Application of Organocatalysis in Bioorganometallic Chemistry:

Asymmetric Synthesis of Multifunctionalized Spirocyclic Pyrazolone-

Ferrocene Hybrids as Novel RalA Inhibitors

Yuehua Zhang,^a Chunting Wang,^a Wei Huang,^b Phensinee Haruehanroengra,^c Cheng Peng,^b Jia

Sheng,^c Bo Han*,^{b,c} and Gu He*,^a

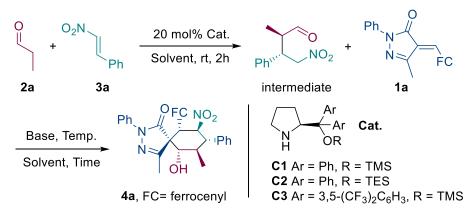
^a State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China. E-mail: hegu@scu.edu.cn

^b School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. E-mail: hanbo@cdutcm.edu.cn

^c Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany 12222, United States. E-mail: bhan@albany.edu

Supporting Information

Table of Contents


1. Experimental details	S2
1.1 General methods for synthesis	S2
1.2 Optimization of the model reaction (Table S1)	S3
1.3 Cell culture and cellular proliferation assay	S4
1.4 The HTRF based assay of RalA-substrate interaction	S4
1.5 Transmission electronic microscopy	S5
1.6 Apoptosis assay by Flow Cytometry (FCM) and fluorescent microscopy	S5
1.7 GST pull down assay	S6
1.8 Western blot analysis	S6
2. Asymmetric synthesis of spirocyclic pyrazolone-ferrocene derivates	S7
3. Crystal data of 4m and 5b	S33
4. NMR spectra and HPLC chromatograms	S35
5. RalA mRNA and protein expression in pancreatic cancer tissues (Figure S1)	
6. Preliminary screening of the anti-proliferative activity (Table S2)	
7. The superposition of binding conforms of 9e and p53 peptide (Figure S2)	
8. The intracellular ROS induced by 5b and 5b' (Figure S3)	

1. Experimental details

1.1 General methods for synthesis

- Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with Bruker Avance III 400 MHz spectrometers. Proton chemical shifts are reported in parts per million (δ scale), and are referenced using residual protium in the NMR solvent (CDCl₃: δ 7.26 (CHCl₃)). Data are reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br s = broad singlet), coupling constant(s) (Hz), integration].
- Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded with Bruker Avance 400 MHz spectrometers. Carbon chemical shifts are reported in parts per million (δ scale), and are referenced using the carbon resonances of the solvent (δ 77.0 (CHCl₃)). Data are reported as follows: chemical shift [multiplicity (if not singlet), assignment (C_q = fully substituted carbon)].
- High resolution mass spectra (HRMS) were recorded on a Waters SYNAPT G2 using an electrospray (ESI) ionization source.
- High Performance Liquid Chromatography (HPLC) was analyzed by chiral column in comparison with authentic racemates, using a Daicel Chiralpak AD-H Column (250 x 4.6 mm), Daicel Chiralpak OD-H Column (250 x 4.6 mm), Daicel Chiralpak IC-H Column (250 x 4.6 mm) or Daicel Chiralpak IE-H Column (250 x 4.6 mm). UV detection was performed at 220 nm or 254 nm.
- Optical rotation values were measured with instruments operating at λ = 589 nm, corresponding to the sodium D line at 25 °C.
- Column chromatography was performed on silica gel (400-500 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates. UV light and I₂ were used to visualize products.
- Melting points were determined on a Mel-Temp apparatus and are uncorrected.

1.2 Optimization of the model reaction (Table S1)^a

Entr	y Catalyst	Solvent	Base	Temp (°C)	Time ^b	Yield ^c (%)	$d\mathbf{r}^d$	ee^{e} (%)
1	C1	Toluene	TEA	rt	12 h	42	90:10	92
2	C2	Toluene	TEA	rt	12 h	30	90:10	92
3	C3	Toluene	TEA	rt	12 h	28	92:8	94
4	C1	CH_2Cl_2	TEA	rt	12 h	37	85:15	90
5	C1	THF	TEA	rt	12 h	23	80:20	91
6	C1	Acetone	TEA	rt	8 h	55	>20:1	94
7	C1	MeCN	TEA	rt	8 h	59	>20:1	93
8	C1	MeCN	K ₂ CO ₃	rt	8 h	52	90:10	92
9	C1	MeCN	DIPEA	rt	12 h	48	>20:1	92
10	C1	MeCN	DBU	rt	4 h	65	>20:1	94
11	C1	MeCN	DBU	35	4 h	60	92:8	94
12	C1	MeCN	DBU	60	2 h	56	88:12	93

^{*a*} Reactions were performed with **2a** (0.80 mmol), **3a** (0.40 mmol), **Cat.** (0.08 mmol) and AcOH (0.08 mmol) in the indicated solvent (4.0 mL) at room temperature for 2 h, after which **1a** (0.3 mmol) and base (0.1 mmol) were added in the indicated solvent. ^{*b*} Reaction time in the second step. ^{*c*} Yield of isolated **4a**. ^{*d*} Calculated based on ¹H NMR analysis of the crude reaction mixture. ^{*e*} Determined by HPLC using a chiral stationary phase.

We initially investigated the three-component domino reaction using propanal 2a, nitrostyrene 3a and pyrazolone substrate 1a as the standard substrates. The first Michael reaction proceeded in the presence of catalyst C1 (20 mol%) in toluene at room temperature for two hours. A toluene solution of pyrazolone 1a and triethylamine was added in a one-pot operation, resulting in successive Michael

and aldol reactions. To our gratification, the tandem reaction proceeded smoothly to afford the desired product **4a** with good diastereoselectivity and excellent enantioselectivity, albeit in moderate yield (entry 1). Subsequently, several chiral secondary amine catalysts were tested. The triethylsilyloxy ether **C2** provided an equally good stereoselectivity, but in relatively low yield (entry 2). High enantiocontrol was also achieved when catalyst **C3** containing electron-withdrawing substituents, but slower reaction rate was observed (entry 3). The same reaction in CH_2Cl_2 , THF and acetone also provided **4a** with lower yields or at slower rates for completion (entries 4-6), except for the reactions in acetonitrile that provided 59% yields of the adduct (entry 7). It was found that the base condition in the second Michael step had some influence on the reaction efficiency (entries 8-10), and DBU proved to be the best choice. Conducting the reaction at higher temperature did not improve the reaction rate (entries 11 and 12). The reaction condition in entry 10 was chosen as the optimal one for further investigation on the substrate scope.

1.3 Cell culture and cellular proliferation assay

The human pancreatic cancer cell lines PANC-1 and HPAF-II were obtained from ATCC (American type culture collection) and cultured in our laboratory, the cells were incubated under sterile conditions at 37° C and were maintained in a humidified atmosphere 5% CO₂ (v/v) with DMEM medium containing 10% fetal bovine serum (GIBCO, Waltham, MA, USA). MTT assay was performed to evaluate the cellular proliferation inhibitory activities of tested compound by a panel of cancer cells. In general, cells were seeded into 96-well plates and treated with a series of concentration of test drugs for 48 hours. The MTT reagent (5 mg/ml) was added per well for 3 h at 37° C. After that, the MTT was removed and 150 µl DMSO was added to dissolve the formazan crystals. Then, optical density (OD) was measured at 570 nm of the solution. The control group consisted of untreated cells. The percentage of cell viability averaged from three individual experiments.

1.4 The HTRF based assay of RalA-substrate interaction

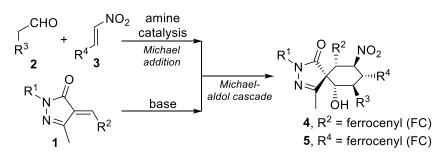
The enzymatic assay of test compounds are using the HTRF based method provided by Cisbio Co. Ltd., in brief, the HTRF assay used a GST-tagged RalA protein, and then the biotinylated substrate peptide of C3 exoenzyme and two HTRF detection reagents are added. The HTRF signal is proportional to the amount of interaction between GST-tagged RalA and biotinylated substrate C3 exoenzyme peptide, the detailed experimental procedures are according to the manufacturer's protocols.

1.5 Transmission electronic microscopy

The ultrastructure of mitochondrial morphology was observed using a Hitachi transmission electron microscope similar to our previous reports. Briefly, collected cells were fixed with 2% glutaraldehyde for 2 hours, washed with PBS and then post- fixed with 1% OsO4 for 1.5 hours at 4°C. The samples were then washed and dehydrated with graded alcohol. After dehydration, the samples were infiltrated and embedded in 618 epoxy resin. Ultrathin sections were cut, stained with uranyl acetate and lead citrate and then examined under the transmission electron microscope (Hitachi 7000, Hitachi, Japan).

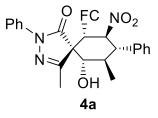
1.6 Apoptosis assay by Flow Cytometry (FCM) and fluorescent microscopy

PANC-1 cells were seeded in six-well plates for 12 hours, and then treated with compound 5b (2 or 5 μ M, respectively) or vehicle (DMSO) for 24 hours. Cells were collected, then fixed with 75% ice-cold ethanol and stored at -20 °C for another one hour. The flow cytometric analysis was used to identify different micelles apoptosis inducing effect. PANC-1 cells treated with compound 5b or blank solvent (control) were gently trypsinized without EDTA and centrifuged at 2000 rpm for 5 minutes. Then, the harvested cells were washed with 1.0 ml ice cold PBS and re-suspended in 500 μ l 1×binding buffer, and incubated with 5 μ l of Annexin V-FITC and 5 μ l of propidium iodide (PI) for 15 min at room temperature. Followed by FCM (BD FACS Calibur, BD, USA) using the FL1 channel for Annexin V-FITC and the FL2 channel of PI. Both early apoptotic (Annexin V+/PI-) and late apoptotic (Annexin V+/PI+) cells are included in the cell assay of apoptosis. In addition, PANC-1 cells were plated in six-well plates, the cells were grew and adhered for 24 hours, then incubated with 2 or 5 μ M of 5b for an additional 12 hours followed by Hoechst 33258 addition. The morphology of nuclei was visualized under an Olympus fluorescence microscope.


1.7 GST pull down assay

To analyze effects of compound 5b on RalA activation, PANC-1 cells were seeded in six-plate dishes and cultured for 5 hours, after which cells were washed and lysed as described above. Lysates were cleared by centrifugation at 16,000 g for 5 min, and supernatants were incubated with 10µl of RalBP1-glutathione transferase (GST) bound to glutathione-Sepharose (GSH) beads for 1 h at 4°C with rocking as previously described. The beads were washed twice with lysis buffer, resuspended in Laemmli electrophoresis sample buffer, resolved, and immunoblotted for RalA as described above.

1.8 Western blot analysis

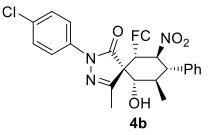

The different concentrations of drug treated cells were harvested and washed with cold 1×PBS. Total cell lysates were prepared in lysis RIPA buffer (Invitrogen, CA, USA) on ice for 30 min, followed by centrifugation at 13000 rpm for 30 min at 4°C. After collecting supernatant, protein concentration was determined by a bicinchoninic acid protein assay kit (Thermo, USA). The protein was resolved on a 10-15% SDS-polyacrylamide gel, electro blotted onto nitrocellulose membranes, and then incubated with proper primary antibodies which were purchased from Cell Signaling Technology or Santa Cruz Biotechnology and secondary antibodies before visualization by chemiluminescence Kit (Millpore, USA).

2. Asymmetric synthesis of spirocyclic pyrazolone-ferrocene derivates

The reaction was carried out with saturated aldehyde 2 (0.8 mmol) and nitroolefin 3 (0.4 mmol) in the presence of catalyst C1 (0.08 mmol) and acetic acid (0.08 mmol) in acetonitrile (4.0 mL) at room temperature for 2 h to afford the Michael adduct intermediate. When the reaction was complete, the pyrazolone substrate (0.3 mmol) and DBU (0.1 mmol in 1.0 mL MeCN) were added in one-pot. The reaction mixture was stirred at room temperature for a specified reaction time until the reaction completed (monitored by TLC). Then the reaction mixture was concentrated and the residue was purified by flash chromatography on silica gel to give the spirocyclic pyrazolone-ferrocene derivate.

(5S,6S,7R,8S,9S,10S)-1,7-dimethyl-3,8-diphenyl-10-ferrocenyl-9-nitro-6-hydroxyl-2,3diazaspiro[4.5]dec-1-ene-4-one

Prepared according to the general procedure using (*E*)-(2-nitrovinyl) benzene **3a** (59.66 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-ferrocenylidene-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1a** (111.07 mg, 0.30 mmol, 0.75 equiv). Purification of the crude product via column chromatography delivered **4a** as an orange solid with 65% yield (116.8 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 94% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), $t_{major} = 13.45$ min, $t_{minor} = 8.08$ min; $[\alpha]_D^{20} = -45.1$ (*c* = 0.21 in CH₂Cl₂); m.p. 118-121°C.


NMR and HRMS data for the product **4a**:

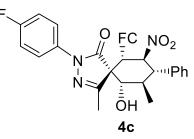
¹**H NMR (400 MHz, CDCl₃):** δ (ppm): 7.63 (br s, 1H), 7.51 - 7.43 (m, 3H), 7.35 - 7.28 (m, 4H), 7.17 - 7.12 (m, 1H), 7.05 (br s, 1H), 5.78 (t, *J* = 10.8 Hz, 1H), 4.15 (dd, *J* = 3.6, 1.2 Hz, 1H), 4.02 - 3.99 (m, 7H), 3.86 (dd, *J* = 3.6, 1.2 Hz, 1H), 3.74 (dd, *J* = 9.6, 6.4 Hz, 1H), 3.57 (d, *J* = 11.2 Hz, 1H), 2.96 - 2.93 (m, 2H), 2.32 (s, 3H), 1.67 (d, *J* = 6.4 Hz, 1H), 0.84 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 172.0, 159.8, 137.7, 137.0, 128.6, 128.2, 125.6, 120.0, 88.5, 81.5, 75.4, 69.8, 67.8, 67.3, 66.1, 66.0, 65.6, 54.2, 42.3, 35.5, 16.0, 13.9.

HRMS (ESI): *m/z* calculated for C₃₂H₃₁FeN₃O₄Na⁺: 600.1556, found 600.1564.

(5S,6S,7R,8S,9S,10S)-1,7-dimethyl-3-(2-chlorophenyl)-8-phenyl-10-ferrocenyl-9-nitro-6hydroxyl-2,3-diazaspiro[4.5]dec-1-ene-4-one

Prepared according to the general procedure using (*E*)-(2-nitrovinyl) benzene **3a** (59.66 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-ferrocenylidene-5-methyl-2-(2-chlorophenyl)-2,4-dihydro-3H-pyrazol-3-one **1b** (121.40 mg, 0.30 mmol, 0.75 equiv). Purification of the crude product via column chromatography delivered **4b** as a yellow solid with 58% yield (110.9 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 93% by chiral HPLC analysis on Chiralpak IC-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 22.97 min, t_{minor} = 38.22 min; $[\alpha]p^{20}$ = -21.7 (*c* = 0.21 in CH₂Cl₂); m.p. >185°C.


NMR and HRMS data for the product **4b**:

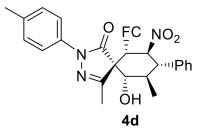
¹**H NMR (400 MHz, CDCl₃):** δ (ppm): 7.58 (br s, 1H), 7.41 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.34 - 7.27 (m, 2H), 7.26 (s, 0H), 7.25 - 7.19 (m, 2H), 7.05 (br s, 1H), 6.83 (dd, *J* = 7.6, 2.0 Hz, 1H), 5.78 (t, *J* = 10.8 Hz, 1H), 4.22 - 4.21 (m, 1H), 4.20 - 4.18 (m, 1H), 4.17 - 4.16 (m, 1H), 4.04 (s, 5H), 3.96 - 3.95(m, 1H), 4.20 - 4.18 (m, 1H), 4.17 - 4.16 (m, 1H), 4.04 (s, 5H), 3.96 - 3.95(m, 1H), 4.20 - 4.18 (m, 1H), 4.17 - 4.16 (m, 1H), 4.04 (s, 5H), 3.96 - 3.95(m, 1H), 4.17 - 4.16 (m, 1H), 4.04 (s, 5H), 3.96 - 3.95(m, 1H), 4.17 - 4.16 (m, 1H), 4.04 (s, 5H), 3.96 - 3.95(m, 1H), 4.17 - 4.16 (m, 1H), 4.04 (s, 5H), 3.96 - 3.95(m, 1H), 4.17 - 4.16 (m, 1H), 4.04 (s, 5H), 3.96 - 3.95(m, 1H), 4.17 - 4.16 (m, 1H), 4.04 (s, 5H), 3.96 - 3.95(m, 1H), 4.17 - 4.16 (m, 1H), 4.04 (s, 5H), 3.96 - 3.95(m, 1H), 4.17 - 4.16 (m, 1H), 4.04 (s, 5H), 3.96 - 3.95(m, 1H), 4.17 - 4.16 (m, 1H), 4.04 (s, 5H), 3.96 - 3.95(m, 1H), 4.17 - 4.16 (m, 1H), 4.04 (s, 5H), 3.96 - 3.95(m, 1H), 4.17 - 4.16 (m, 1H), 4.04 (s, 5H), 3.96 - 3.95(m, 1H), 4.17 - 4.16 (m, 1H), 4.17 - 4.18 (m, 1H), 4.18

1H), 3.76 (dd, *J* = 9.6, 7.6 Hz, 1H), 3.64 (d, *J* = 11.2 Hz, 1H), 2.95 (t, *J* = 11.6 Hz, 1H), 2.92 - 2.85 (m, 1H), 2.34 (s, 3H), 1.68 (d, *J* = 7.6 Hz, 1H), 0.86 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 172.2 , 160.0 , 137.7 , 131.7 , 133.9 , 130.2 , 129.9 , 128.8 , 128.1 , 127.4 , 88.5 , 82.0 , 75.4 , 70.0 , 67.8 , 67.5 , 66.7 , 65.6 , 65.3 , 54.3 , 42.2 , 35.6 , 16.0 , 14.0 .
HRMS (ESI): *m/z* calculated for C₃₂H₃₀ClFeN₃O₄Na⁺: 634.1172, found 634.1179.

(5S,6S,7R,8S,9S,10S)-1,7-dimethyl-3-(4-fluorophenyl)-8-phenyl-10-ferrocenyl-9-nitro-6hydroxyl-2,3-diazaspiro[4.5]dec-1-ene-4-one

Prepared according to the general procedure using (*E*)-(2-nitrovinyl) benzene **3a** (59.66 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-ferrocenylidene-5-methyl-2-(4-fluorophenyl)-2,4-dihydro-3H-pyrazol-3-one **1c** (116.47 mg, 0.30 mmol, 0.75 equiv). Purification of the crude product via column chromatography delivered **4c** as a yellow solid with 67% yield (124.4 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be >99% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 11.98 min, t_{minor} = 8.16 min; $[\alpha]_D^{20} = -60.2$ (*c* = 0.24 in CH₂Cl₂); m.p. 135-137°C.

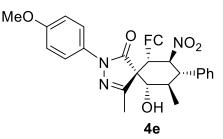

NMR and HRMS data for the product **4c**:

¹**H NMR (400 MHz, CDCl₃):** δ (ppm): 7.60 (br s, 1H), 7.48 - 7.38 (m, 3H), 7.37 - 7.28 (m, 2H), 7.10 - 6.94 (m, 3H), 5.75 (t, *J* = 11.2 Hz, 1H), 4.12 (dd, *J* = 3.6, 2.0 Hz, 1H), 4.01 - 3.99 (m, 7H), 3.85 - 3.84 (m, 1H), 3.72 (dd, *J* = 9.6, 6.0 Hz, 1H), 3.56 (d, *J* = 11.2 Hz, 1H), 2.97 - 2.89 (m, 2H), 2.29 (s, 3H), 1.86 (d, *J* = 6.4 Hz, 1H), 0.83 (d, *J* = 5.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 170.1 , 158.4 (d, *J*_{CF}= 243.6 Hz), 158.1 , 135.8 , 131.3 (d, *J*_{CF}= 2.9 Hz), 126.3 , 120.0 , 120.0 , 113.6 , 113.4 , 86.6 , 79.6 , 73.4 , 68.0 , 65.9 , 65.4 , 64.2 , 64.1 , 63.7 , 52.3 , 40.4 , 33.6 , 14.1 , 12.0 .

HRMS (ESI): m/z calculated for C₃₂H₃₀FFeN₃O₄Na⁺: 618.1462, found 618.1464.

(5S,6S,7R,8S,9S,10S)-1,7-dimethyl-3-(p-tolyl)-8-phenyl-10-ferrocenyl-9-nitro-6-hydroxyl-2,3diazaspiro[4.5]dec-1-ene-4-one

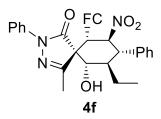

Prepared according to the general procedure using (*E*)-(2-nitrovinyl) benzene **3a** (59.66 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-ferrocenylidene-5-methyl-2-(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one **1d** (115.28 mg, 0.30 mmol, 0.75 equiv). Purification of the crude product via column chromatography delivered **4d** as an orange solid with 57% yield (101.6 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 95% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 13.40 min, t_{minor} =8.77 min; $[\alpha]_D^{20}$ = -38.1 (*c* = 0.23 in CH₂Cl₂); m.p. 126-128°C.

