; IR (neat) cm⁻¹ 3396, 2920, 2857, 1560, 1509, 1417, 1377, 1233, 1011, 731; HRMS (ESI-TOF, m/z) calcd for C₁₇H₂₈NaO₃Si (M + Na)⁺: 331.1700, found 331.1698.

Preparation of 12l

121: Using the same procedure as that used for 1**2a** afforded 1**2l** as a colorless oil (33 mg, 47%, [*dr* $\ge 95:5$]). ¹H NMR (400 MHz, CDCl₃) δ 6.02 (d, J = 9.2 Hz, 1H), 5.82 (ddt, $J_I = 15.2$ Hz, $J_2 = 10.0$ Hz, $J_3 = 6.2$ Hz, 1H), 5.06 (d, J = 15.2, 1H), 5.01 (d, J = 10.0, 1H), 4.53 (dd, $J_I = 9.2$ Hz, $J_2 = 4.2$ Hz, 1H), 3.40 (dd, $J_I = 6.8$ Hz, $J_2 = 4.2$ Hz, 1H), 3.05 (dd, $J_I = 15.2$ Hz, $J_2 = 6.2$ Hz, 1H), 2.94 (dd, $J_I = 15.2$ Hz, $J_2 = 6.2$ Hz, 1H), 1.70 (m, 3H), 1.00 (d, J = 7.2 Hz, 3H), 0.94 – 0.86 (m, 12H), 0.62 (q, J = 7.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 139.2, 137.8, 115.2, 78.6, 68.2, 34.4, 29.7, 19.1,

18.3, 7.4, 2.8; IR (neat) cm⁻¹ 3406, 2953, 2874, 1459, 1412, 1008, 910, 733; HRMS (ESI-TOF, m/z) calcd for $C_{16}H_{32}NaO_2Si (M + Na)^+$: 307.2064, found 307.2065.

2.4. Preparation of 5, 7, 9,13

<u>Preparation of 5</u>

5: To a solution of **1a** (100.2 mg, 0.25 mmol) and HMPA (134.4 mg, 0.75 mmol) in anhydrous THF (1 mL) was slowly added *t*-BuLi (0.58 mL of 1.3 M solution in pentane, 0.75 mmol) at -78 °C. After 1.5 h, a solution of 4-methoxy-benzaldehyde (68 mg, 0.5 mmol) in THF (0.5 mL) was added at -78 °C. The reaction was stirred for 20 min before quenching with sat. aq. NH₄Cl (5 mL) and extraction with Et₂O (3 × 5 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (gradient eluent: 0-5% of EtOAc/petroleum ether) to afford **5** as a colorless oil (113 mg, 84%, [$dr \ge 95:5$]). ¹H NMR (400 MHz, DMSO) δ 7.19 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 6.60 (d, J = 9.3 Hz, 1H), 4.64 (d, J = 6.3 Hz, 1H), 4.50 (d, J = 5.6 Hz, 1H), 4.07 (ddd, $J_1 = 9.3$ Hz, $J_2 = 6.0$ Hz, 1H), 3.72 (s, 3H), 0.90 – 0.78 (m, 27H), 0.65 – 0.54 (m, 12H), 0.47 – 0.36 (q, 6H); ¹³C NMR (150 MHz, DMSO) δ 159.9, 158.4, 134.7, 128.1, 113.0, 77.8, 75.8, 54.9, 7.7, 7.4, 6.6, 5.1, 4.4, 3.9 IR (neat) cm⁻¹ 3559, 2952, 2909, 2875, 1612, 1512, 1416, 1247, 1077, 1004, 859; HRMS (ESI-TOF, m/z) calcd for C₂₉H₅₆NaO₃Si₃ (M + Na)⁺: 559.3429, found 559.3433.

<u>Preparation of 7</u>

7: A solution of **6a** (42 mg, 0.1 mmol), 2, 2-dimethoxypropane (103 mg, 1 mmol) and PPTS (2.5 mg, 0.01 mol) in CH₂Cl₂ (1 mL) stirred at room temperature for 3 h before quenching by sat. aq. NaHCO₃ (5 mL) and extraction with CH₂Cl₂ (3 × 2 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (gradient eluent: 0-5% of EtOAc/petroleum ether) to afford **7** as a colorless oil (41 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, *J* = 8.5 Hz, 2H), 6.83 (d, *J* = 8.5 Hz, 2H), 6.10 (d, *J* = 9.5 Hz, 1H), 5.17 (d, *J* = 7.1 Hz, 1H), 5.03 (dd, *J*₁ = 9.5 Hz, *J*₂ = 7.1 Hz, 1H), 3.77 (s, 3H), 1.69 (s, 3H), 1.48 (s, 3H), 0.93 (t, *J* = 7.8 Hz, 9H), 0.67 (t, *J* = 7.8 Hz, 9H), 0.38 (q, *J* = 7.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 154.7, 140.7, 130.0, 128.5, 113.6, 108.7, 80.6, 79.1, 55.3, 27.3, 24.8, 7.8, 7.3, 5.8, 3.9; IR (neat) cm⁻¹ 2951, 2908, 2873, 2835, 1614, 1568, 1513, 1459, 1375, 1245, 1171, 1037, 972, 860, 802; HRMS (ESI-TOF, m/z) calcd for C₂₆H₄₆NaO₃Si₂ (M + Na)⁺: 485.2878, found 485.2881.

