Supporting Information

Visible Light-Induced Aryltrifluoromethylation of Hydroxy Alkenes *via* Radical Trifluoromethylation-Triggered Aryl and Heteroaryl Migration

Hao Wang, Qian Xu and Shouyun Yu*

State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China

Contents

1. General methods.	S2
2. General procedure for the difunctionalization of olefins	S3
3. Scale-up Experiment	S5
4. EPR Experiment	S6
5. Characterization of products	S7
6. NMR spectra for all compounds	S22

1. General methods.

DMSO was dried according to Purification of Common Laboratory Chemicals. Other reagents were used without further purification. Thin layer chromatography (TLC) was performed on EMD precoated plates (silica gel 60 F254, Art 5715) and visualized by fluorescence quenching under UV light and by staining with phosphomolybdic acid or potassium permanganate, respectively. Column chromatography was performed on EMD Silica Gel 60 (300–400 Mesh) using a forced flow of 0.5–1.0 bar. ¹H NMR (400 MHz), ¹³C NMR (100MHz) and ¹⁹F (376MHz) were measured on a Bruker AVANCE III–400 spectrometer. Chemical shifts are expressed in parts per million (ppm) with respect to the residual solvent peak. Coupling constants are reported as Hertz (Hz), signal shapes and splitting patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet.

Reaction Apparatus

Photochemical reaction was carried out under visible light irradiation by a 48W blue lamp at room temperature (about 25 °C).

2. General procedure for the difunctionalization of olefins

General Procedure. A 10 mL round bottom flask was equipped with a rubber septum and magnetic stir bar and was charged with **1a** (0.2 mmol, 1.0 equiv), **IV** (0.4 mmol, 2.0 equiv) and K₂HPO₄ (0.3mmol, 1.5 equiv). The flask was evacuated and backfilled with nitrogen for 3 times, DMSO (2.0 mL, 0.1 M) were added with a syringe under nitrogen. The mixture was then irradiated by a 48W blue lamp. After the reaction was complete (as judged by TLC analysis), the mixture was poured into a separatory funnel containing 20 mL of H₂O and 20 mL of Et₂O. The layers were separated and the aqueous layer was extracted with Et₂O (2 × 20 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration. The crude product was purified by flash chromatography on silica gel to afford the desired product **2a**.

The structures of substrates 1

3. Scale-up Experiment

A 100 mL round bottom flask was equipped with a rubber septum and magnetic stir bar and was charged with **1s** (1.11g, 4 mmol, 1.0 equiv), **IV** (5.51g, 8.0 mmol, 2.0 equiv) and K₂HPO₄ (1.05g, 6.0 mmol, 1.5 equiv). The flask was evacuated and backfilled with nitrogen for 3 times, DMSO (40.0 mL, 0.1 M) were added with a syringe under nitrogen. The mixture was then irradiated by a 96 W blue lamps(two 48 W blue lamps). After the reaction was complete (as judged by TLC analysis), the mixture was poured into a separatory funnel containing 100 mL of H₂O and 100 mL of Et₂O. The layers were separated and the aqueous layer was extracted with Et₂O (2 × 100 mL). The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure after filtration. The crude product **2s** in 90% yield (1.25g).

4. EPR Experiment.

Line A: A 10 mL round bottom flask equipped magnetic stir bar was charged with PBN (0.2 mmol) and DMSO (1 mL). EPR spectrum was recorded by Bruker EMX-10/12 EPR spectrometer immediately.

Line B: A 10 mL round bottom flask equipped magnetic stir bar was charged with PBN (0.2mmol), **IV** (0.2mmol), DMSO (1 mL) and was irradiated with 48W blue lamp for 1 hour. EPR spectrum was recorded by Bruker EMX-10/12 EPR spectrometer immediately.