NMR and HRMS data for the product **4d**:

¹**H NMR (400 MHz, CDCl₃):** δ (ppm): 7.62 (br s, 1H), 7.46 (br s, 1H), 7.36 - 7.29 (m, 4H), 7.13 - 7.09 (m, 2H), 7.05 (br s, 1H), 5.78 (t, *J* = 10.8 Hz, 1H), 4.15 - 4.14 (m, 1H), 4.04 - 3.99 (m, 7H), 3.86 - 3.85 (m, 1H), 3.73 (dd, *J* = 10.0, 6.8 Hz, 1H), 3.56 (d, *J* = 11.2 Hz, 1H), 2.98 - 2.90 (m, 2H), 2.31 (s, 3H), 2.30 (s, 3H), 1.67 (d, *J* = 6.8 Hz, 1H), 0.84 (d, *J* = 5.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 171.8 , 159.6 , 137.7 , 135.4 , 134.6 , 129.2 , 128.1 , 120.1 ,
88.6 , 81.6 , 75.4 , 69.8 , 67.8 , 67.3 , 66.1 , 66.0 , 65.6 , 54.2 , 42.3 , 35.5 , 21.0 , 16.0 , 13.9 .
HRMS (ESI): *m/z* calculated for C₃₃H₃₄FeN₃O₄⁺: 592.1893, found 592.1895.

(5S,6S,7R,8S,9S,10S)-1,7-dimethyl-3-(4-methoxyphenyl)-8-phenyl-10-ferrocenyl-9-nitro-6hydroxyl-2,3-diazaspiro[4.5]dec-1-ene-4-one

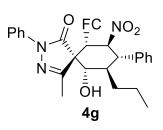


Prepared according to the general procedure using (*E*)-(2-nitrovinyl) benzene **3a** (59.66 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-ferrocenylidene-5-methyl-2-(4-methoxyphenyl)-2,4-dihydro-3H-pyrazol-3-one **1e** (120.08 mg, 0.30 mmol, 0.75 equiv). Purification of the crude product via column chromatography delivered **4e** as a yellow solid with 61% yield (114.4 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be >99% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} =21.02 min, t_{minor} =12.06 min; $[\alpha]_D^{20}$ = -46.5 (*c* = 0.23 in CH₂Cl₂); m.p. 142-144°C.

NMR and HRMS data for the product **4e**:

¹H NMR (400 MHz, CDCl₃): δ (ppm): 7.62 (br s, 1H), 7.45 (br s, 1H), 7.36 - 7.28 (m, 4H), 7.04 (br s, 1H), 6.84 - 6.81 (m, 2H), 5.78 (t, J = 11.2 Hz, 1H), 4.16 - 4.15 (m, 1H), 4.05 - 4.02 (m, 2H), 4.01 (s, 5H), 3.87 - 3.86 (m, 1H), 3.78 (s, 3H), 3.73 (dd, J = 9.6, 6.4 Hz, 1H), 3.56 (d, J = 11.2 Hz, 1H), 2.98 - 2.90 (m, 2H), 2.30 (s, 3H), 1.71 (d, J = 6.4 Hz, 1H), 0.84 (d, J = 5.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm): 171.8 , 159.6 , 157.5 , 137.7 , 130.1 , 128.1 , 122.2 , 113.8 , 88.5 , 81.6 , 75.4 , 69.9 , 67.8 , 67.3 , 66.1 , 65.9 , 65.6 , 55.5 , 54.2 , 42.3 , 35.5 , 16.0 , 13.9 . HRMS (ESI): m/z calculated for C₃₃H₃₃FeN₃O₅Na⁺: 630.1662, found 630.1662.

(55,65,7R,85,95,105)-1-methyl-7-ethyl-3,8-diphenyl-10-ferrocenyl-9-nitro-6-hydroxyl-2,3diazaspiro[4.5]dec-1-ene-4-one

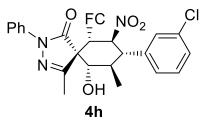

Prepared according to the general procedure using (*E*)-(2-nitrovinyl) benzene **3a** (59.66 mg, 0.40 mmol, 1.0 equiv), butyraldehyde **2b** (57.69 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-ferrocenylidene-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1a** (111.07 mg, 0.30 mmol, 0.75 equiv). Purification of the crude product via column chromatography delivered **4f** as an orange solid with 69% yield (127.7 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 95% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} =9.11 min, t_{minor} = 6.08 min; $[\alpha]_D^{20}$ = -38.6 (*c* = 0.21 in CH₂Cl₂); m.p. 126-128°C.

NMR and HRMS data for the product 4f:

¹**H NMR (400 MHz, CDCl₃):** δ (ppm): 7.64 (br s, 1H), 7.50 - 7.43 (m, 3H), 7.35 - 7.27 (m, 4H), 7.17 - 7.12 (m, 1H), 7.07 (br s, 1H), 5.76 (t, *J* = 11.2 Hz, 1H), 4.14 - 4.13 (m, 1H), 4.02 - 3.99 (m, 7H), 3.99 - 3.94 (m, 1H), 3.86 - 3.85 (m, 1H), 3.54 (d, *J* = 11.2 Hz, 1H), 3.15 (dd, *J* = 12.4, 11.2 Hz, 1H), 3.05 - 2.97 (m, 1H), 2.33 (s, 3H), 1.56 (d, *J* = 6.4 Hz, 1H), 1.53 - 1.45 (m, 1H), 1.24 - 1.17 (m, 1H), 0.77 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 172.1, 159.9, 137.5, 137.0, 128.6, 128.1, 125.6, 120.0, 89.0, 81.5, 71.7, 69.8, 67.8, 67.3, 66.1, 66.0, 65.5, 50.4, 42.2, 39.0, 20.0, 14.0, 7.5.
HRMS (ESI): *m/z* calculated for C₃₃H₃₃FeN₃O₄Na⁺: 614.1713, found 614.1722.

(5S,6S,7R,8S,9S,10S)-1-methyl-7-propyl-3,8-diphenyl-10-ferrocenyl-9-nitro-6-hydroxyl-2,3diazaspiro[4.5]dec-1-ene-4-one


Prepared according to the general procedure using (*E*)-(2-nitrovinyl) benzene **3a** (59.66 mg, 0.40 mmol, 1.0 equiv), butyraldehyde **2c** (68.91 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-ferrocenylidene-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1a** (111.07 mg, 0.30 mmol, 0.75 equiv). Purification of the crude product via column chromatography delivered **4g** as an orange solid with 62% yield (112.0 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 97% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), tmajor = 7.04 min, tminor = 5.81 min; $\lceil \alpha \rceil_D^{20} = -34.9$ (*c* = 0.21 in CH₂Cl₂); m.p. 110-113 °C.

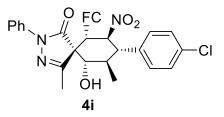
NMR and HRMS data for the product **4g**:

¹**H NMR** (**400 MHz**, **CDCl**₃): δ (ppm): 7.64 (br s, 1H), 7.52 - 7.43 (m, 3H), 7.36 - 7.28 (m, 4H), 7.14 (tt, *J* = 7.2, 1.2 Hz, 1H), 7.05 (br s, 1H), 5.76 (t, *J* = 11.2 Hz, 1H), 4.14 (dd, *J* = 3.6, 2.0 Hz, 1H), 4.00 (s, 7H), 3.93 (d, *J* = 10.4 Hz, 1H), 3.85 (dd, *J* = 3.6, 1.6 Hz, 1H), 3.53 (d, *J* = 11.2 Hz, 1H), 3.13 (t, *J* = 12.0 Hz, 1H), 2.96 (tt, *J* = 11.2, 3.2 Hz, 1H), 2.30 (s, 3H), 1.75 (br s, 1H), 1.43 - 1.25 (m, 2H), 1.17 - 1.07 (m, 2H), 0.69 (t, *J* = 5.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 172.1, 159.9, 137.6, 137.0, 128.6, 128.1, 125.6, 120.0, 88.9, 81.6, 72.7, 69.8, 67.8, 67.3, 66.2, 66.0, 65.5, 51.4, 42.2, 38.9, 30.4, 17.2, 14.4, 14.0.
HRMS (ESI): *m/z* calculated for C₃₄H₃₆FeN₃O₄⁺: 606.2050, found 606.2047.

(5S,6S,7R,8S,9S,10S)-1,7-dimethyl-3-phenyl-8-(3-chlorophenyl)-10-ferrocenyl-9-nitro-6hydroxyl-2,3-diazaspiro[4.5]dec-1-ene-4-one

Prepared according to the general procedure using (*E*)-1-chloro-3-(2-nitrovinyl) benzene **3h** (73.44 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-ferrocenylidene-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1a** (111.07 mg, 0.30 mmol, 0.75 equiv). Purification of the crude product via column chromatography delivered **4h** as an orange solid

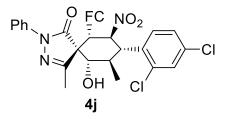

with 63% yield (116.2 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 93% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 12.41 min, t_{minor} = 7.47 min; $[\alpha]_D^{20} = -52.2$ (c = 0.25 in CH₂Cl₂); m.p. 123-125°C.

NMR and HRMS data for the product **4h**:

¹H NMR (400 MHz, CDCl₃): δ (ppm): 7.65 - 7.50 (m, 1H), 7.50 - 7.36 (m, 3H), 7.34 – 7.29 (m, 3H), 7.18 – 7.12 (m, 1H), 7.10 – 6.91 (m, 1H), 5.76 (br s, 1H), 4.15 (s, 1H), 4.04 – 3.99 (m, 7H), 3.86 (dd, J = 3.6, 1.6 Hz, 1H), 3.72 (dd, J = 10.0, 6.4 Hz, 1H), 3.55 (d, J = 11.2 Hz, 1H), 2.93-2.91 (m, 2H), 2.31 (s, 3H), 1.67 (d, J = 6.4 Hz, 1H), 0.87 – 0.83 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm): 171.9 , 159.6 , 139.8 , 137.0 , 128.6 , 125.7 , 120.0 , 88.2 , 81.3 , 75.2 , 69.9 , 67.9 , 67.4 , 66.0 , 65.6 , 53.8 , 42.3 , 30.9 , 16.0 , 13.9 .

HRMS (ESI): m/z calculated for C₃₂H₃₁ClFeN₃O₄⁺: 612.1347, found 612.1332.

(5S,6S,7R,8S,9S,10S)-1,7-dimethyl-3-phenyl-8-(4-chlorophenyl)-10-ferrocenyl-9-nitro-6hydroxyl-2,3-diazaspiro[4.5]dec-1-ene-4-one


Prepared according to the general procedure using (*E*)-1-chloro-4-(2-nitrovinyl) benzene **3i** (73.44 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-ferrocenylidene-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1a** (111.07 mg, 0.30 mmol, 0.75 equiv). Purification of the crude product via column chromatography delivered **4i** as a yellow solid with 62% yield (114.1 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 93% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 10.84 min, t_{minor} = 8.24 min; $[\alpha]_D^{20}$ = -80.97 (*c* = 0.24 in CH₂Cl₂); decomp. >169°C.

NMR and HRMS data for the product 4i:

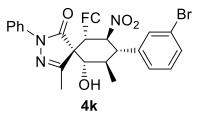
¹**H** NMR (400 MHz, CDCl₃): δ (ppm): 7.56 (br s, 1H), 7.50 - 7.39 (m, 3H), 7.34 - 7.27 (m, 3H), 7.15 (tt, *J* = 7.2, 1.2 Hz, 1H), 6.99 (br s, 1H), 5.75 (t, *J* = 10.8 Hz, 1H), 4.13 (dd, *J* = 3.6, 1.6 Hz, 1H), 4.02 (t, *J* = 2.0 Hz, 2H), 4.00 (s, 5H), 3.86 (dd, *J* = 3.6, 1.6 Hz, 1H), 3.72 (dd, *J* = 9.6, 6.4 Hz, 1H), 3.55 (d, *J* = 11.2 Hz, 1H), 2.97 - 2.86 (m, 2H), 2.31 (s, 3H), 1.68 (d, *J* = 6.4 Hz, 1H), 0.84 (d, *J* = 6.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 171.9 , 159.6 , 137.0 , 136.3 , 134.1 , 128.6 , 125.7 , 120.0 , 88.4 , 81.3 , 75.2 , 69.9 , 67.9 , 67.4 , 66.0 , 66.0 , 65.6 , 53.5 , 42.3 , 35.5 , 16.0 , 13.9 .
HRMS (ESI): *m/z* calculated for C₃₂H₃₁ClFeN₃O₄⁺: 612.1347, found 612.1336.

(5S,6S,7R,8S,9S,10S)-1,7-dimethyl-3-phenyl-8-(2,4-dichlorophenyl)-10-ferrocenyl-9-nitro-6hydroxyl-2,3-diazaspiro[4.5]dec-1-ene-4-one

Prepared according to the general procedure using (*E*)-1,3-dichloro-4-(2-nitrovinyl) benzene **3j** (87.21 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-ferrocenylidene-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1a** (111.07 mg, 0.30 mmol, 0.75 equiv). Purification of the crude product via column chromatography delivered **4j** as a yellow solid with 54% yield (99.9 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 99% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 12.70 min, t_{minor} = 7.90 min; $[\alpha]_D^{20} = -36.9$ (*c* = 0.24 in CH₂Cl₂); m.p. 160-162°C.

NMR and HRMS data for the product **4j**:


¹**H NMR (400 MHz, CDCl₃):** δ (ppm): 7.65 (d, *J* = 8.4 Hz, 1H), 7.48 - 7.44 (m, 2H), 7.42 (d, *J* = 2.0 Hz, 1H), 7.38 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.34 - 7.28 (m, 2H), 7.15 (tt, *J* = 7.6, 1.2 Hz, 1H), 5.79 (t, *J* = 11.2 Hz, 1H), 4.13 (dd, *J* = 3.6, 1.6 Hz, 1H), 4.04 - 4.02 (m, 2H), 4.01 (s, 5H), 3.89 - 3.77 (m, 3H),

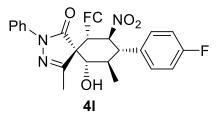
3.61 (d, J = 11.2 Hz, 1H), 2.80 (td, J = 11.2, 6.4 Hz, 1H), 2.32 (s, 3H), 1.76 -1.74 (m, 1H), 0.87 (d, J = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 172.0, 159.7, 136.9, 135.5, 134.5, 129.6, 129.1, 128.7, 128.4, 125.8, 120.1, 87.2, 81.2, 75.0, 69.9, 67.9, 67.4, 66.0, 65.8, 65.7, 47.7, 42.3, 36.9, 15.0, 14.0.

HRMS (ESI): *m/z* calculated for C₃₂H₃₀Cl₂FeN₃O₄⁺: 646.0957, found 646.0958.

(5S,6S,7R,8S,9S,10S)-1,7-dimethyl-3-phenyl-8-(3-bromophenyl)-10-ferrocenyl-9-nitro-6hydroxyl-2,3-diazaspiro[4.5]dec-1-ene-4-one

Prepared according to the general procedure using (*E*)-1-bromo-3-(2-nitrovinyl) benzene **3k** (87.21 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-ferrocenylidene-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1a** (111.07 mg, 0.30 mmol, 0.75 equiv). Purification of the crude product via column chromatography delivered **4k** as an orange solid with 60% yield (121.7 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 92% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 12.28 min, t_{minor} = 7.89 min; $[\alpha]_D^{20}$ = -65.14 (*c* = 0.22 in CH₂Cl₂); m.p. 138-140°C.


NMR and HRMS data for the product **4k**:

¹**H NMR (400 MHz, CDCl₃):** δ (ppm): 7.79 - 7.43 (m, 4H), 7.33 - 7.28 (m, 2H), 7.24 - 7.12 (m, 2H), 6.99 (br s, 1H), 5.76 (br s, 1H), 4.19 - 3.97 (m, 8H), 3.86 (dd, *J* = 3.6, 1.2 Hz, 1H), 3.72 (dd, *J* = 9.6, 6.4 Hz, 1H), 3.55 (d, *J* = 11.2 Hz, 1H), 2.91 (br s, 2H), 2.31 (s, 3H), 1.69 (d, *J* = 6.4 Hz, 1H), 0.85 (d, *J* = 6.0 Hz, 3H).

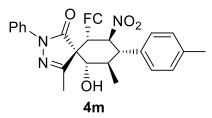
¹³C NMR (100 MHz, CDCl₃): δ (ppm): 171.9, 159.6, 140.1, 137.0, 128.6, 125.7, 120.0, 100.0, 88.2, 81.3, 75.2, 69.9, 67.9, 67.4, 66.0, 65.6, 53.8, 42.3, 30.9, 16.0, 13.9.

HRMS (ESI): *m*/*z* calculated for C₃₂H₃₀BrFeN₃O₄Na⁺: 678.0661, found 678.0670.

(5S,6S,7R,8S,9S,10S)-1,7-dimethyl-3-phenyl-8-(4-fluorophenyl)-10-ferrocenyl-9-nitro-6hydroxyl-2,3-diazaspiro[4.5]dec-1-ene-4-one

Prepared according to the general procedure using (*E*)-1-fluoro-4-(2-nitrovinyl) benzene **31** (66.86 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-ferrocenylidene-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1a** (111.07 mg, 0.30 mmol, 0.75 equiv). Purification of the crude product via column chromatography delivered **4l** as a yellow solid with 64% yield (119.4 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 98% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major}=7.93 min, t_{minor} = 10.61 min; $[\alpha]_D^{20} = -46.5$ (*c* = 0.23 in CH₂Cl₂); m.p. 137-138°C.

NMR and HRMS data for the product 41:

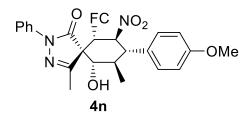

¹**H NMR** (**400 MHz**, **CDCl**₃): δ (ppm): 7.60 (br s, 1H), 7.50 - 7.44 (m, 2H), 7.34 - 7.28 (m, 2H), 7.15 (tt, *J* = 7.6, 1.2 Hz, 2H), 7.00 (br s, 2H), 5.74 (t, *J* = 10.8 Hz, 1H), 4.13 (dd, *J* = 3.6, 1.6 Hz, 1H), 4.02 (t, *J* = 1.6 Hz, 2H), 4.01 (s, 5H), 3.86 (dd, *J* = 3.6, 1.6 Hz, 1H), 3.73 (dd, *J* = 10.0, 6.0 Hz, 1H), 3.55 (d, *J* = 11.2 Hz, 1H), 2.98 - 2.87 (m, 2H), 2.31 (s, 3H), 1.68 (d, *J* = 6.4 Hz, 1H), 0.84 (d, *J* = 5.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 172.0 , 162.5 (d, *J*_{CF}= 245.5 Hz), 159.8 , 137.0 , 133.5 (d, *J*_{CF}= 3.0 Hz), 128.6 , 125.7 , 120.0 , 88.6 , 81.4 , 75.2 , 69.9 , 67.8 , 67.4 , 66.0 , 66.0 , 65.6 , 53.4 , 42.3 , 35.6 , 15.9 , 13.9 .

HRMS (ESI): m/z calculated for C₃₂H₃₀FFeN₃O₄Na⁺: 618.1462, found 618.1474.

(5S,6S,7R,8S,9S,10S)-1,7-dimethyl-3-phenyl-8-(p-tolyl)-10-ferrocenyl-9-nitro-6-hydroxyl-2,3-

diazaspiro[4.5]dec-1-ene-4-one

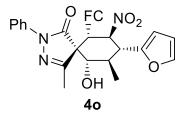

Prepared according to the general procedure using (*E*)-1-methyl-4-(2-nitrovinyl) benzene **3m** (65.27 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-ferrocenylidene-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1a** (111.07 mg, 0.30 mmol, 0.75 equiv). Purification of the crude product via column chromatography delivered **4m** as an orange solid with 70% yield (124.7 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 98% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 9.61 min, t_{minor} = 7.90 min; $[\alpha]_D^{20} = -52.9$ (*c* = 0.20 in CH₂Cl₂); decomp. >171°C.

NMR and HRMS data for the product **4m**:

¹**H NMR (400 MHz, CDCl₃):** δ (ppm): 7.54 - 7.45 (m, 3H), 7.32 - 7.27 (m, 3H), 7.17 - 7.06 (m, 2H), 6.93 (br s, 1H), 5.75 (t, *J* = 10.8 Hz, 1H), 4.14 (dd, *J* = 3.6, 2.0 Hz, 1H), 4.00 (s, 7H), 3.85 (dd, *J* = 3.6, 1.6 Hz, 1H), 3.72 (d, *J* = 8.4 Hz, 1H), 3.55 (d, *J* = 11.2 Hz, 1H), 2.94 - 2.85 (m, 2H), 2.35 (s, 3H), 2.31 (s, 3H), 1.76 (s, 1H), 0.84 (d, *J* = 5.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 172.0 , 159.8, 137.8 , 137.0 , 134.6 , 128.6 , 125.6 , 120.0 ,
88.6 , 81.6 , 75.4 , 69.8 , 67.8 , 67.3 , 66.1 , 66.0 , 65.6 , 53.8 , 42.3 , 35.5 , 21.2 , 16.0 , 13.9 .
HRMS (ESI): *m/z* calculated for C₃₃H₃₄FeN₃O₄⁺: 592.1893, found 592.1895.