<u>Preparation of 9</u>

9: To a solution of **1a** (100.2 mg, 0.25 mmol) and HMPA (134.4 mg, 0.75 mmol) in anhydrous THF (1 mL) was slowly added *t*-BuLi (0.58 mL of 1.3 M solution in pentane, 0.75 mmol) at -78 °C. After stirring for 1.5 h, the reaction was quenched with H₂O and extracted with Et₂O (3 × 5 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (gradient eluent: 0-5% of EtOAc/petroleum ether) to afford **9** as a colorless oil (90 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 5.99 (d, *J* = 11.7 Hz, 1H), 4.90 (t, *J* = 12.0 Hz, 1H), 0.94 (dd, *J*₁ = 14.9 Hz, *J*₂ = 7.5 Hz, 27H), 0.65 (dd, *J*₁ = 15.8 Hz, *J*₂ = 7.9 Hz, 6H), 0.60 – 0.54 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 137.4, 109.3, 9.2, 7.8, 6.5, 4.4, 4.2; IR (neat) cm⁻¹ 2952, 2910, 2875, 1639, 1458, 1414, 1237, 1178, 1123, 1006, 775; HRMS (ESI-TOF, m/z) calcd for C₂₁H₄₈NaOSi₃ (M + Na)⁺: 423.2905, found 423.2912.

Preparation of 13

13: To a solution of **4a** (57 mg, 0.1 mmol) in CH₃CN (2 mL) was added NBS (27 mg, 0.15 mmol). The mixture was stirred at room temperature for 24 h before quenching with sat. aq. NaHCO₃ (5 mL) and extraction with Et₂O (3 \times 5 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced pressure. The crude residue and PPTS (2.5 mg, 0.01 mmol) reacted in MeOH (2 mL) at room temperature for 2 h. The mixture was quenched with sat. aq. NaHCO₃ (5 mL) and extracted with Et₂O (3×5 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced pressure. The crude residue was purified by silica gel flash column chromatography (gradient eluent: 0-10% of EtOAc/petroleum ether) to afford 13 as a colorless oil (32 mg, 75%, *trans:cis* = 84:16) ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 5.93 (dd, J₁ = 4.0 Hz, J₂ = 2.0 Hz, 1H), 4.84 (d, J = 4.4 Hz, 1H), 4.41 $(dt, J_1 = 4.4 Hz, J_2 = 2.2 Hz, 1H), 3.89 - 3.83 (m, 1H), 3.80 (s, 3H), 3.40 (dd, J_1 = 10.4 Hz, J_2 = 6.9 Hz)$ Hz, 1H), 3.35 (dd, $J_1 = 10.4$ Hz, $J_2 = 5.4$ Hz, 1H), 2.17 – 2.10 (m, 1H), 2.02 – 1.96 (m, 1H), 0.89 (t, 1H), J = 7.9 Hz, 9H), 0.56 (q, J = 7.5 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 135.1, 133.5, 132.5, 127.6, 113.5, 76.2, 75.6, 69.9, 55.2, 34.5, 30.1, 7.3, 2.1; IR (neat) cm⁻¹3387, 2952, 2907, 2857, 1612, 1512, 1460, 1248, 1173, 1022, 828, 733; HRMS (ESI-TOF, m/z) calcd for C₂₀H₃₁BrNaO₃Si (M + Na)⁺: 449.1118, found 449.1123.