(5S,6S,7R,8S,9S,10S)-1,7-dimethyl-3-phenyl-8-(4-methoxyphenyl)-10-ferrocenyl-9-nitro-6hydroxyl-2,3-diazaspiro[4.5]dec-1-ene-4-one



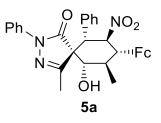
Prepared according to the general procedure using (*E*)-1-methyl-4-(2-nitrovinyl) benzene **3m** (71.67 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-ferrocenylidene-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1a** (111.07 mg, 0.30 mmol, 0.75 equiv). Purification of the crude product via column chromatography delivered **4n** as an orange solid with 69% yield (125.9 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 94% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), tmajor =15.56 min, tminor=10.59 min; $[\alpha]_D^{20} = -67.3$ (*c* = 0.23 in CH₂Cl₂); decomp. >176°C.

NMR and HRMS data for the product **4n**:

¹**H NMR** (**400 MHz**, **CDCl**₃): δ (ppm): 7.56 - 7.44 (m, 3H), 7.33 - 7.27 (m, 2H), 7.14 (tt, J = 7.2, 1.2 Hz, 1H), 6.99 (br s, 2H), 6.80 (br s, 1H), 5.73 (t, J = 11.2 Hz, 1H), 4.14 (dd, J = 3.6, 1.6 Hz, 1H), 4.01 (s, 7H), 3.85 (dd, J = 3.6, 1.6 Hz, 1H), 3.81 (s, 3H), 3.73 - 3.69 (m, 1H), 3.54 (d, J = 11.2 Hz, 1H), 2.91 - 2.84 (m, 2H), 2.30 (s, 3H), 1.80 (d, J = 6.4 Hz, 1H), 0.83 (d, J = 5.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm): 172.0, 159.8, 159.3, 137.0, 129.6, 128.6, 125.6, 120.0, 88.7, 81.6, 75.4, 69.8, 67.8, 67.3, 66.1, 66.0, 65.5, 55.2, 53.4, 42.2, 35.6, 16.0, 13.9. **HRMS (ESI):** m/z calculated for C₃₃H₃₄FeN₃O₅⁺: 608.1842, found 608.1839.

(5S,6S,7R,8S,9S,10S)-1,7-dimethyl-3-phenyl-8-furyl-10-ferrocenyl-9-nitro-6-hydroxyl-2,3diazaspiro[4.5]dec-1-ene-4-one

Prepared according to the general procedure using (E)-2-(2-nitrovinyl) furan **30** (55.64 mg, 0.40 mmol,


1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-ferrocenylidene-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1a** (111.07 mg, 0.30 mmol, 0.75 equiv). Purification of the crude product via column chromatography delivered **4o** as a yellow solid with 55% yield (97.4 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 92% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 14.65 min, t_{minor} =8.28 min; $[\alpha]_D^{20}$ = -61.0 (*c* = 0.24 in CH₂Cl₂); decomp. >150°C.

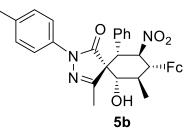
NMR and HRMS data for the product **40**:

¹**H NMR (400 MHz, CDCl₃):** δ (ppm): 7.50 - 7.44 (m, 3H), 7.30 - 7.26 (m, 2H), 7.13 (tt, *J* = 7.2, 1.2 Hz, 1H), 6.33 (dd, *J* = 3.2, 2.0 Hz, 1H), 6.24 (d, *J* = 3.2 Hz, 1H), 5.81 (t, *J* = 11.2 Hz, 1H), 4.14 (dd, *J* = 3.6, 1.6 Hz, 1H), 4.04 - 3.98 (m, 7H), 3.83 (dd, *J* = 3.6, 1.6 Hz, 1H), 3.65 (dd, *J* = 10.8, 6.4 Hz, 1H), 3.50 (d, *J* = 11.2 Hz, 1H), 3.12 (t, *J* = 11.2 Hz, 1H), 3.09 - 2.99 (m, 1H), 2.27 (s, 3H), 1.90 (d, *J* = 6.8 Hz, 1H), 0.90 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 171.7, 159.6, 150.2, 143.0, 137.0, 128.6, 125.5, 119.8, 110.2, 109.1, 86.5, 81.4, 75.2, 69.9, 67.8, 67.3, 66.1, 66.0, 65.5, 47.8, 42.0, 33.8, 15.8, 13.8.
HRMS (ESI): *m/z* calculated for C₃₀H₂₉FeN₃O₅Na⁺: 590.1349, found 590.1367.

(5S,6S,7R,8R,9R,10S)-1,7-dimethyl-3,10-diphenyl-8-ferrocenyl-9-nitro-6-hydroxyl-2,3diazaspiro[4.5]dec-1-ene-4-one

Prepared according to the general procedure using (E)-2-(2-nitrovinyl)ferrocene **3p** (102.83 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-benzylidene-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1f** (78.69 mg, 0.30 mmol). Purification of the crude product via column chromatography delivered **5a** as a yellow solid with 54% yield (93.7 mg). The diastereomeric ratio was determined to be 86:14 by crude ¹H-NMR analysis, and the enantiomeric

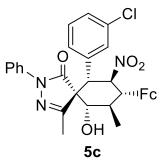

excess of the major product was determined to be 94% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} =15.44 min, t_{minor} = 20.62 min; $[\alpha]_D^{20} = 301.0$ (c = 0.23 in CH₂Cl₂); m.p. 175-178°C.

NMR and HRMS data for the product 5a:

¹**H NMR (400 MHz, CDCl₃):** δ (ppm): 7.69 - 7.64 (m, 2H), 7.38 - 7.33 (m, 2H), 7.21 - 7.10 (m, 5H), 5.81 (dd, *J* = 12.0, 10.8 Hz, 1H), 4.24 - 4.20 (m, 2H), 4.12 (s, 5H), 4.12 - 4.08 (m, 2H), 3.77 (dd, *J* = 10.4, 6.4 Hz, 1H), 3.48 (d, *J* = 11.6 Hz, 1H), 2.97 (t, *J* = 11.2 Hz, 1H), 2.70 - 2.60 (m, 1H), 2.12 (s, 3H), 1.79 (d, *J* = 6.4 Hz, 1H), 1.29 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 172.2 , 159.6 , 138.8 , 137.3 , 129.8 , 128.8 , 125.6 , 119.5 ,
89.0 , 87.1 , 75.8 , 69.6 , 68.9 , 67.8 , 67.6 , 67.0 , 65.9 , 63.8 , 50.2 , 45.0 , 37.2 , 21.1 , 17.1 , 13.4 .
HRMS (ESI): *m/z* calculated for C₃₂H₃₂FeN₃O₄⁺: 578.1737, found 578.1724.

(5S,6S,7R,8R,9R,10S)-1,7-dimethyl-3-phenyl-10-(p-tolyl)-8-ferrocenyl-9-nitro-6-hydroxyl-2,3diazaspiro[4.5]dec-1-ene-4-one


Prepared according to the general procedure using (*E*)-2-(2-nitrovinyl)ferrocene **3p** (102.83 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-benzylidene-5-methyl-2-(p-tolyl)-2,4-dihydro-3H-pyrazol-3-one **1g** (82.84 mg, 0.30 mmol). Purification of the crude product via column chromatography delivered **5b** as a yellow solid with 64% yield (118.7 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be >99% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 28.58 min, t_{minor} = 14.52 min; $[\alpha]_D^{20} = 343.0$ (*c* = 0.21 in CH₂Cl₂); m.p. 138-140°C.

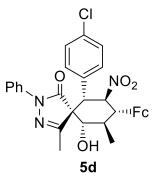
NMR and HRMS data for the product **5b**:

¹**H NMR (400 MHz, CDCl₃):** δ (ppm): 7.54 - 7.49 (m, 2H), 7.22 - 7.14 (m, 7H), 5.79 (dd, *J* = 11.2, 10.8 Hz, 1H), 4.22 (t, *J* = 1.6 Hz, 2H), 4.14 - 4.08 (m, 7H), 3.73 (dd, *J* = 10.4, 6.4 Hz, 1H), 3.45 (d, *J* = 11.6 Hz, 1H), 2.94 (t, *J* = 11.2 Hz, 1H), 2.69 - 2.59 (m, 1H), 2.33 (s, 3H), 2.08 (s, 3H), 1.88 (d, *J* = 6.8 Hz, 1H), 1.27 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 171.9 , 159.4 , 135.4 , 134.8 , 132.9 , 129.3 , 129.0 , 128.9 , 119.7 , 88.9 , 87.2 , 75.8 , 69.7 , 67.8 , 67.6 , 67.1 , 66.1 , 63.6 , 50.5 , 45.0 , 37.1 , 21.0 , 17.1 , 13.4 .
HRMS (ESI): *m/z* calculated for C₃₃H₃₃FeN₃O₄Na⁺:614.1713, found 614.1719.

(5S,6S,7R,8R,9R,10S)-1,7-dimethyl-3-phenyl-10-(3-chlorophenyl)-8-ferrocenyl-9-nitro-6hydroxyl-2,3-diazaspiro[4.5]dec-1-ene-4-one

Prepared according to the general procedure using (*E*)-2-(2-nitrovinyl)ferrocene **3p** (102.83 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-(3-chlorobenzylidene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1h** (89.03 mg, 0.30 mmol). Purification of the crude product via column chromatography delivered **5c** as a yellow solid with 60% yield (113.7 mg). The diastereomeric ratio was determined to be 96:4 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 99% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 24.52 min, t_{minor} = 17.11 min; $[\alpha]_D^{20} = 323.9$ (*c* = 0.21 in CH₂Cl₂); m.p. 130-132°C.

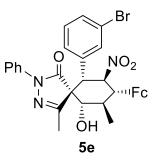

NMR and HRMS data for the product **5c**:

¹H NMR (400 MHz, CDCl₃): δ (ppm): 7.68 - 7.63 (m, 2H), 7.39 - 7.34 (m, 2H), 7.24 - 6.96 (m, 5H), 5.77 (dd, *J* = 12.0, 10.8 Hz, 1H), 4.24 - 4.21 (m, 2H), 4.13 - 4.11 (m, 6H), 4.08 - 4.07 (m, 1H), 3.75

(d, *J* = 10.4 Hz, 1H), 3.45 (d, *J* = 11.6 Hz, 1H), 2.95 (t, *J* = 11.6 Hz, 1H), 2.68 - 2.60 (m, 1H), 2.12 (s, 3H), 1.80 (br s, 1H), 1.28 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 171.8 , 159.2 , 137.0 , 134.9 , 130.2 , 129.4 , 128.8 , 125.9 , 119.7 , 88.6 , 86.8 , 75.7 , 69.6 , 69.0 , 67.7 , 67.1 , 65.9 , 63.5 , 49.9 , 45.0 , 37.1 , 17.0 , 13.4 .
HRMS (ESI): *m/z* calculated for C₃₂H₃₀ClFeN₃O₄Na⁺: 634.1166, found 634.1171.

(5S,6S,7R,8R,9R,10S)-1,7-dimethyl-3-phenyl-10-(4-chlorophenyl)-8-ferrocenyl-9-nitro-6hydroxyl-2,3-diazaspiro[4.5]dec-1-ene-4-one


Prepared according to the general procedure using (*E*)-2-(2-nitrovinyl)ferrocene **3p** (102.83 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-(4-chlorobenzylidene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1i** (89.03 mg, 0.30 mmol). Purification of the crude product via column chromatography delivered **5d** as a yellow solid with 63% yield (120.3 mg). The diastereomeric ratio was determined to be 86:14 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 98% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 15.75 min, t_{minor} = 10.96 min; $[\alpha]_D^{20} = 318.0$ (*c* = 0.23 in CH₂Cl₂); m.p. 124-127°C.

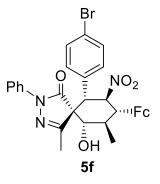
NMR and HRMS data for the product **5d**:

¹**H NMR (400 MHz, CDCl₃):** δ (ppm): 7.71 - 7.66 (m, 2H), 7.39 - 7.34 (m, 2H), 7.22 - 7.04 (m, 5H), 5.77 (dd, *J* = 11.8, 10.4 Hz, 1H), 4.24 - 4.21 (m, 2H), 4.13 - 4.10 (s, 6H), 4.08 - 4.06 (m, 1H), 3.76 (dd, *J* = 10.4, 6.8 Hz, 1H), 3.47 (d, *J* = 12.0 Hz, 1H), 2.96 (t, *J* = 10.8 Hz, 1H), 2.68 - 2.60 (m, 1H), 2.12 (s, 3H), 1.73 (d, *J* = 6.4 Hz, 1H), 1.29 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 171.9 , 159.2 , 137.2 , 135.1 , 131.5 , 129.2 , 128.9 , 125.8 , 119.4 , 88.8 , 86.8 , 75.7 , 69.6 , 69.0 , 67.7 , 67.6 , 67.1 , 65.9 , 63.6 , 49.8 , 45.0 , 37.1 , 17.0 , 13.4 .
HRMS (ESI): *m/z* calculated for C₃₂H₃₀ClFeN₃O₄Na⁺: 634.1166, found 634.1177.

(5S,6S,7R,8R,9R,10S)-1,7-dimethyl-3-phenyl-10-(3-bromophenyl)-8-ferrocenyl-9-nitro-6hydroxyl-2,3-diazaspiro[4.5]dec-1-ene-4-one

Prepared according to the general procedure using (*E*)-2-(2-nitrovinyl)ferrocene **3p** (102.83 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-(3-bromobenzylidene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1j** (102.06 mg, 0.30 mmol). Purification of the crude product via column chromatography delivered **5e** as a yellow solid with 58% yield (117.0 mg). The diastereomeric ratio was determined to be 85:15 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 99% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 26.45 min, t_{minor} = 18.16 min; $[\alpha]_D^{20} = 284.1$ (*c* = 0.20 in CH₂Cl₂); m.p. 123-126°C.

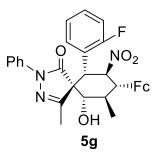

NMR and HRMS data for the product 5e:

¹**H NMR (400 MHz, CDCl₃):** δ (ppm): 7.68 - 7.64 (m, 2H), 7.43 - 7.28 (m, 4H), 7.22 - 7.17 (m, 1H), 7.08 - 6.95 (m, 2H), 5.77 (t, *J* = 11.2 Hz, 1H), 4.24 - 4.21 (m, 2H), 4.13 - 4.11 (m, 6H), 4.09 - 4.07 (m, 1H), 3.76 (dd, *J* = 10.4, 6.4 Hz, 1H), 3.45 (d, *J* = 11.6 Hz, 1H), 2.95 (t, *J* = 10.8 Hz, 1H), 2.68 - 2.61 (m, 1H), 2.13 (s, 3H), 1.74 (d, *J* = 6.4 Hz, 1H), 1.29 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 171.8 , 159.2 , 137.0 , 135.2 , 132.3 , 128.8 , 128.7 , 125.9 ,
119.9 , 88.6 , 86.8 , 75.6 , 69.6 , 69.0 , 67.7 , 67.1 , 65.9 , 63.5 , 49.9 , 45.0 , 37.1 , 17.0 , 13.4 .
HRMS (ESI): *m/z* calculated for C₃₂H₃₀BrFeN₃O₄Na⁺: 678.0661, found 678.0674.

(5S,6S,7R,8R,9R,10S)-1,7-dimethyl-3-phenyl-10-(4-bromophenyl)-8-ferrocenyl-9-nitro-6-

hydroxyl-2,3-diazaspiro[4.5]dec-1-ene-4-one



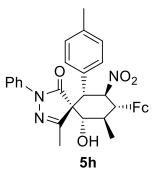
Prepared according to the general procedure using (*E*)-2-(2-nitrovinyl)ferrocene **3p** (102.83 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-(4-bromobenzylidene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1k** (102.06 mg, 0.30 mmol). Purification of the crude product via column chromatography delivered **5f** as a yellow solid with 59% yield (119.3 mg). The diastereomeric ratio was determined to be 92:8 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 98% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 16.52 min, t_{minor} = 11.56 min; $[\alpha]_D^{20} = 312.7$ (c = 0.24 in CH₂Cl₂); m.p. 123-125°C.

NMR and HRMS data for the product 5f:

¹H NMR (400 MHz, CDCl₃): δ (ppm): 7.70 - 7.66 (m, 2H), 7.40 - 7.35 (m, 2H), 7.34 - 7.29 (m, 2H), 7.22 - 7.17 (m, 1H), 7.16 - 6.91 (m, 2H), 5.76 (dd, J = 11.6, 10.8 Hz, 1H), 4.24 - 4.21 (m, 2H), 4.13 - 4.10 (m, 6H), 4.08 - 4.06 (m, 1H), 3.74 (dd, J = 10.4, 6.4 Hz, 1H), 3.45 (d, J = 12.0, H), 2.94 (t, J = 11.2 Hz, 1H), 2.66 - 2.58 (m, 1H), 2.10 (s, 3H), 1.81 (d, J = 6.4 Hz, 1H), 1.28 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm): 171.9 , 159.2 , 137.2 , 132.2 , 132.0 , 128.9 , 125.8 , 123.3 , 119.4 , 88.7 , 86.8 , 75.7 , 69.6 , 67.7 , 67.6 , 67.1 , 65.9 , 63.5 , 49.8 , 45.0 , 37.1 , 17.0 , 13.4 . HRMS (ESI): m/z calculated for C₃₂H₃₀BrN₃O₄Na⁺: 678.0661, found 678.0665.

(5S,6S,7R,8R,9R,10S)-1,7-dimethyl-3-phenyl-10-(2-fluorophenyl)-8-ferrocenyl-9-nitro-6hydroxyl-2,3-diazaspiro[4.5]dec-1-ene-4-one

Prepared according to the general procedure using (*E*)-2-(2-nitrovinyl)ferrocene **3p** (102.83 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-(2-fluorobenzylidene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1l** (84.03 mg, 0.30 mmol). Purification of the crude product via column chromatography delivered **5g** as a yellow solid with 55% yield (102.4 mg). The diastereomeric ratio was determined to be 93:7 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 99% by chiral HPLC analysis on Chiralpak IC-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), tmajor=8.89 min, tminor = 20.22 min; $[\alpha]_D^{20} = 313.0$ (*c* = 0.21 in CH₂Cl₂); m.p. 125-129°C.

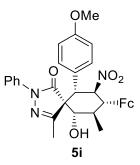

NMR and HRMS data for the product **5g**:

¹**H NMR (400 MHz, CDCl₃):** δ (ppm): 7.68 - 7.62 (m, 2H), 7.40 - 7.32 (m, 3H), 7.21 - 7.14 (m, 2H), 7.02 - 6.91 (m, 2H), 5.79 (t, *J* = 11.2 Hz, 1H), 4.24 - 4.20 (m, 2H), 4.17 (d, *J* = 11.6 Hz, 1H), 4.14 - 4.10 (m, 6H), 4.09 - 4.08 (m, 1H), 3.82 (dd, *J* = 10.4, 6.8 Hz, 1H), 3.01 (t, *J* = 11.2 Hz, 1H), 2.70 - 2.59 (m, 1H), 2.17 (s, 3H), 1.80 (d, *J* = 6.4 Hz, 1H), 1.30 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 172.0, 160.0 (d, J_{CF} = 245.0 Hz), 159.8, 137.2, 130.5 (d, J_{CF} = 8.7 Hz), 128.8, 128.2 (d, J_{CF} = 2.2 Hz), 125.7, 124.7 (d, J_{CF} = 3.5 Hz), 120.1 (d, J_{CF} = 13.3 Hz), 119.5, 115.9 (d, J_{CF} = 23.3 Hz), 88.2, 86.8, 75.7, 69.6, 67.7, 67.6, 67.1, 65.9, 63.6, 45.0, 40.2 (d, J_{CF} = 4.1 Hz), 37.1, 17.0, 12.8 (d, J_{CF} = 5.6 Hz).

HRMS (ESI): m/z calculated for C₃₂H₃₀FFeN₃O₄Na⁺: 618.1462, found 618.1468.

(5S,6S,7R,8R,9R,10S)-1,7-dimethyl-3-phenyl-10-(p-tolyl)-8-ferrocenyl-9-nitro-6-hydroxyl-2,3diazaspiro[4.5]dec-1-ene-4-one

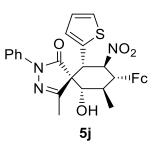

Prepared according to the general procedure using (*E*)-2-(2-nitrovinyl)ferrocene **3p** (102.83 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-(4-methylbenzylidene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1m** (82.90 mg, 0.30 mmol). Purification of the crude product via column chromatography delivered **5h** as a yellow solid with 62% yield (110.3 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 96% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 21.15 min, t_{minor} = 14.92 min; $[\alpha]p^{20}$ = 343.9 (*c* = 0.21 in CH₂Cl₂); m.p. 119-122°C.

NMR and HRMS data for the product **5h**:

¹H NMR (400 MHz, CDCl₃): δ (ppm): 7.73 - 7.66 (m, 2H), 7.40 - 7.33 (m, 2H), 7.22 - 6.91 (m, 5H),
5.79 (t, *J* = 11.6, 10.8 Hz, 1H), 4.24 - 4.19 (m, 2H), 4.14 - 4.11 (m, 6H), 4.08 (dd, *J* = 3.6, 1.6 Hz,
1H), 3.76 (dd, *J* = 10.4, 6.8 Hz, 1H), 3.44 (d, *J* = 11.6 Hz, 1H), 2.95 (t, *J* = 10.8 Hz, 1H), 2.68 - 2.58 (m, 1H), 2.21 (s, 3H), 2.11 (s, 3H), 1.71 (d, *J* = 6.4 Hz, 1H), 1.27 (d, *J* = 6.4 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃): δ (ppm): 172.2 , 159.6 , 138.8 , 137.3 , 129.8 , 129.7 , 128.8 , 125.6 , 119.5 , 89.0 , 87.2 , 75.8 , 69.6 , 67.8 , 67.6 , 67.0 , 66.0 , 63.8 , 50.2 , 45.0 , 37.2 , 21.1 , 17.1 , 13.4 .

HRMS (ESI): *m/z* calculated for C₃₃H₃₄FeN₃O₄⁺: 592.1893, found 592.1840.

(5S,6S,7R,8R,9R,10S)-1,7-dimethyl-3-phenyl-10-(4-methoxyphenyl)-8-ferrocenyl-9-nitro-6hydroxyl-2,3-diazaspiro[4.5]dec-1-ene-4-one

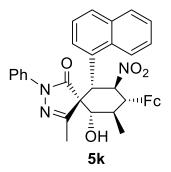

Prepared according to the general procedure using (*E*)-2-(2-nitrovinyl)ferrocene **3p** (102.83 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-(4-methoxybenzylidene)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1n** (87.70 mg, 0.30 mmol). Purification of the crude product via column chromatography delivered **5i** as a yellow solid with 66% yield (119.6 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 98% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 22.19 min, t_{minor} = 17.54 min; $[\alpha]_D^{20} = 342.4$ (*c* = 0.22 in CH₂Cl₂); m.p. 130-133°C.

NMR and HRMS data for the product 5i:

¹**H NMR (400 MHz, CDCl₃):** δ (ppm): 7.73 - 7.67 (m, 2H), 7.36 (tt, *J* = 7.6, 2.0 Hz, 2H), 7.21 - 6.94 (m, 3H), 6.72 - 6.67 (m, 2H), 5.76 (t, *J* = 11.2 Hz, 1H), 4.21(dd, *J* = 3.6, 1.6 Hz, 2H), 4.12 - 4.07 (m, 7H), 3.75 (dd, *J* = 10.4, 6.0 Hz, 1H), 3.69 (s, 3H), 3.43 (d, *J* = 11.6 Hz, 1H), 2.95 (t, *J* = 10.8 Hz, 1H), 2.66 - 2.59 (m, 1H), 1.72 (d, *J* = 6.4 Hz, 1H), 1.27 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 172.2, 159.8, 159.6, 137.3, 128.8, 125.6, 124.8, 119.5, 89.1, 87.1, 75.8, 69.6, 67.7, 67.6, 67.0, 65.9, 63.9, 55.1, 49.8, 45.0, 37.2, 17.1, 13.4.
HRMS (ESI): *m/z* calculated for C₃₃H₃₄FeN₃O_{5⁺}: 608.1842, found 608.1834.

(5S,6S,7R,8R,9R,10S)-1,7-dimethyl-3-phenyl-10-thienyl-8-ferrocenyl-9-nitro-6-hydroxyl-2,3diazaspiro[4.5]dec-1-ene-4-one


Prepared according to the general procedure using (*E*)-2-(2-nitrovinyl)ferrocene **3p** (102.83 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-thienylidene-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1o** (80.50 mg, 0.30 mmol). Purification of the crude product via column chromatography delivered **5j** as a yellow solid with 51% yield (88.7 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be >99% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} =22.80 min, t_{minor} = 25.66 min; $[\alpha]_D^{20} = 314.1$ (*c* = 0.25 in CH₂Cl₂); m.p. 145-145°C.

NMR and HRMS data for the product **5***j*:

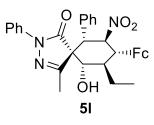
¹**H NMR** (**400 MHz**, **CDCl**₃): δ (ppm): 7.80 - 7.74 (m, 2H), 7.41 - 7.35 (m, 2H), 7.22 - 7.17 (m, 1H), 7.15 - 7.12 (m, 1H), 6.88 (dd, *J* = 3.6, 1.2 Hz, 1H), 6.82 (dd, *J* = 5.2, 3.6 Hz, 1H), 5.74 (dd, *J* = 11.6, 10.8, 1H), 4.23-4.21 (m, 2H), 4.14 - 4.11 (m, 6H), 4.06 (dd, *J* = 3.6, 1.6 Hz, 1H), 3.83 (d, *J* = 11.6 Hz, 1H), 3.74 (dd, *J* = 10.4, 6.4 Hz, 1H), 2.94 (t, *J* = 10.8 Hz, 1H), 2.64 - 2.56 (m, 1H), 2.15 (s, 3H), 1.77 (d, *J* = 6.4 Hz, 1H), 1.27 (d, *J* = 6.4 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm): 171.6 , 159.2 , 137.4 , 134.5 , 128.8 , 127.2 , 127.0 , 126.1 , 125.6 , 119.4 , 90.2 , 86.9 , 75.6 , 69.6 , 67.8 , 67.6 , 67.1 , 66.0 , 64.0 , 45.3 , 44.9 , 37.0 , 17.0 , 13.3 .
HRMS (ESI): *m/z* calculated for C₃₀H₃₀FeN₃O₄S⁺:584.1301, found 584.1290.

(5S,6S,7R,8R,9R,10S)-1,7-dimethyl-3-phenyl-10-naphthyl-8-ferrocenyl-9-nitro-6-hydroxyl-2,3diazaspiro[4.5]dec-1-ene-4-one

Prepared according to the general procedure using (E)-2-(2-nitrovinyl)ferrocene **3p** (102.83 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2a** (46.46 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-naphthylidene-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1p** (93.71 mg, 0.30 mmol). Purification of the crude

product via column chromatography delivered **5k** as a yellow solid with 49% yield (96.5 mg). The diastereomeric ratio was determined to be >20:1 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be >99% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 34.61 min, t_{minor} =18.09 min; $[\alpha]_D^{20} = 444.1$ (*c* = 0.22 in CH₂Cl₂); decomp. >197°C.


NMR and HRMS data for the product **5k**:

¹**H NMR (400 MHz, CDCl₃):** δ (ppm): 8.13 (d, *J* = 8.4 Hz, 1H), 7.80 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.71 - 7.67 (m, 3H), 7.63 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.59 - 7.55 (m, 1H), 7.49 - 7.45 (m, 1H), 7.40 - 7.35 (m, 2H), 7.24 - 7.18 (m, 2H), 5.97 (dd, *J* = 11.6 ,10.4 Hz, 1H), 4.64 (d, *J* = 11.6 Hz, 1H), 4.24 - 4.21 (m, 2H), 4.15 - 4.14 (m, 1H), 4.12 - 4.10 (m, 6H), 3.92 (dd, *J* = 10.4, 6.4 Hz, 1H), 3.14 (t, *J* = 10.8 Hz, 1H), 2.80 - 2.70 (m, 1H), 1.79 (d, *J* = 6.4 Hz, 1H), 1.35 (d, *J* = 6.8 Hz, 3H).

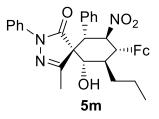
¹³C NMR (100 MHz, CDCl₃): δ (ppm): 172.6, 159.6, 137.3, 134.1, 131.2, 129.5, 129.4, 128.8, 126.7, 125.8, 125.7, 125.3, 125.2, 121.8, 119.5, 89.3, 87.0, 76.3, 69.6, 67.7, 67.6, 67.1, 66.0, 64.2, 45.6, 42.5, 37.4, 17.2, 13.6.

HRMS (ESI): *m*/*z* calculated for C₃₆H₃₃FeN₃O₄Na⁺: 650.1713, found 650.1716.

(5S,6S,7R,8R,9R,10S)-1-methyl-7-ethyl-3,10-diphenyl-8-ferrocenyl-9-nitro-6-hydroxyl-2,3diazaspiro[4.5]dec-1-ene-4-one

Prepared according to the general procedure using (E)-2-(2-nitrovinyl)ferrocene **3p** (102.83 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2b** (57.69 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-benzylidene-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1f** (78.69 mg, 0.30 mmol). Purification of the crude product via column chromatography delivered **5l** as a yellow solid with 59% yield (108.1 mg). The diastereomeric ratio was determined to be 89:11 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 92% by chiral HPLC analysis on Chiralpak AD-H

column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), $t_{major} = 14.46 \text{ min}, t_{minor} = 7.85 \text{ min}; [\alpha]_D^{20} = 386.7 \ (c = 0.21 \text{ in CH}_2\text{Cl}_2); \text{ m.p. } 128-132^{\circ}\text{C}.$


NMR and HRMS data for the product **5I**:

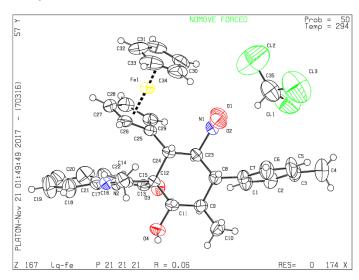
¹**H NMR** (**400 MHz**, **CDCl**₃): δ (ppm): 7.69 - 7.66 (m, 2H), 7.38 - 7.34 (m, 2H), 7.24 - 7.08 (m, 6H), 5.84 (dd, *J* = 11.6, 10.4 Hz, 1H), 4.24 - 4.22 (m, 2H), 4.16 (dd, *J* = 3.6, 1.6 Hz, 1H), 4.11 (s, 5H), 4.07 - 4.06 (m, 1H), 3.99 (dd, *J* = 10.8, 6.4 Hz, 1H), 3.41 (d, *J* = 11.6 Hz, 1H), 3.15 (t, *J* = 11.2 Hz, 1H), 2.61 (tt, *J* = 11.2, 3.6 Hz, 1H), 2.11 (s, 3H), 1.2 - 1.70 (m, 2H), 1.68 (d, *J* = 6.4 Hz, 1H), 0.96 (t, *J* = 7.2 Hz, 3H).

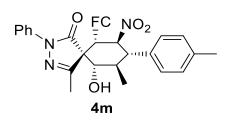
¹³C NMR (100 MHz, CDCl₃): δ (ppm): 172.2 , 159.6 , 137.3 , 133.0 , 129.0 , 129.0 , 128.8 , 125.6 , 119.6 , 88.8 , 87.4 , 72.2 , 69.6 , 69.5 , 67.6 , 67.3 , 67.0 , 65.8 , 63.6 , 50.6 , 41.2 , 40.8 , 19.5 , 13.5 , 8.0 .

HRMS (ESI): *m*/*z* calculated for C₃₃H₃₃FeN₃O₄Na⁺: 614.1713, found 614.1713.

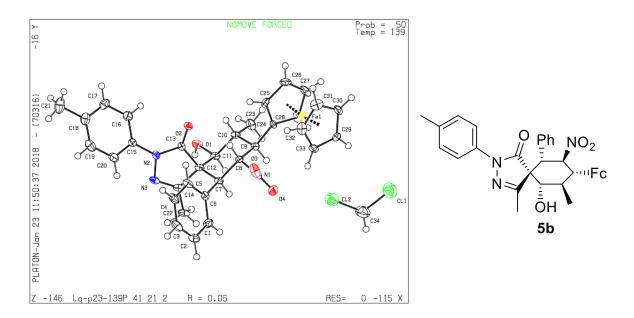
(5S,6S,7R,8R,9R,10S)-1-methyl-7-propyl-3,10-diphenyl-8-ferrocenyl-9-nitro-6-hydroxyl-2,3diazaspiro[4.5]dec-1-ene-4-one

Prepared according to the general procedure using (*E*)-2-(2-nitrovinyl)ferrocene **3p** (102.83 mg, 0.40 mmol, 1.0 equiv), propionaldehyde **2c** (68.91 mg, 0.8 mmol, 2 equiv) and (*Z*)-4-benzylidene-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one **1f** (78.69 mg, 0.30 mmol). Purification of the crude product via column chromatography delivered **5m** as a yellow solid with 58% yield (108.3 mg). The diastereomeric ratio was determined to be 82:18 by crude ¹H-NMR analysis, and the enantiomeric excess of the major product was determined to be 92% by chiral HPLC analysis on Chiralpak AD-H column (10% 2-propanol/*n*-hexane, 1 mL/min, UV 254 nm), t_{major} = 10.66 min, t_{minor} = 7.27 min; $[\alpha]_D^{20} = 361.8$ (*c* = 0.23 in CH₂Cl₂); m.p. 114-116°C.

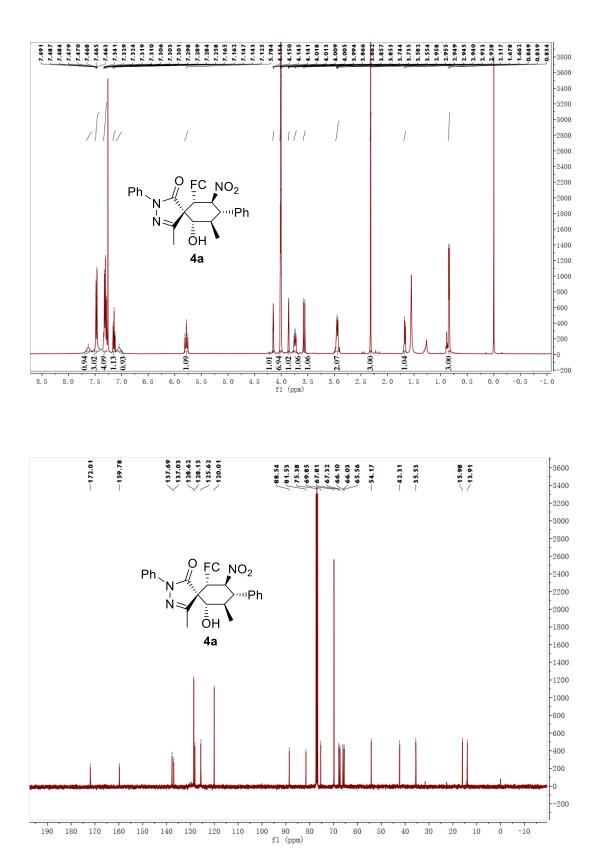

NMR and HRMS data for the product **5m**:


¹**H NMR (400 MHz, CDCl₃):** δ (ppm): 7.71 - 7.66 (m, 2H), 7.39 - 7.34 (m, 2H), 7.25 - 7.07 (m, 6H), 5.91 (dd, *J* = 11.6, 10.8 Hz, 1H), 4.26 - 4.24 (m, 1H), 4.23 - 4.21 (m, 1H), 4.21 - 4.19 (m, 1H), 4.10 (s, 5H), 4.03 - 4.02 (m, 1H), 3.96 (dd, *J* = 10.8, 6.4 Hz, 1H), 3.42 (d, *J* = 11.6 Hz, 1H), 3.14 (t, *J* = 11.2 Hz, 1H), 2.53 (tt, *J* = 11.2, 3.6 Hz, 1H), 2.11 (s, 3H), 1.58 (d, *J* = 6.8 Hz, 1H), 1.51 - 1.25 (m, 4H), 0.90 (t, *J* = 7.2 Hz, 3H).

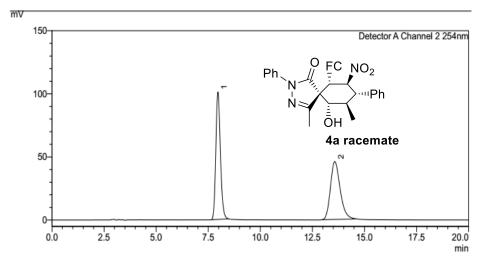
¹³C NMR (100 MHz, CDCl₃): δ (ppm): 172.2, 159.6, 137.3, 133.0, 129.1, 128.8, 125.6, 119.6, 88.2, 87.4, 73.0, 69.6, 69.6, 67.7, 67.6, 66.8, 65.6, 63.7, 50.8, 41.8, 41.7, 29.8, 17.3, 14.4, 13.4.


HRMS (ESI): *m/z* calculated for C₃₄H₃₅FeN₃O₄Na⁺: 628.1869, found 628.1875.

3. Crystal data of 4m and 5b



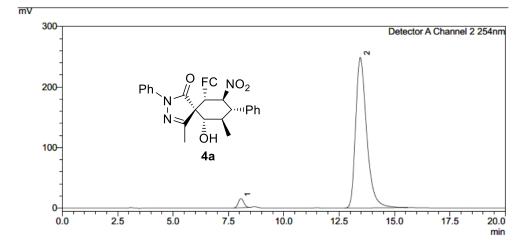
Empirical formula	$C_{35}H_{34}Cl_3FeN_2O_4$
Formula weight	708.84
Temperature/K	294.24(10)
Crystal system	orthorhombic
Space group	P212121
a/Å	9.54049(16)
b/Å	13.5186(2)
c/Å	26.0238(5)
$\alpha/^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	3356.40(10)
Z	4
$\rho_{calc}g/cm^3$	1.403
μ/mm^{-1}	6.132
F(000)	1468.0
Crystal size/mm ³	$0.65 \times 0.3 \times 0.25$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/	°9.434 to 145.112
Index ranges	$\text{-}11 \leq h \leq 7, \text{-}16 \leq k \leq 14, \text{-}32 \leq l \leq 31$
Reflections collected	18187
Independent reflections	$6542 \ [R_{int} = 0.0428, R_{sigma} = 0.0457]$
Data/restraints/parameters	6542/0/410
Goodness-of-fit on F ²	1.028
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0626, wR_2 = 0.1645$
Final R indexes [all data]	$R_1 = 0.0776, wR_2 = 0.1788$
Largest diff. peak/hole / e Å-3	30.61/-0.72
Flack parameter	-0.001(4)



Empirical formula	$C_{34}H_{35}Cl_2FeN_3O_4$
Formula weight	676.40
Temperature/K	139.05(10)
Crystal system	tetragonal
Space group	P41212
a/Å	12.0535(3)
b/Å	12.0535(3)
c/Å	43.8649(13)
α/\circ	90
β/°	90
γ/°	90
Volume/Å ³	6373.0(3)
Z	8
$\rho_{calc}g/cm^3$	1.410
μ/mm^{-1}	5.686
F(000)	2816.0
Crystal size/mm ³	$0.7 \times 0.55 \times 0.35$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/	° 7.606 to 146.404
Index ranges	$-14 \le h \le 11, -13 \le k \le 14, -54 \le 1 \le 54$
Reflections collected	34873
Independent reflections	6315 [$R_{int} = 0.0790$, $R_{sigma} = 0.0521$]
Data/restraints/parameters	6315/0/401
Goodness-of-fit on F ²	1.070
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0630, wR_2 = 0.1467$
Final R indexes [all data]	$R_1 = 0.0745, wR_2 = 0.1552$
Largest diff. peak/hole / e Å ⁻	³ 0.67/-0.53
Flack parameter	-0.001(3)

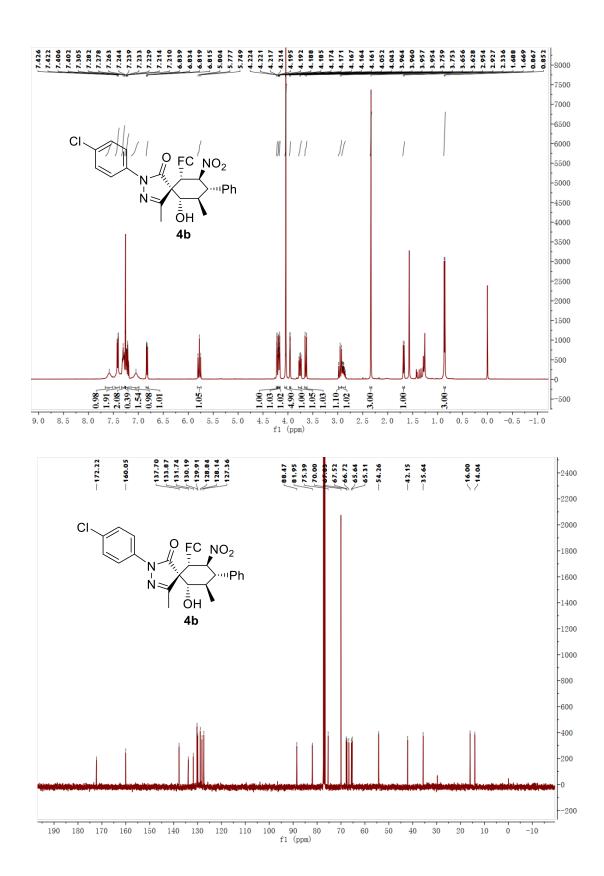
4 NMR spectra and HPLC chromatograms

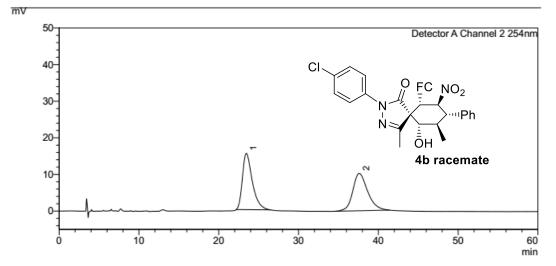
<Chromatogram>



<Peak Table>

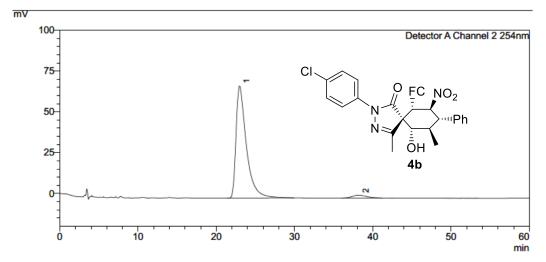
tector			

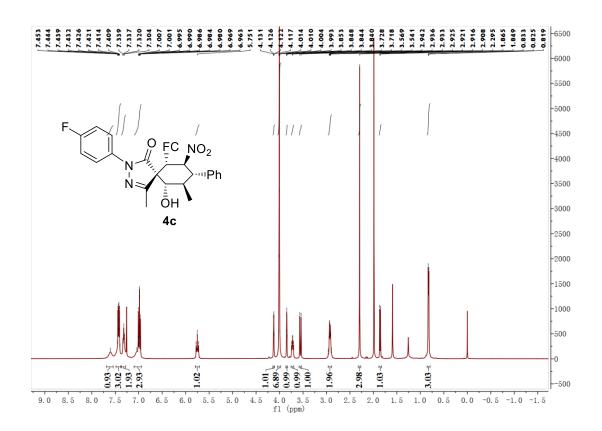

Detector A Channel 2 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Area%
1	7.964	1541964	100905	50.951	50.951
2	13.575	1484402	45867	49.049	49.049
Total		3026367	146772		100.000