8.0

PQ-3-68b H1 CDCl3 400MHz

PQ-3-68b C13 CDCI3 100MHz

f1 (ppm) -10

PQ-3-67a H1 CDCl3 400MHz

	-155.881 <142.162 141.805	<pre>128.432 28.362 125.807</pre>	~75.360 ~72.947	32.999 31.940	7.731 7.503 5.562 4.128
SiEt ₃ OH Et ₃ Si OH 6h					
	1				
210 190 170	150	130 110 90 5 f1 (ppm)	80 70 60 50 4	0 30 20	10 0 -10

PQ-3-66a H1 CDCI3 400MHz

7.0

PQ-3-66a C13 CDCl3 100MHz

PQ-3-66c H1 CDCI3 400MHz

50

		 144.369 141.262 139.718 131.933 127.991 	~113.588 ~110.996	77.211 77.000 76.788 75.975 71.602	55.278 37.614	23.393	7.347 2.914 2.833
OH Et ₃ Si OH 12b							
	1						
230 210 190 1	70 2	150 130	110 f1 (ppm)	90 80 70 60	D 50 40	30 20	10 0 -10

Ph

Et₃Si

12c

ŌН

QН

PQ-3-82a H1 CDCl3 400MHz

PQ-3-82a C13 CDCI3 100MHz

· · ·

210

0	190	170	150	130	110 f1 (ppn ^{S39}	90 n)	80 70	60 50	40 3	30 20	10 0	-10
	12d											
Br Et ₃ Si	OH OH	OMe				ŕ		- 21 -	4			
		59.255	41.454 38.913 31 777	31.743 27.900	17.458 13.646		7.000 7.000 6.682 5.931	5.282	.1.585		.288	

PQ-3-82b H1 CDCI3 400MHz

PQ-3-82b C13 CDCI3 100MHz

- 0 8 - 9 N 0 - 9 0 8 N N	$\infty - 00 \infty$	S	e	2	∞	00
\neg	0 4 0 0 n n	<u></u>	∞	б О	Ő	$\neg 0 \neg 0 0 0 0 \neg$
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	NN 999	Ø	ς Ω	4	S S	8774488
200000000000000000000000000000000000000	44444	с. С	τ. Γ	Ň	.	

12g

PQ-3-87b C13 CDCl3 100MHz

	—159.179	 139.617 137.407 131.884 128.028 	 77.318 77.000 76.682 71.723 -55.257	~15.712 ~7.363 ~2.371
Et ₃ Si OH 12h	Me			
			ł	

1 1 . . 1 1 1 . 210 110 9 f1 (ppm) 190 170 150 130 90 80 70 60 50 30 20 0 -10 40 10

PQ-3-102S C13 CDCI3 100MHz	60.851	33.616	5.065	.716 .447 .992 .145
	-16	-13		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
TES TES TES 1a				

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) ^{S49}

PQ-3-84a H1 CDCI3 400MHz

-0.5

TXX-1-59a C13 CDCl3 100MHz

TXX-1-59c C13 CDCl3 100MHz

	-153.261 142.180 141.425 139.207 137.105	~115.306 ~110.277 ~107.984	77.317 77.000 76.682 70.450 70.183	34.337 29.688	-7.259 -2.779	
Et ₃ Si OH OH 12k			IJ			
under som ander som a						مادية بالإيرانيويين.
210 190 170	150 130	110 f1 (ppn _{S55}	90 80 70 60 5 າ)	60 40 30 20	0 10 0 -10	, , , , , , , , , , , , , , , , , , ,

PQ-3-84b H1 CDCl3 400MHz

70 80 11 22 83 33 10 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 99 99 19 15 30 15 15 15 15 15 15 15 15 15 15 15 15 15	228 334 334 334 334 334 335 335 335 335 335
		4 4 % % % 0 0 0 0 0 0 0 0	
ດດບບບບບບບບບດ	ი ი 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	\mathcal{O}	

PQ-3-84b C13 CDCI3 100MHz

50

		~159.976 ~158.448	—134.743 —128.189	—113.024	~77.838 ~75.821	-54.993 39.797 39.659 39.520	-39.260 -39.241 -39,121 -5.160 -5.160 -3.975 3.975
	SiEt ₃ OH Et ₃ Si OSiEt ₃ 5						
50	230 210 190		130	110 f1 (ppm)	90 80 70	60 50 40 3	

PQ-3-76 H1 CDCl3 400MHz

PQ-3-76 NOESY 5.03 CDCI3 400MHz

	—137.404		₹77.318 ₹77.000 76.682	9.224 7.785 6.536 4.178
5				
260 240 220 200 180 1	60 140 f1	120 100 (ppm)	80 60	40 20 0 -10

PQ-3-108A H1 CDCI3 400MHz

		135.104 133.494 132.510 127.571	—113.534	76.217 ₹75.650 `69.945 —55.247	-34.566 -30.050	-7.303 -2.127
HO ^W HO ^H Br TES						
13 (Ar = <i>p</i> -MeOC ₆ H ₄)						
 260 240 220 200 180	160	140 12 f1 (p	0 100 pm)	80 60	40 20	0 -10

∕_2.153 √2.111