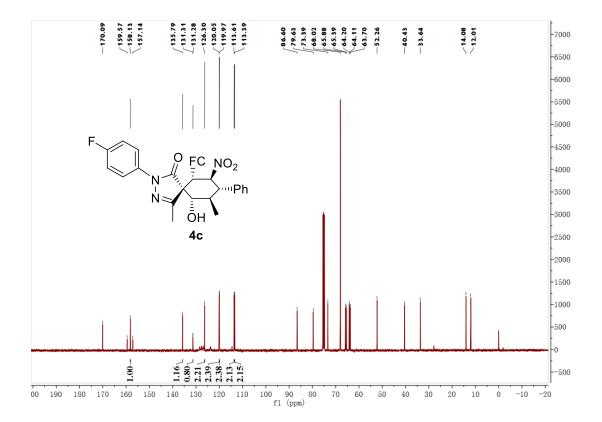

<Chromatogram>

<Peak Table>

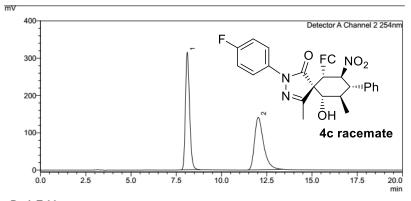
Detector A Channel 2 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Area%
1	8.083	261182	15161	2.945	2.945
2	13.453	8608073	248482	97.055	97.055
Total		8869254	263643		100.000



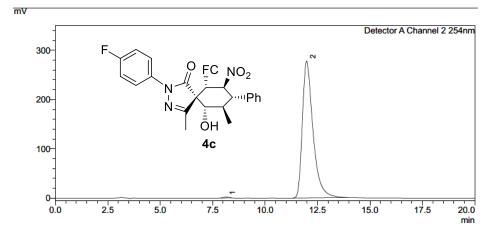

<Peak Table>

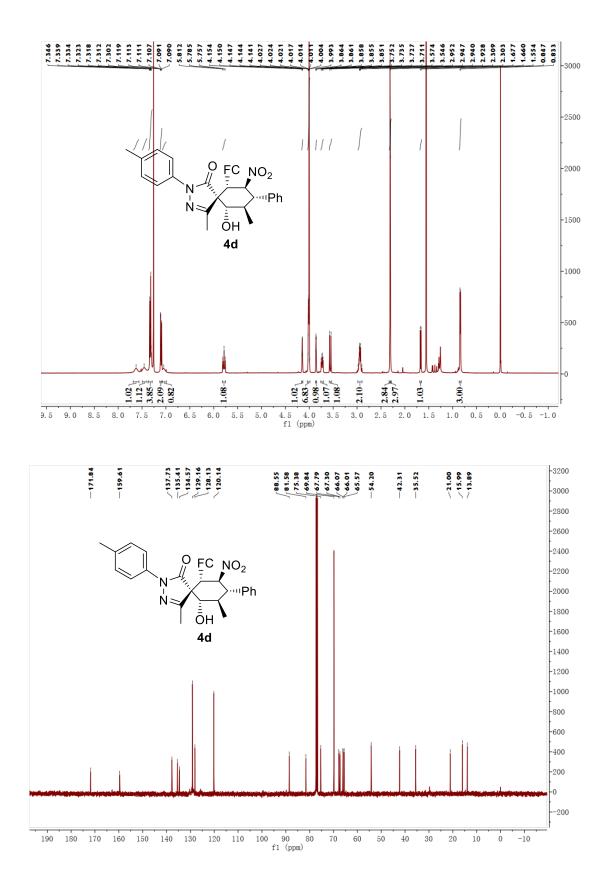

Detect	Detector A Channel 2 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Area%				
1	23.461	1330575	15372	50.150	50.150				
2	37.599	1322606	10203	49.850	49.850				
Total		2653181	25575		100.000				

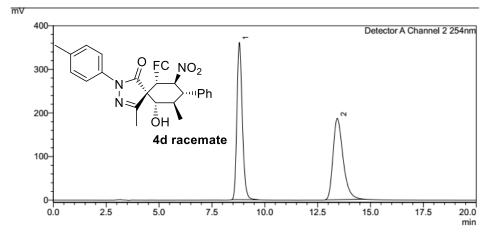
<Chromatogram>



Detector A Channel 2 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Area%				
1	22.968	6290616	68702	96.665	96.665				
2	38.217	217008	1709	3.335	3.335				
Total		6507625	70411		100.000				

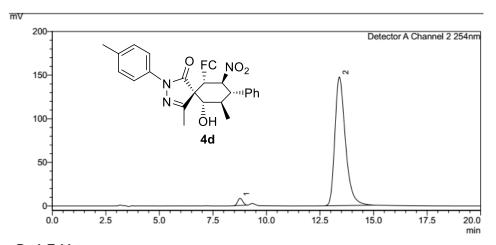


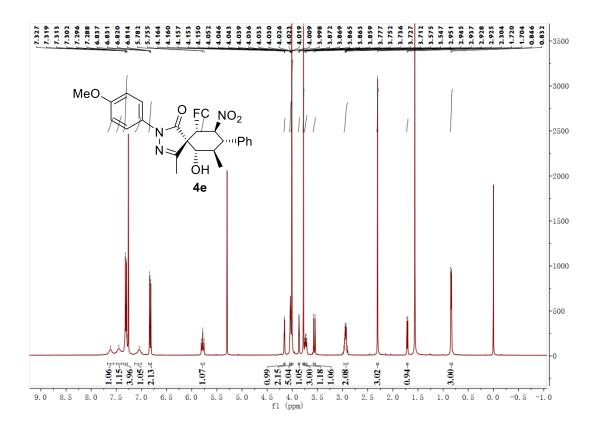

<Peak Table>

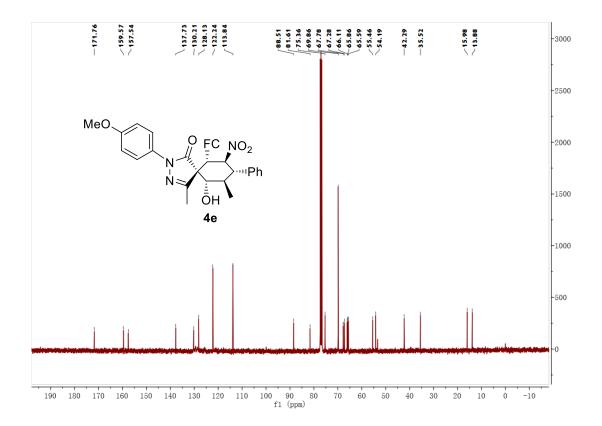

Dete	Detector A Channel 2 254nm								
Pea	k# Ret. Time	Area	Height	Conc.	Area%				
	1 8.109	5013190	314957	50.696	50.696				
	2 12.029	4875524	140589	49.304	49.304				
To	tal	9888713	455546		100.000				

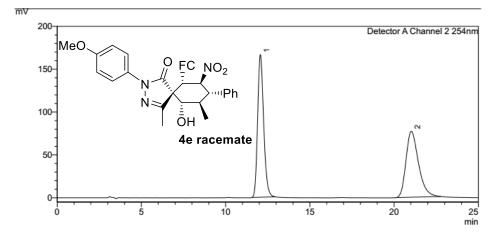
<Chromatogram>

Detect	Detector A Channel 2 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Area%				
1	8.155	29402	1907	0.299	0.299				
2	11.979	9809138	278101	99.701	99.701				
Total		9838539	280008		100.000				

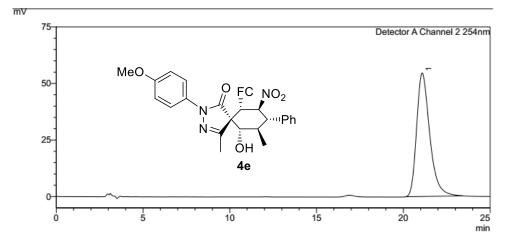


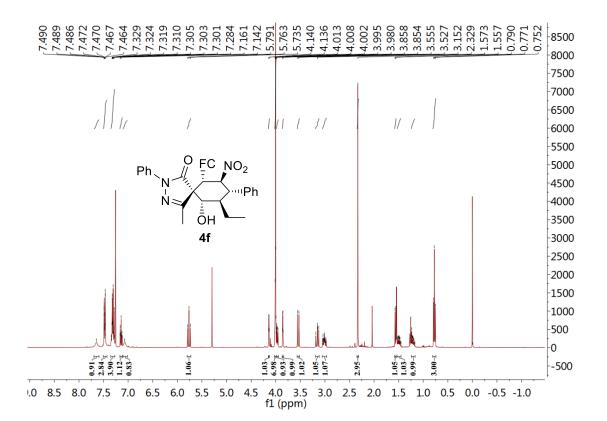

<Peak Table>

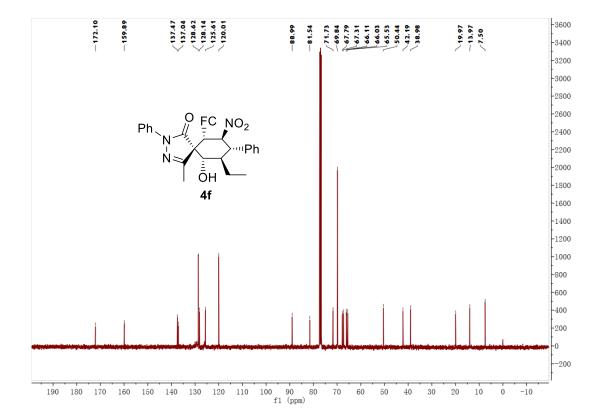

Detect	Detector A Channel 2 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Area%				
1	8.797	6424165	360845	50.989	50.989				
2	13.429	6174928	186589	49.011	49.011				
Total		12599093	547435		100.000				


<Chromatogram>

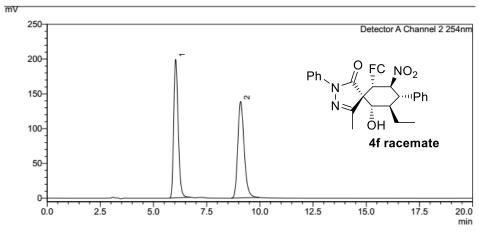
Detect	Detector A Channel 2 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Area%				
1	8.768	132256	8137	2.555	2.555				
2	13.402	5044208	147511	97.445	97.445				
Total		5176464	155648		100.000				



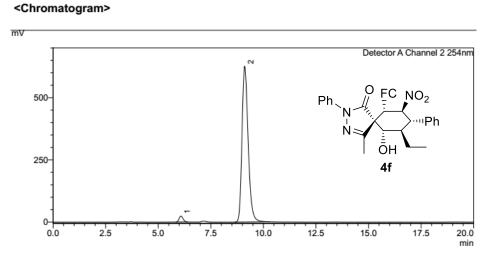

<Peak Table>


Detector A Channel 2 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Area%			
1	12.062	4134118	166518	51.069	51.069			
2	21.023	3961028	77018	48.931	48.931			
Total		8095146	243536		100.000			

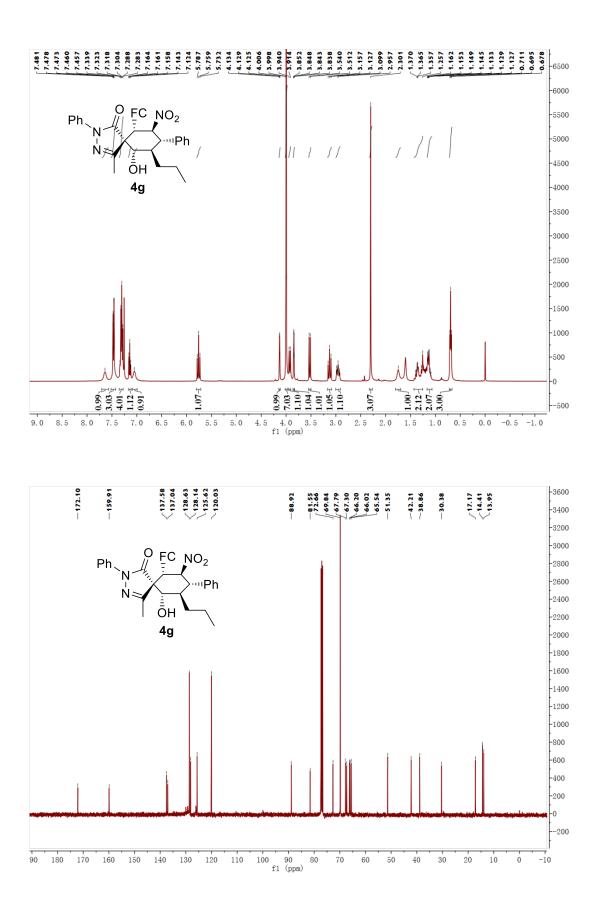
<Chromatogram>

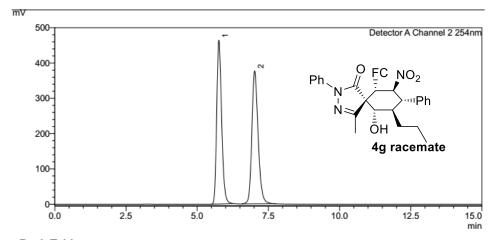


Detect	Detector A Channel 2 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Area%					
1	21.088	2865704	54610	100.000	100.000					
Total		2865704	54610		100.000					



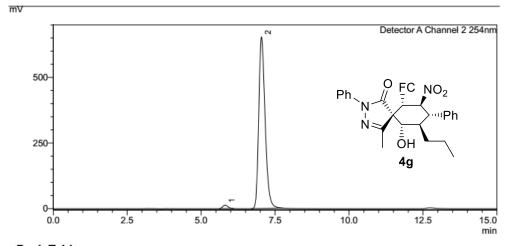
<Chromatogram>

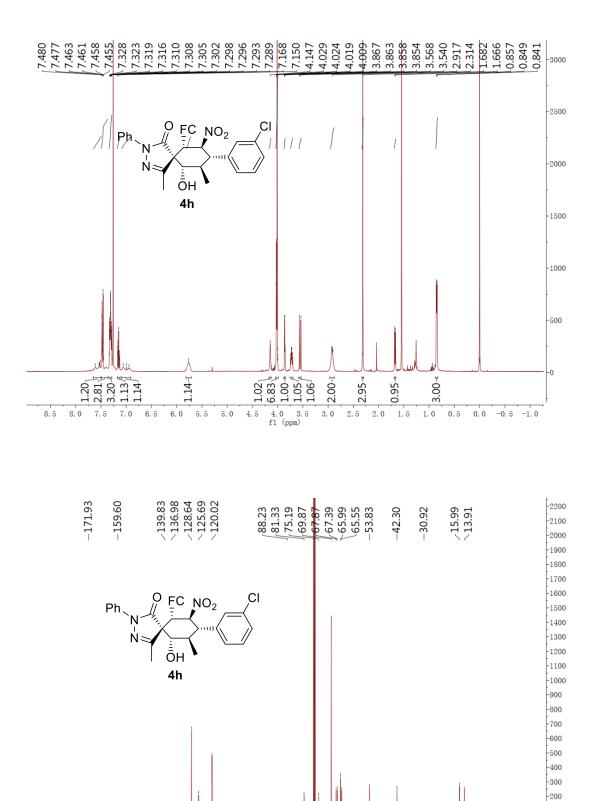



<Peak Table>

Detect	Detector A Channel 2 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Area%					
1	6.042	2901768	199280	50.081	50.081					
2	9.095	2892325	138731	49.919	49.919					
Total		5794093	338011		100.000					

Detect	Detector A Channel 2 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Area%				
1	6.079	305504	23709	2.338	2.338				
2	9.111	12761424	626248	97.662	97.662				
Total		13066927	649957		100.000				

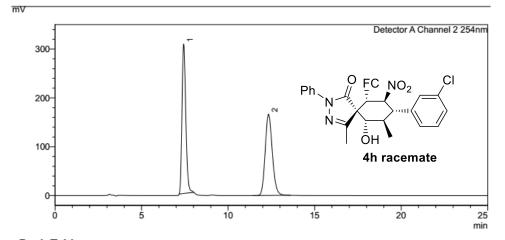



<Peak Table>

Dete	Detector A Channel 2 254nm								
Peak	# Ret. Time	Area	Height	Conc.	Area%				
	1 5.762	5573419	464272	49.210	49.210				
	2 7.017	5752436	376933	50.790	50.790				
Tot	al	11325855	841206		100.000				

<Chromatogram>

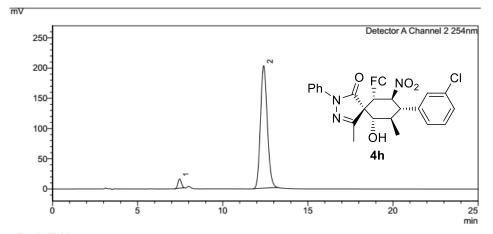
Detect	Detector A Channel 2 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Area%				
1	5.811	154043	12790	1.553	1.553				
2	7.040	9762495	653750	98.447	98.447				
Total		9916538	666540		100.000				

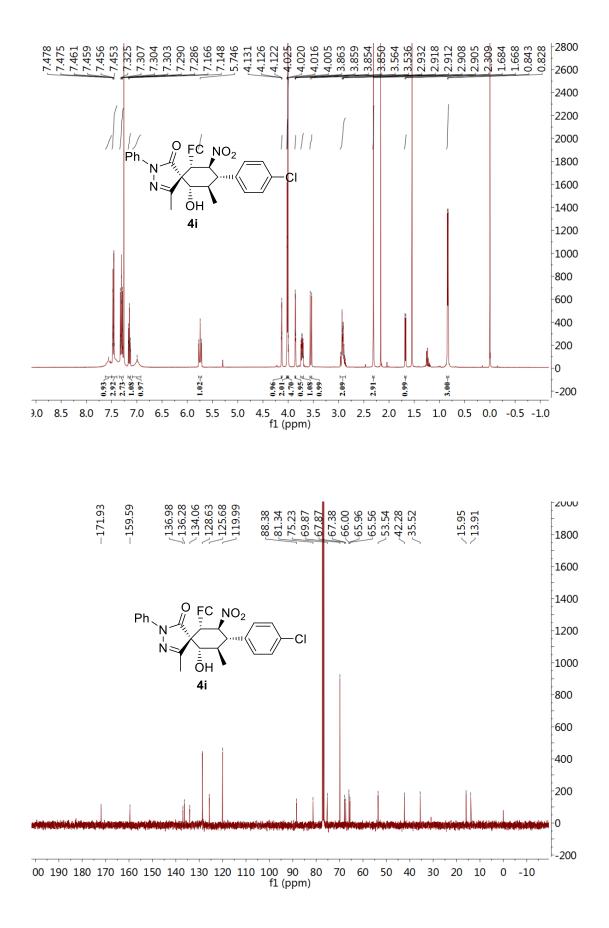


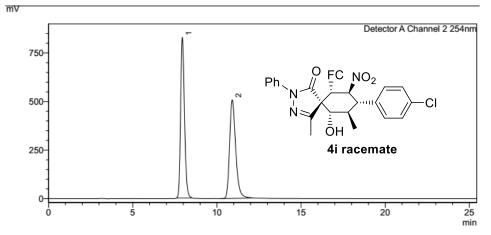
170 160 150 140 130 120 110 100 90 80 70 60 50 40 30

190 180

-100 -0 --100 --200

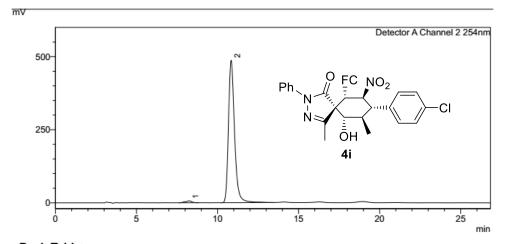

20 10 0 -10

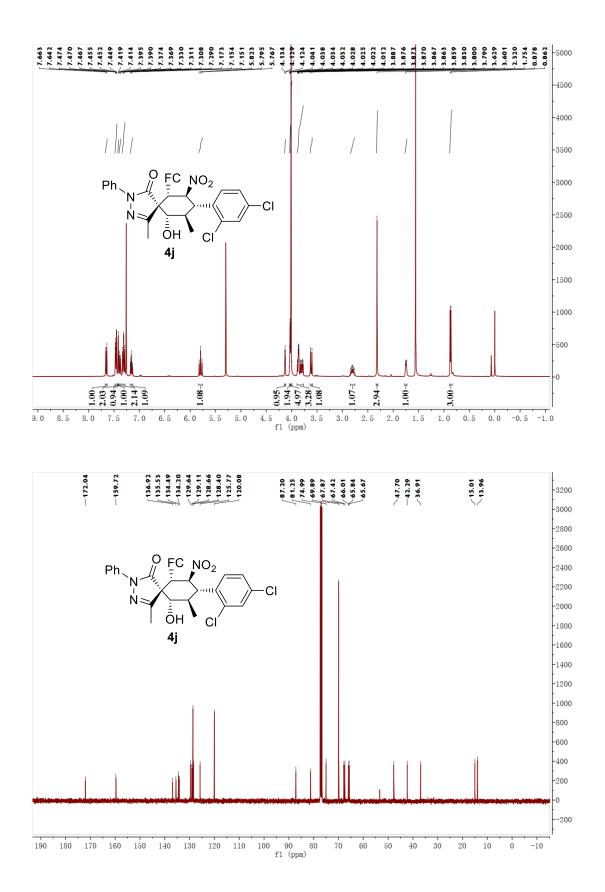

<Peak Table>

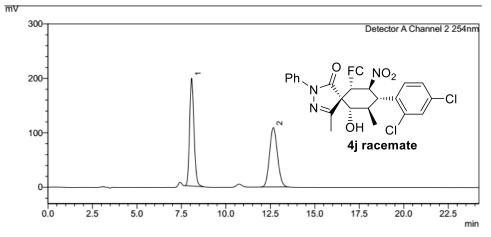

De	Detector A Channel 2 254nm									
Pe	eak#	Ret. Time	Area	Height	Conc.	Area%				
	1	7.433	4669901	306107	49.514	49.514				
	2	12.335	4761626	166457	50.486	50.486				
	Total		9431527	472565		100.000				

<Chromatogram>

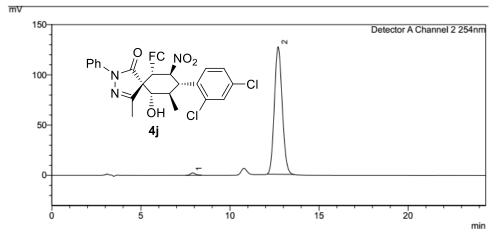
Detect	Detector A Channel 2 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Area%					
1	7.466	217318	15468	3.692	3.692					
2	12.406	5669085	202753	96.308	96.308					
Tota		5886403	218221		100.000					

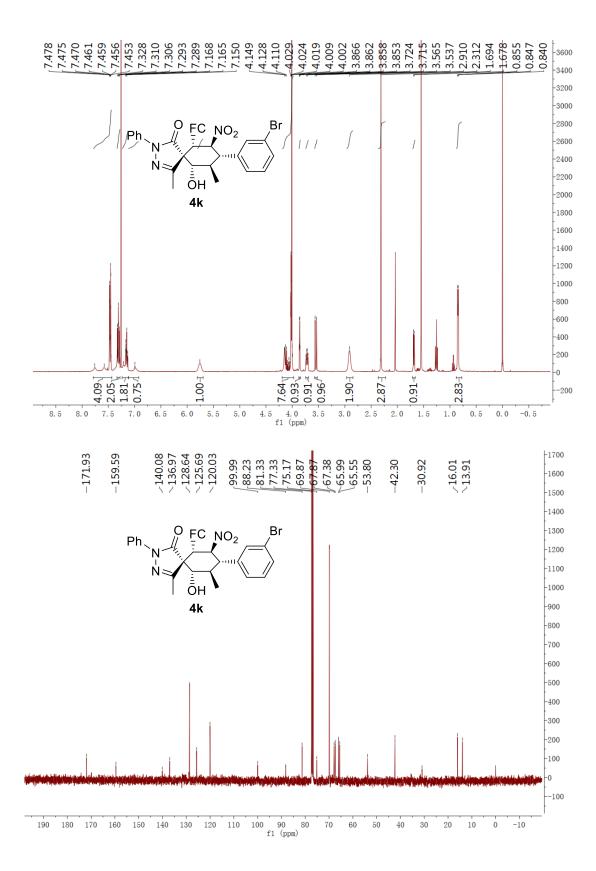


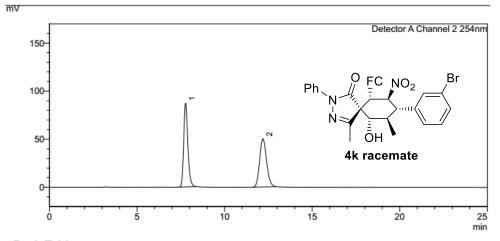

<Peak Table>


Detect	Detector A Channel 2 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Area%				
1	7.945	13206475	827492	50.819	50.819				
2	10.912	12780796	507796	49.181	49.181				
Tota		25987271	1335288		100.000				

Detect	Detector A Channel 2 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Area%					
1	8.244	177042	6692	1.372	1.372					
2	10.838	12727112	486946	98.628	98.628					
Total		12904154	493638		100.000					

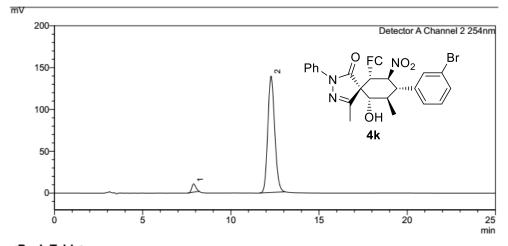


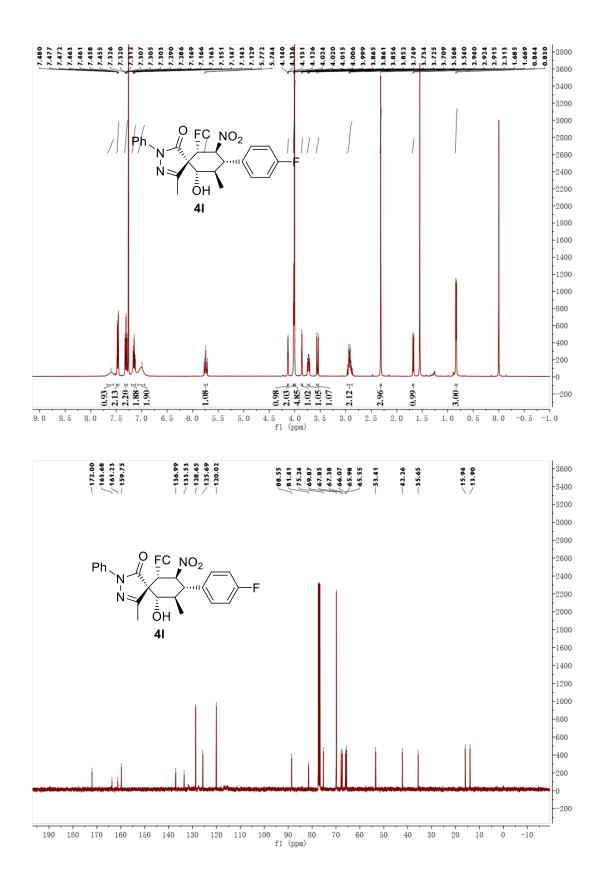

<Peak Table>


Detect	Detector A Channel 2 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Area%				
1	8.074	3397603	197824	50.114	50.114				
2	12.667	3382177	108951	49.886	49.886				
Total		6779780	306775		100.000				

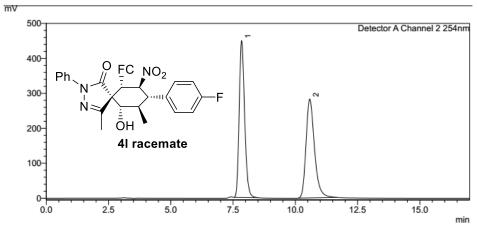
<Chromatogram>

Detec	Detector A Channel 2 254nm									
Peak#	# Ret. Time	Area	Height	Conc.	Area%					
1	7.902	48976	2436	1.244	1.244					
2	12.703	3889490	126878	98.756	98.756					
Tota	ıl	3938466	129314		100.000					

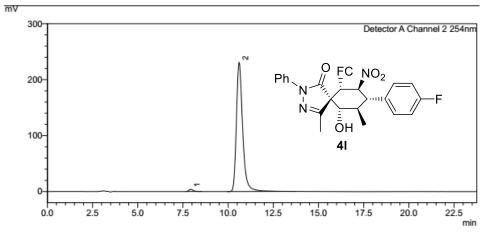


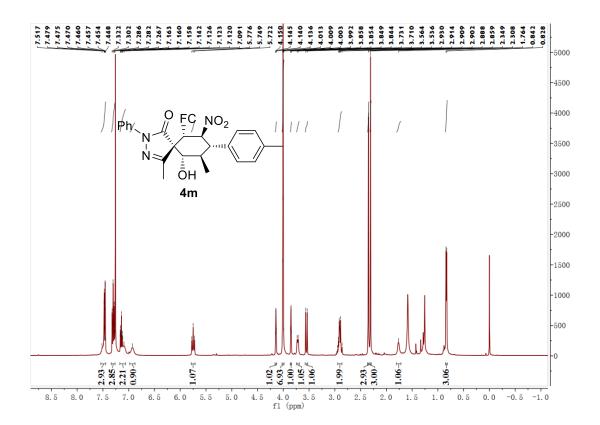

<Peak Table>

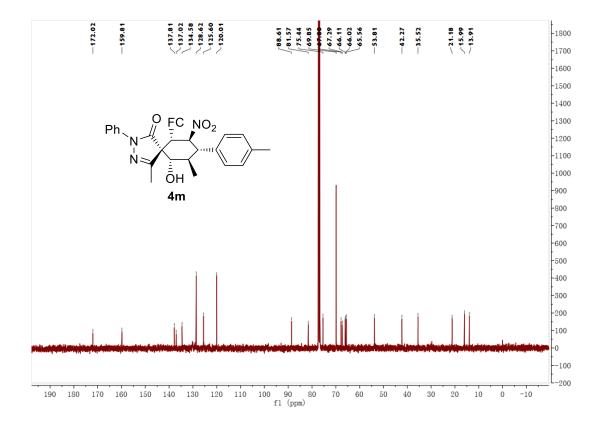
Detect	Detector A Channel 2 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Area%				
1	7.769	1423222	87286	50.905	50.905				
2	12.185	1372615	50190	49.095	49.095				
Total		2795837	137477		100.000				


<Chromatogram>

Detect	Detector A Channel 2 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Area%					
1	7.891	159587	9850	4.024	4.024					
2	12.278	3806703	139222	95.976	95.976					
Total		3966290	149072		100.000					

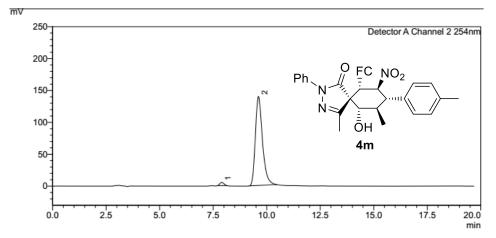


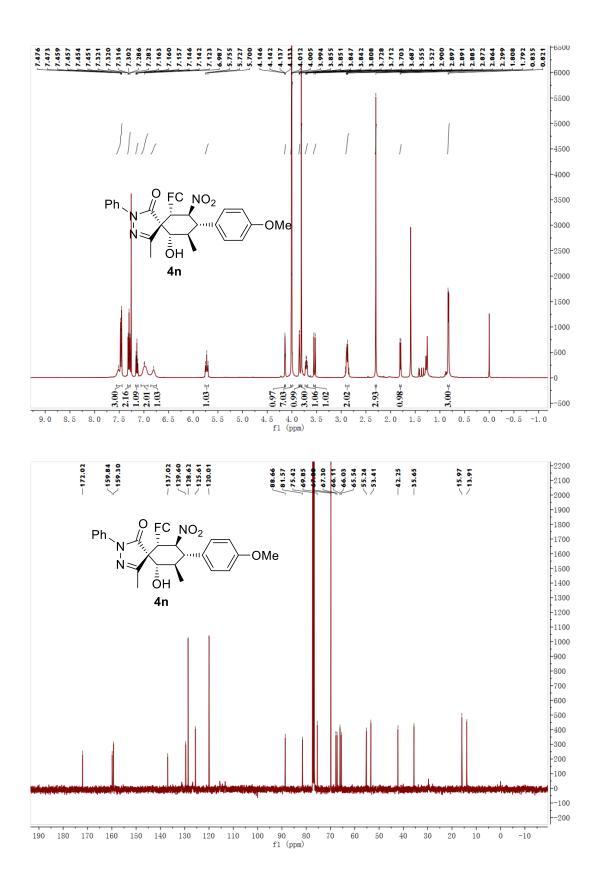

<Peak Table>

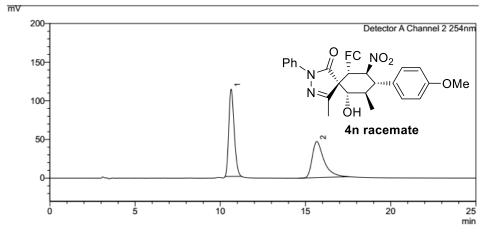

Detector A Channel 2 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Area%			
1	7.844	6824867	448607	50.546	50.546			
2	10.580	6677426	282715	49.454	49.454			
Total		13502294	731322		100.000			

<Chromatogram>

Detect	Detector A Channel 2 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Area%					
1	7.934	65317	3878	1.154	1.154					
2	10.606	5596065	231075	98.846	98.846					
Total		5661383	234953		100.000					

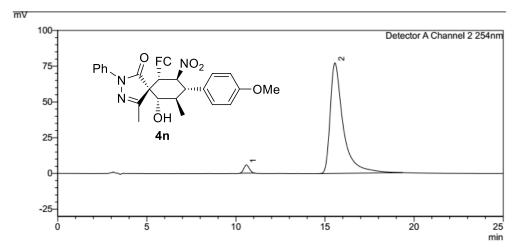


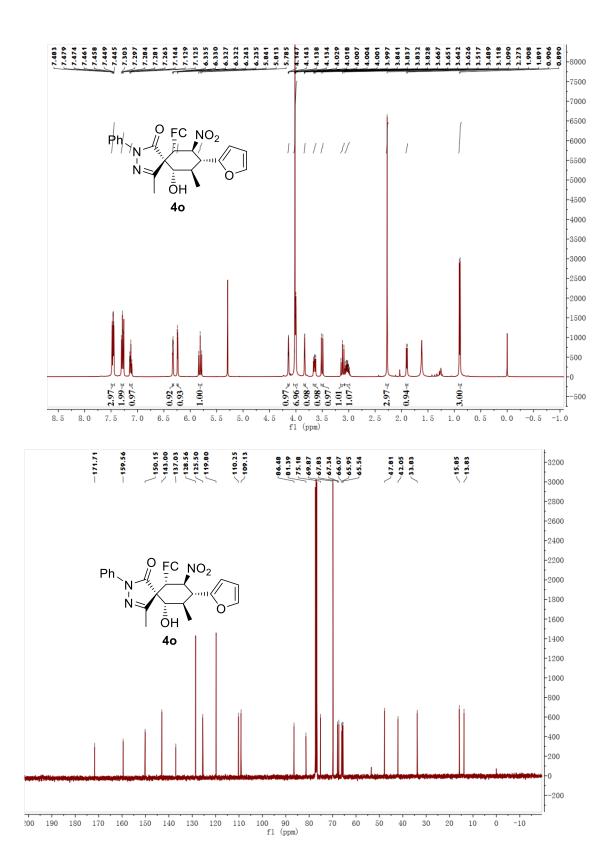

<Peak Table>

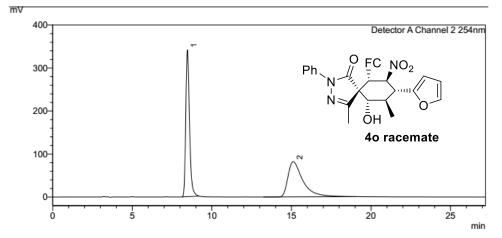

Detect	Detector A Channel 2 254nm								
Peak#	Ret. Time	Area	Height	Conc.	Area%				
1	7.844	6204052	403026	50.140	50.140				
2	9.554	6169322	266391	49.860	49.860				
Total		12373375	669417		100.000				

<Chromatogram>

Detect	Detector A Channel 2 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Area%					
1	7.899	67049	4989	2.042	2.042					
2	9.613	3217253	139587	97.958	97.958					
Total		3284303	144577		100.000					

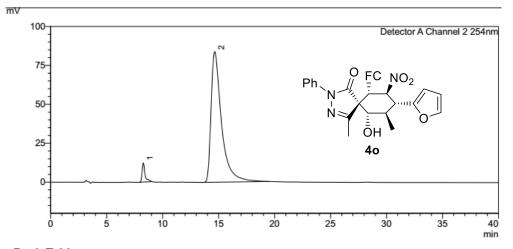


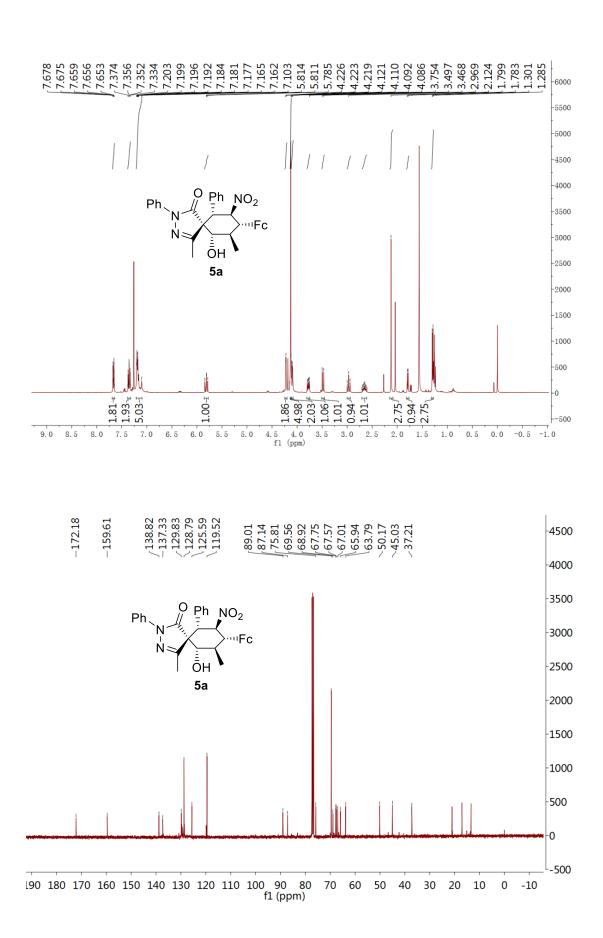

<Peak Table>

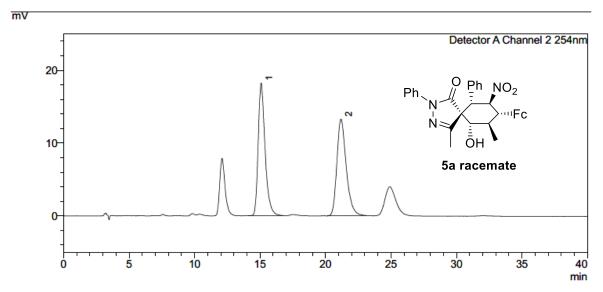

Detect	Detector A Channel 2 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Area%	
1	10.636	2490418	112976	52.474	52.474	
2	15.661	2255545	46833	47.526	47.526	
Total		4745963	159808		100.000	

<Chromatogram>

Detector A Channel 2 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Area%
1	10.590	123944	5716	3.065	3.065
2	15.557	3919735	77290	96.935	96.935
Total		4043680	83006		100.000

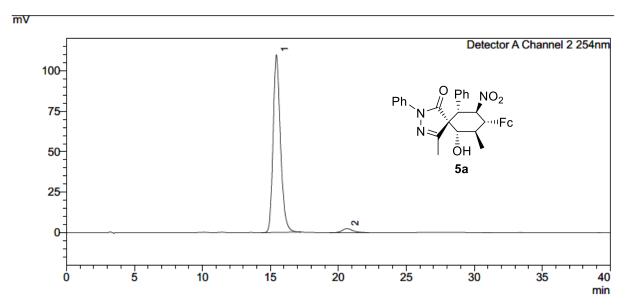


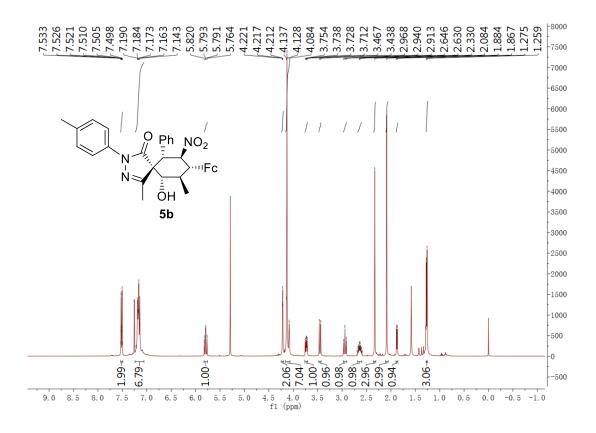

<Peak Table>

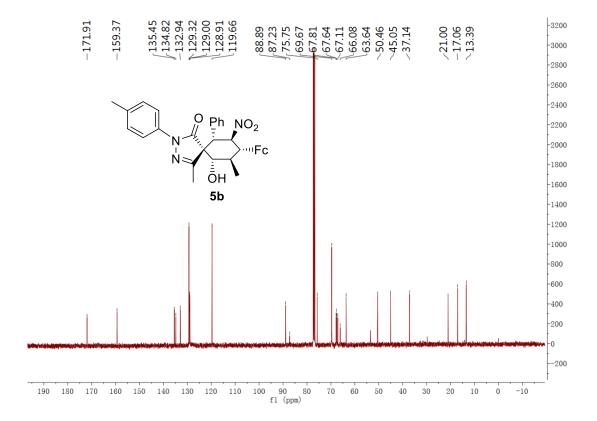

Detector A Channel 2 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Area%	
1	8.462	5568008	341318	50.965	50.965	
2	15.113	5357178	82057	49.035	49.035	
Total		10925186	423375		100.000	

<Chromatogram>

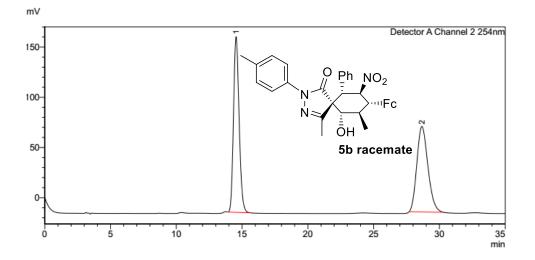
Detector A Channel 2 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Area%
1	8.275	226216	12341	3.984	3.984
2	14.653	5451548	83870	96.016	96.016
Total		5677763	96211		100.000

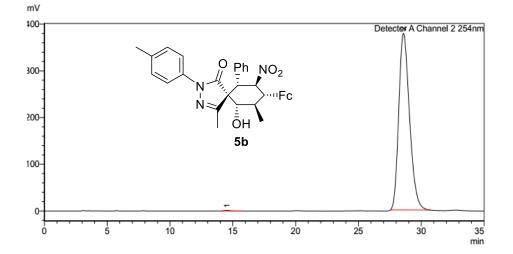


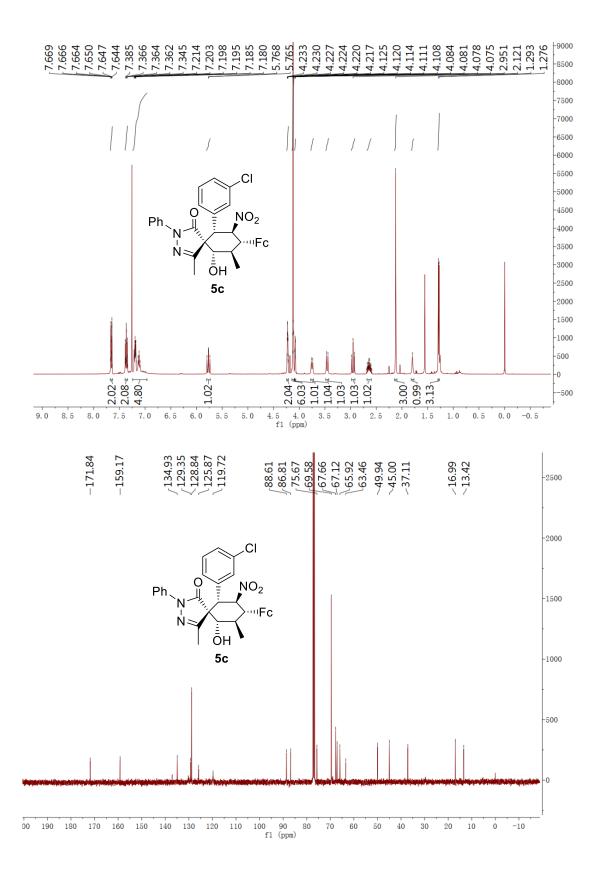

<Peak Table>


Detect	Detector A Channel 2 254nm					
Peak#	Ret. Time	Area	Height	Conc.	Area%	
1	15.079	663408	18247	50.285	50.285	
2	21.176	655901	13288	49.715	49.715	
Total		1319308	31536		100.000	

<Chromatogram>

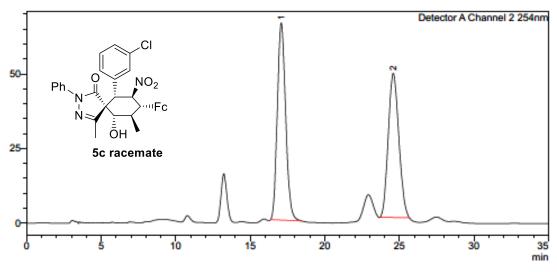

Detect	Detector A Channel 2 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Area%		
1	15.439	4130184	109762	97.002	97.002		
2	20.620	127668	2390	2.998	2.998		
Total		4257852	112152		100.000		

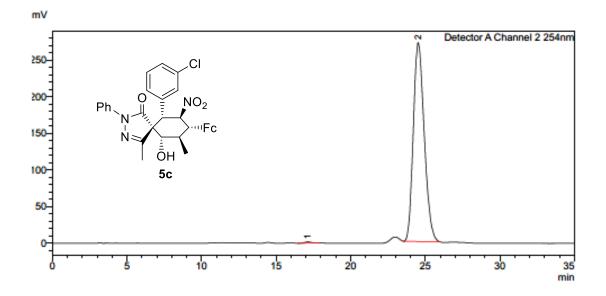

Peak Analysis Report

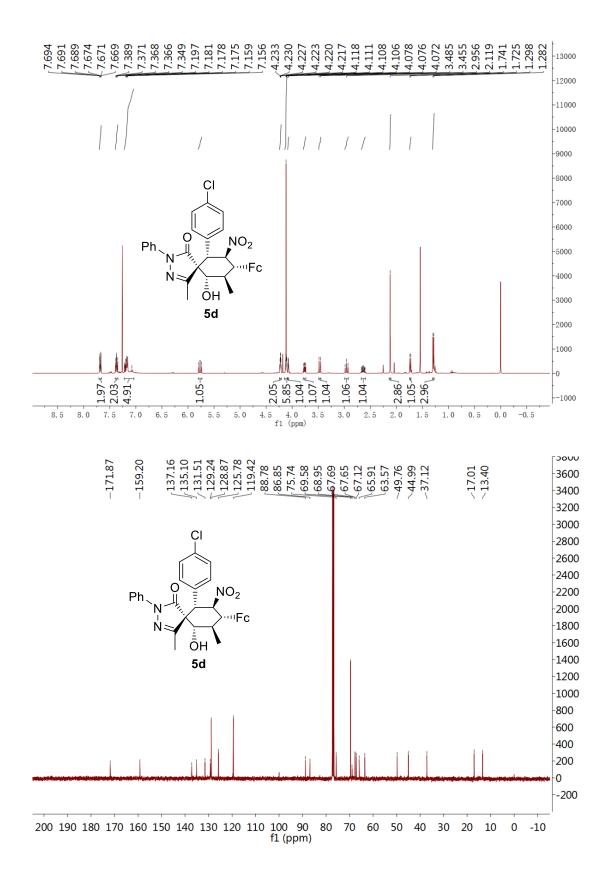

Detector A	Channel 2 254nn	n		
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)
1	14.545	174881	5181606	50.999
2	28.669	85194	4978536	49.001
Total		260076	10160143	100.000

Peak Analysis Report

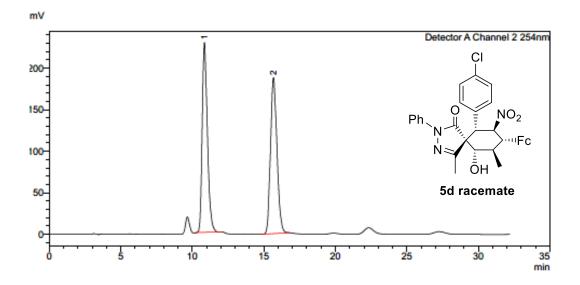
Detector A	Channel 2 254nn	n		
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)
1	14.522	1354	38693	0.171
2	28.583	378138	22540514	99.829
Total		379492	22579207	100.000

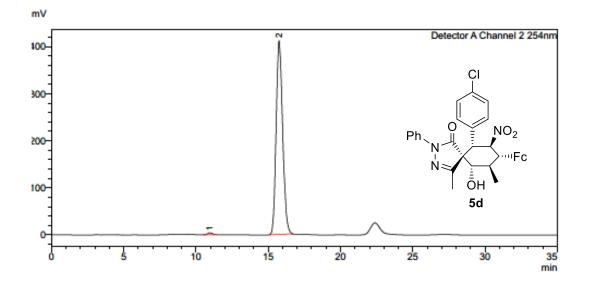


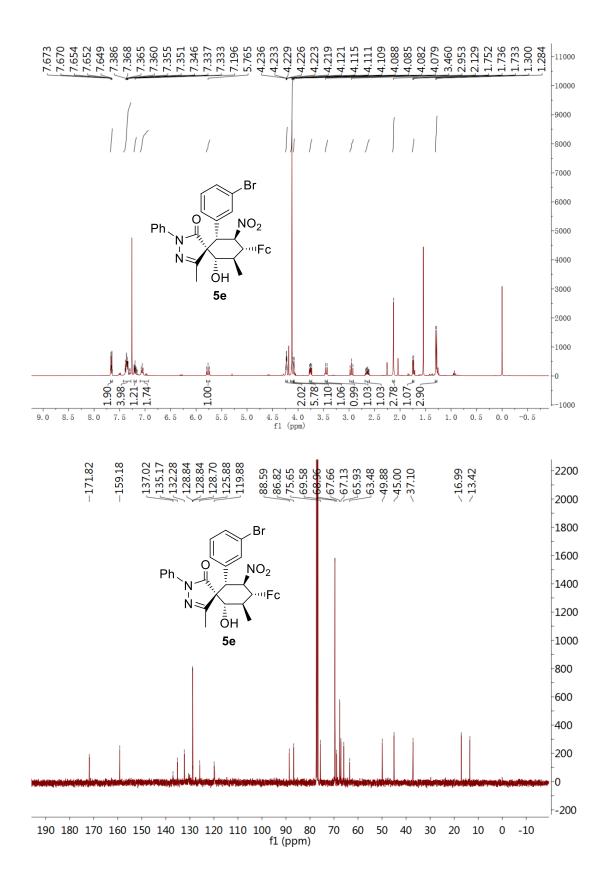

Detector A Channel 2 254nm


No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)
1	17.075	66028	2533715	51.573
2	24.588	48313	2379142	48.427
Total		114341	4912857	100.000

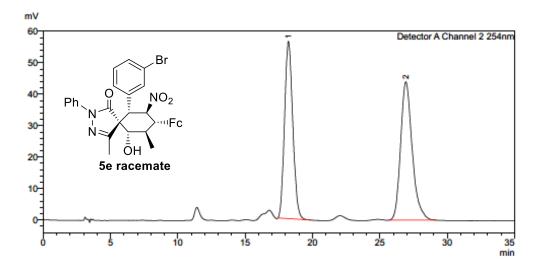
mV

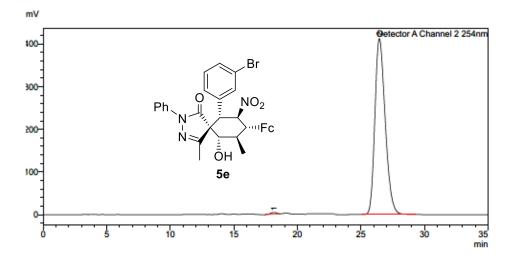

Detector A	Channel 2 254nn	n		
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)
1	17.111	1529	48693	0.352
2	24.521	271038	13788775	99.648
Total		272567	13837469	100.000

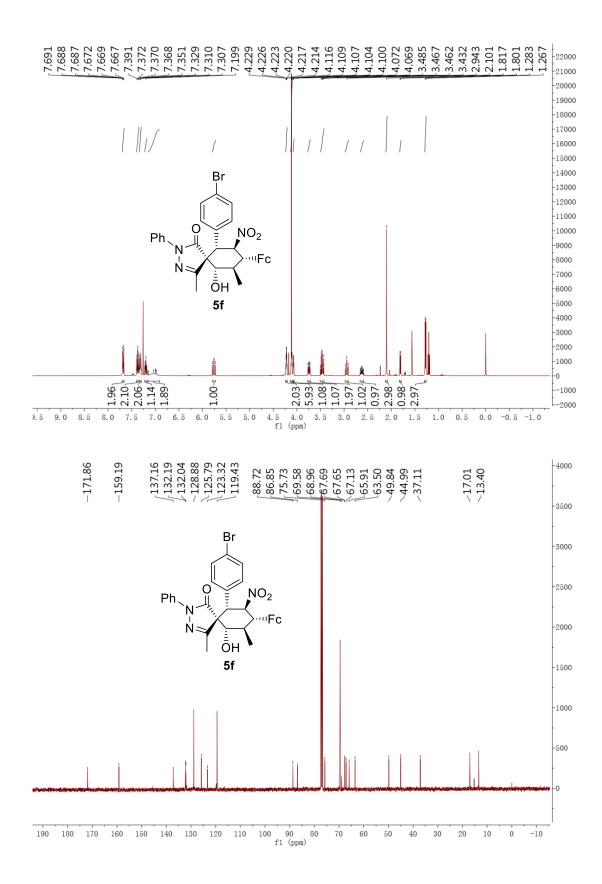



Detector A (Channel 2	2 254nm
--------------	-----------	---------

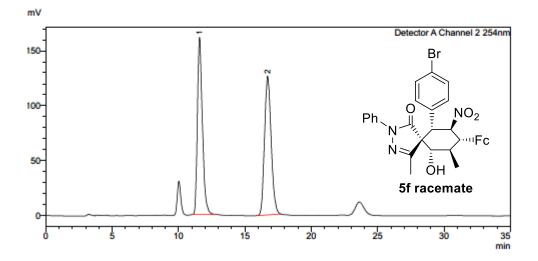
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)
1	10.848	228649	5759421	49.503
2	15.678	187857	5875182	50.497
Total		416507	11634603	100.000


Detector A Channel 2 254nm				
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)
1	10.955	4184	97596	0.755
2	15.751	411768	12826520	99.245
Total		415952	12924116	100.000

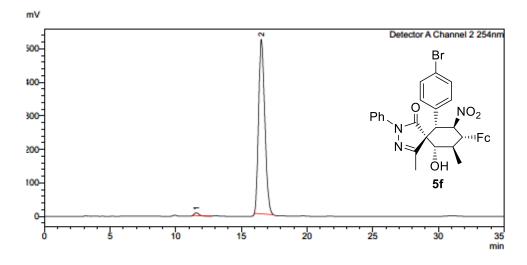


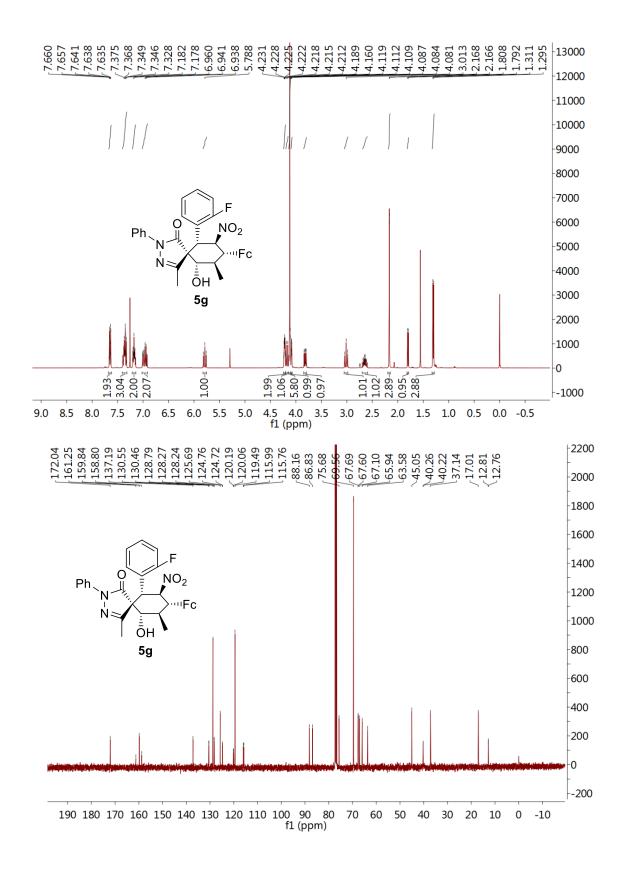

Detector A Channe	al 2 254nm
-------------------	------------

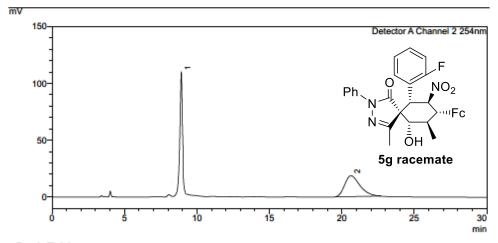
]	No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)
	1	18.209	56402	2381819	47.562
	2	26.928	43964	2625972	52.438
	Total		100366	5007791	100.000



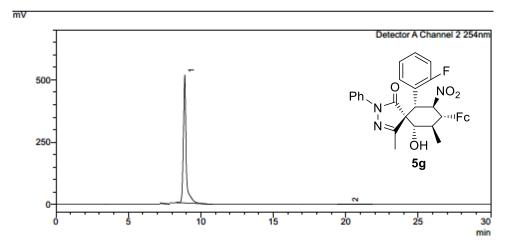
Detector A Channel 2 254nm							
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)			
1	18.155	4100	138508	0.590			
2	26.450	412732	23318272	99.410			
Total		416833	23456780	100.000			





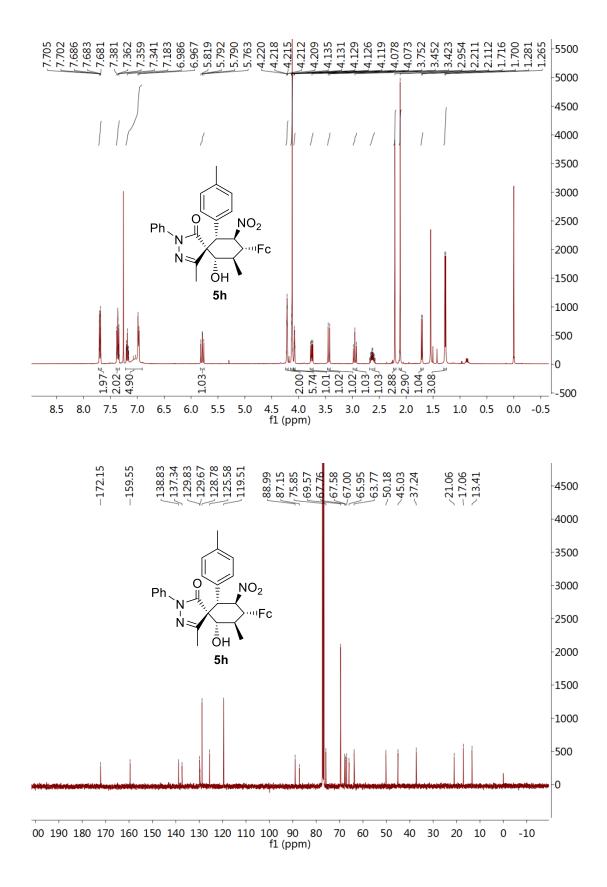

I	Detector A Channel 2 254nm							
]	No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)			
- 1	1	11.579	161089	4168699	48.896			
1	2	16.710	126259	4356951	51.104			
- 1	Total		287349	8525650	100.000			

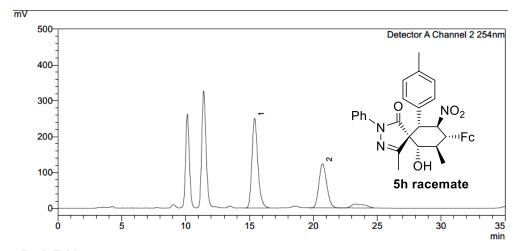
Detector A Channel 2 254nm						
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)		
1	11.557	8350	162267	0.942		
2	16.515	521059	17068853	99.058		
Total		529408	17231120	100.000		



<Peak Table>

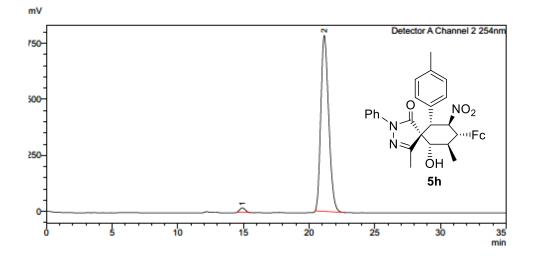
Detector A Channel 2 254nm

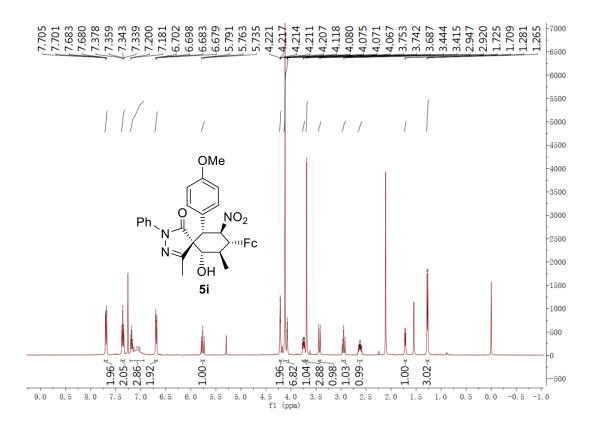

Peak#	Ret. Time	Area	Height	Conc.	Area%
1	8.920	1185509	97975	46.802	46.802
2	20.629	1347506	18361	53.198	53.198
Total		2533015	116336		100.000

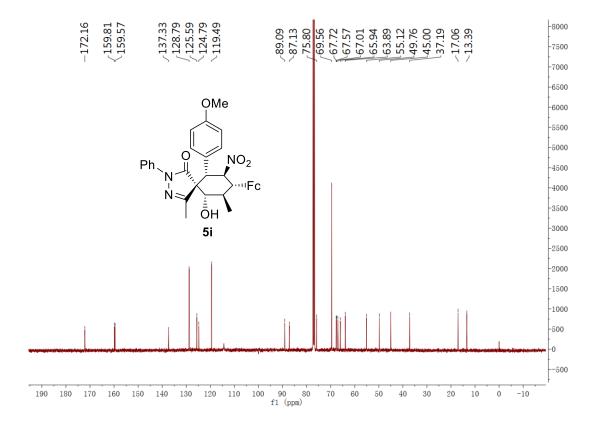

<Chromatogram>

<Peak Table>

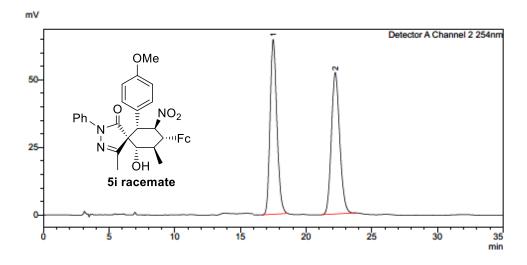
Detect	Detector A Channel 2 254nm							
Peak#	Peak# Ret. Time Ar		Height	Conc.	Area%			
1	8.890	6813290	514017	99.936	99.936			
2	20.221	4342	55	0.064	0.064			
Tota		6817631	514072		100.000			

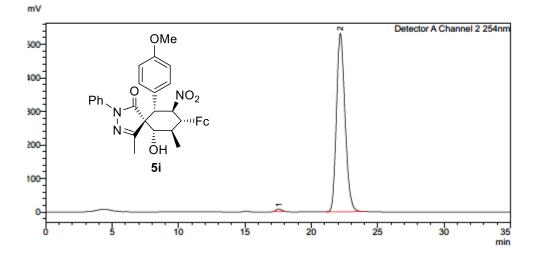


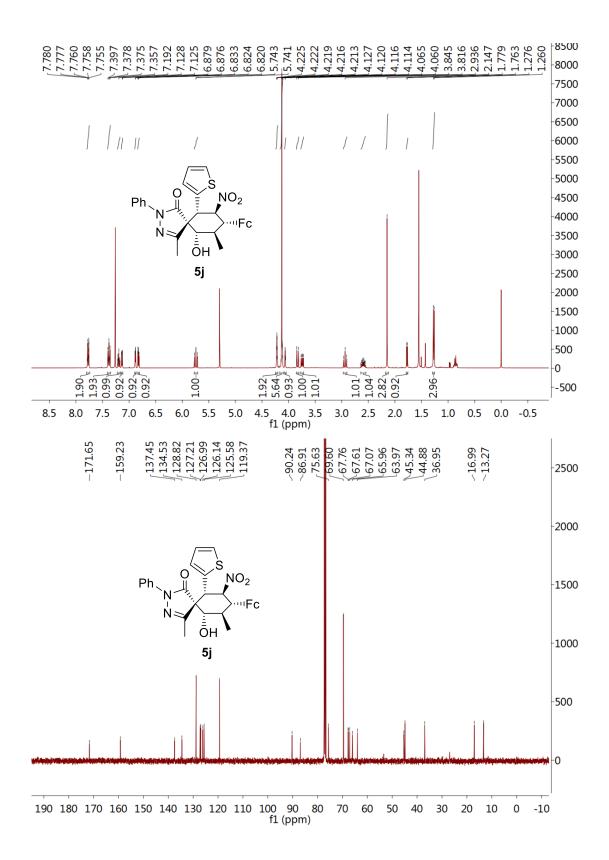

<Peak Table>


Detect	Detector A Channel 2 254nm						
Peak# Ret. Time		Area	Height	Conc.	Area%		
1	15.394	8045622	250034	57.522	57.522		
2	20.715	5941365	122587	42.478	42.478		
Total		13986987	372621		100.000		

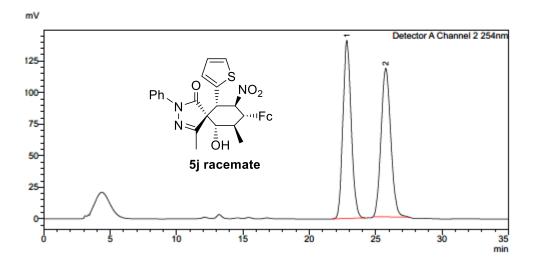
Detector A Channel 2 254nm


No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)
1	14.917	19699	548960	1.650
2	21.154	785684	32711437	98.350
Total		805383	33260397	100.000

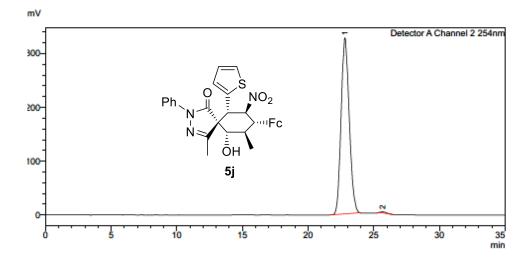


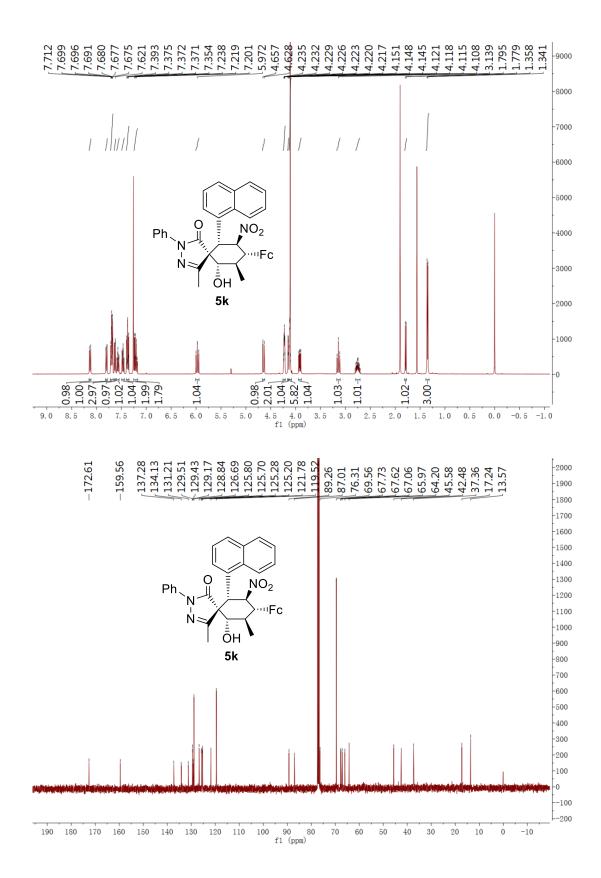


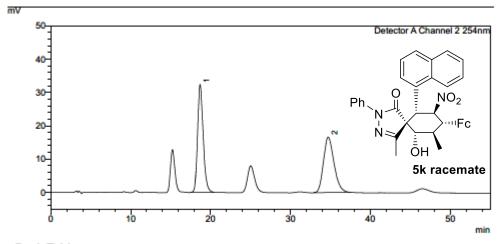
Detector A Channel 2 254nm						
No.	Ret. Time	Area (mAu*min)	Rel. Area (%)			
1	17.493	64706	2329282	50.155		
2	22.220	52358	2314849	49.845		
Total		117064	4644131	100.000		



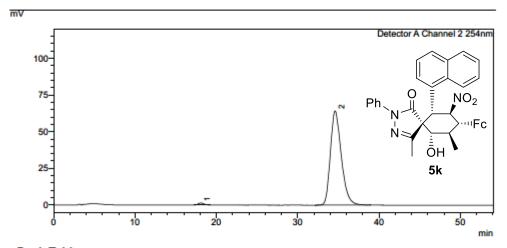
Detector A Channel 2 254nm						
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)		
1	17.544	7017	203568	0.845		
2	22.186	531335	23898685	99.155		
Total		538351	24102253	100.000		



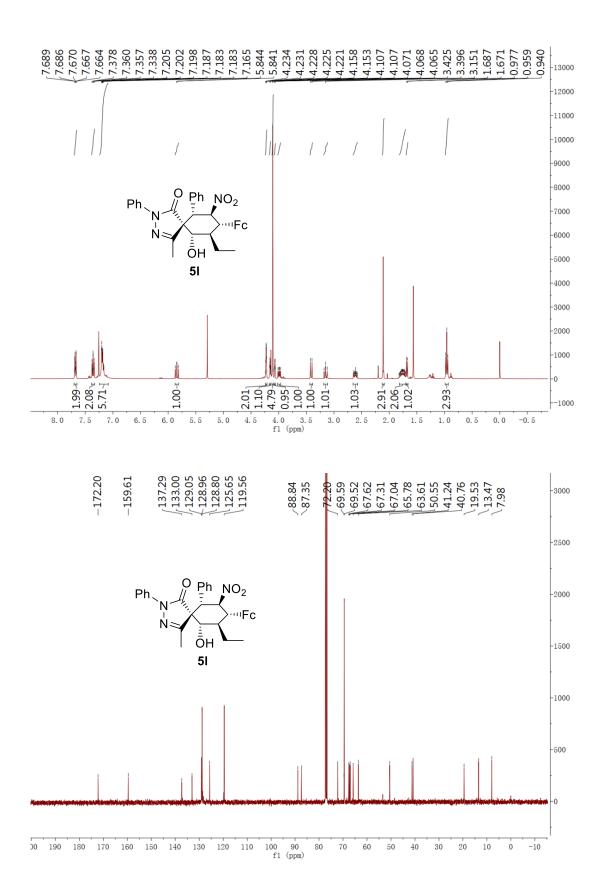


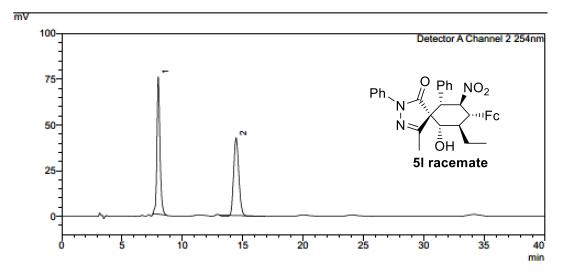

Detector A Channel 2 254nm							
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)			
1	22.825	140983	6101571	50.541			
2	25.757	117677	5970905	49.459			
Total		258660	12072476	100.000			

Detector A	Channel 2 254nn	n		
No.	Ret. Time	Height (mAu)	Area (mAu*min)	Rel. Area (%)
1	22.803	326941	14070994	99.656
2	25.664	1834	48624	0.344
Total		328775	14119618	100.000



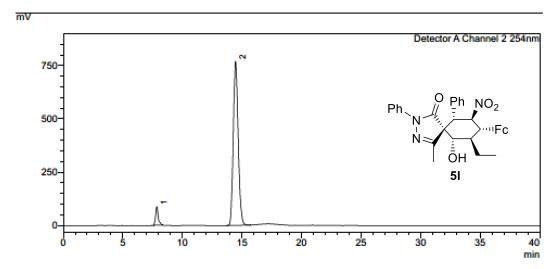
<Peak Table>


Detect	or A Chann	el 2 254nm			
Peak#	Ret. Time	Area	Height	Conc.	Area%
1	18.686	1561365	32389	50.680	50.680
2	34.719	1519490	16643	49.320	49.320
Total		3080855	49032		100.000

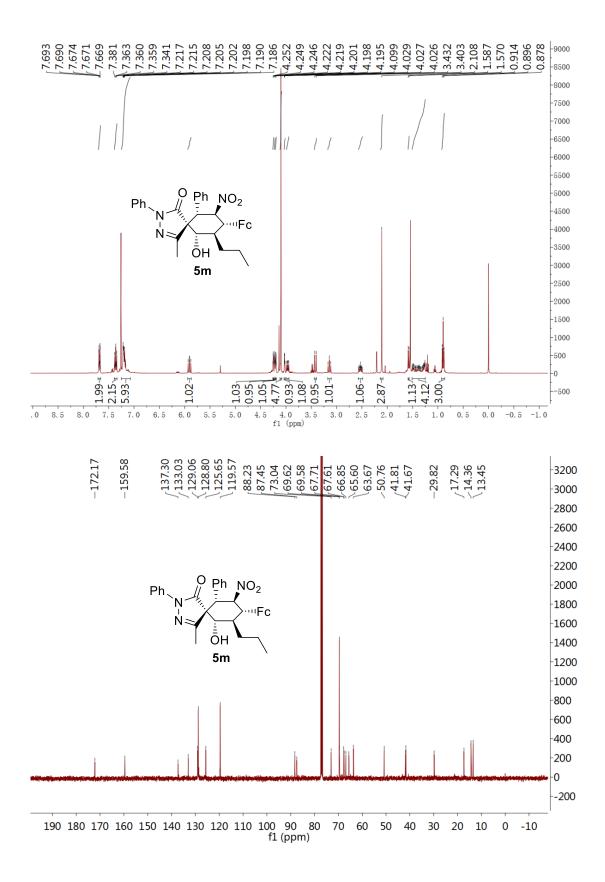

<Chromatogram>

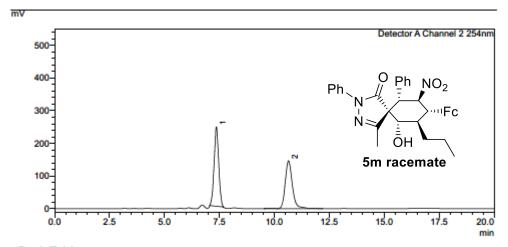
<Peak Table>

Detect	or A Chann	el 2 254nm			
Peak#	Ret. Time	Area	Height	Conc.	Area%
1	18.094	66853	1407	1.105	1.105
2	34.610	5984236	64148	98.895	98.895
Total		6051088	65554		100.000



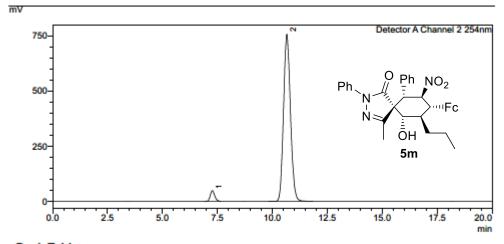
<Peak Table>


Detect	or A Chann	el 2 254nm			
Peak#	Ret. Time	Area	Height	Conc.	Area%
1	8.002	1321233	75342	52.206	52.206
2	14.449	1209596	42582	47.794	47.794
Total		2530829	117924		100.000


<Chromatogram>

<Peak Table>

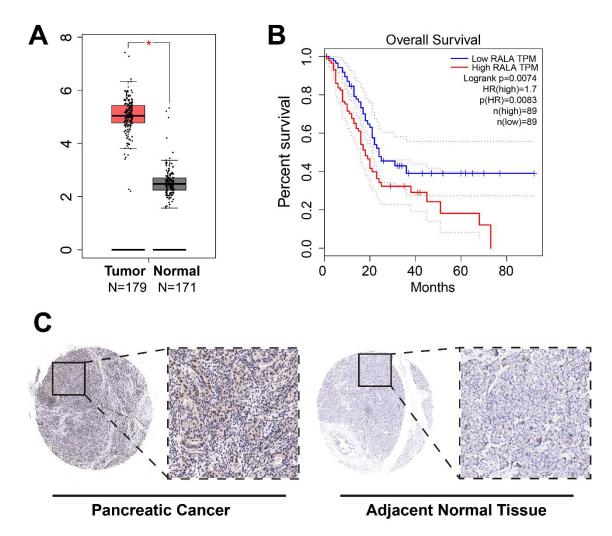
Detect	or A Channe	el 2 254nm			
Peak#	Ret. Time	Area	Height	Conc.	Area%
1	7.945	933575	32608	4.069	4.069
2	14.460	22010035	768765	95.931	95.931
Total		22943610	801373		100.000



<Peak Table>

Detect	or A Chann	el 2 254nm			
Peak#	Ret. Time	Area	Height	Conc.	Area%
1	7.361	3509524	242947	51.472	51.472
2	10.644	3308832	146539	48.528	48.528
Total		6818356	389486		100.000

<Chromatogram>

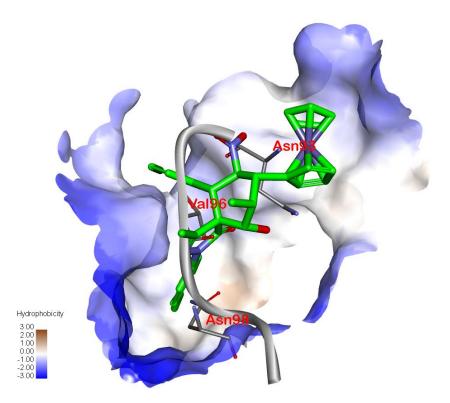


<Peak Table>

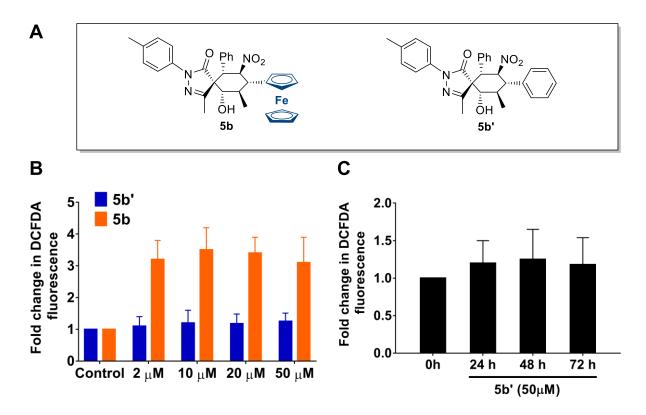
Detector A Channel 2 254nm

Peak#	Ret. Time	Area	Height	Conc.	Area%
1	7.267	668395	48029	3.889	3.889
2	10.659	16520480	758013	96.111	96.111
Total		17188875	806042		100.000

5. RalA mRNA and protein expression in pancreatic cancer tissues (Figure S1)


Figure S1. (A) Scatter plot of RalA expression in pancreatic cancer and adjacent normal tissues; (B) Kaplan-Meier plots revealed an association between increased RalA levels and reduced overall survival; (C) The immunohistochemistry staining of RalA protein in pancreatic cancer and adjacent normal tissues (×100).

Compound		IC ₅₀ Values (µM)	
Compound	RalA	PANC-1	HPAF-II
4a	40.41	19.75	28.29
4b	24.95	17.51	26.4
4 c	>50	36.04	49.42
4d	>50	32.05	41.32
4e	38.28	27.04	35.52
4f	>50	20.48	46.89
4g	37.18	30.46	38.47
4h	46.46	20.49	38.22
4 i	>50	40.88	35.33
4j	>50	37.09	47.44
4 k	29.82	19.94	28.42
41	35.27	17.93	27.82
4 m	>50	37.47	32.48
4n	23.6	18.03	16.97
4 0	42.5	25.98	29.06
5a	9.03	7.12	11.93
5b	1.2	1.58	4.79
5c	6.17	3.81	9.14
5d	10.9	8.62	11.1
5e	1.32	4.54	6.31
5f	2.92	5.47	6.58
5g	7.55	7.14	12.77
5h	3.98	14.23	13.12
5i	11.54	5.07	13.03
5j	3.58	7.58	11.17
5k	22.64	14.22	22.67
51	11.27	6.09	12.58
5m	8.19	8.04	11.76
5n	5.94	3.46	12.17
50	12.86	7.15	15.31


6. Preliminary screening of the anti-proliferative activity (Table S2) a,b

^{*a*} The enzymatic IC_{50} values were determined from HTRF based assays for RalA. The cytotoxicity IC_{50} values were determined by using MTT methods; ^{*b*} Each compound was tested in triplicate; the data are presented as the mean values.

7. The superposition of binding conforms of 9e and p53 peptide (Figure S2)

Figure S2. The potential binding modes of 5b to RalA. The binding mode of C3 exoenzyme peptide to RalA was shown in gray as a reference.

8. The intracellular ROS induced by 5b and 5b' (Figure S3)

Figure S3. (A) Chemical structures of **5b** and **5b'**; (B) The changes in fluorescence of the ROS probe DCFDA in PANC-1 cells treated with compound **5b** or **5b'** in different concentration; (C) The changes in fluorescence of the ROS probe DCFDA in PANC-1 cells treated with 50 μ M compound **5b'** under different incubation times.