Line C: A 10 mL round bottom flask equipped magnetic stir bar was charged with PBN (0.2mmol), **IV** (0.2mmol), DMSO (1 mL) and was in the dark condition for 1 hour. EPR spectrum was recorded by Bruker EMX-10/12 EPR spectrometer immediately.

5. Characterization of products

4,4,4-trifluoro-1,2-diphenylbutan-1-one (2a):¹ According to the general procedure: **1a** (0.2 mmol, 42.0 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2a** (44.4 mg, 80%) as a colorless oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97-7.94 (m, 2H), 7.52-7.48 (m, 1H), 7.40 (dd, *J* = 8.3, 6.9 Hz, 2H), 7.30 (d, *J* = 4.3 Hz, 4H), 7.26-7.21 (m, 1H), 4.91 (dd, *J* = 7.7, 5.4 Hz, 1H), 3.31 (dqd, *J* = 15.0, 10.8, 7.7 Hz, 1H), 2.54 (dqd, *J* = 15.1, 10.7, 5.5 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.61. ¹³C NMR (101 MHz, CDCl₃) δ 196.73, 137.42, 135.70, 133.36, 129.34, 128.82, 128.67, 128.05, 126.40 (q, *J* = 277.3 Hz), 47.20 (q, *J* = 2.5 Hz), 37.38 (q, *J* = 28.2 Hz).

4,4,4-trifluoro-1,2-di-p-tolylbutan-1-one (**2b**):¹ According to the general procedure: **1b** (0.2 mmol, 47.6 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2b** (49.3 mg, 81%) as a colorless oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 8.3 Hz, 2H), 7.19 (d, *J* = 3.2 Hz,2H), 7.17 (d, *J* = 3.1 Hz,

¹ Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., Int. Ed. 2013, 52, 6962.

2H), 7.10 (d, J = 7.9 Hz, 2H), 4.84 (dd, J = 7.6, 5.5 Hz, 1H), 3.34-3.20 (m, 1H), 2.51 (dqd, J = 15.0, 10.8, 5.5 Hz, 1H), 2.34 (s, 3H), 2.27 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.55. ¹³C NMR (101 MHz, CDCl₃) δ 196.42, 144.21, 137.50, 134.65, 133.17, 129.97, 129.34, 128.96, 128.87, 126.40 (q, J = 277.3 Hz), 46.63 (q, J = 2.6 Hz), 37.34 (q, J = 28.0 Hz), 6.93, 21.61, 21.02.

4,4,4-trifluoro-1,2-bis(4-methoxyphenyl)butan-1-one (**2c**): ² According to the general procedure: **1c** (0.2 mmol, 54.0 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2c** (42.1 mg, 62%) as a colorless oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 9.0 Hz, 2H), 7.21 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 9.0 Hz, 2H), 6.82 (d, *J* = 8.7 Hz, 2H), 4.82-4.79 (m, 1H), 3.81 (s, 3H), 3.74 (s, 3H), 3.24 (dqd, *J* = 15.0, 10.9, 7.5 Hz, 1H), 2.57-2.44 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.50. ¹³C NMR (101 MHz, CDCl₃) δ 195.37, 163.61, 159.04, 131.15, 129.82, 129.05, 128.59, 126.53 (q, *J* = 277.4 Hz), 114.65, 113.85, 55.44, 55.21, 45.95 (q, *J* = 2.5 Hz), 37.39 (q, *J* = 27.9 Hz).

² Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346.

4,4,4-trifluoro-1,2-bis(4-fluorophenyl)butan-1-one (2d):² According to the general procedure: **1d** (0.2 mmol, 49.2 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2d** (44.2 mg, 70%) as a colorless oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99-7.95 (m, 2H), 7.28-7.25 (m, 2H), 7.10-7.06 (m, 2H), 7.03-6.99 (m, 2H), 4.85 (dd, *J* = 7.4, 5.9 Hz, 1H), 3.24 (dqd, *J* = 15.1, 10.7, 7.4 Hz, 1H), 2.53 (dqd, *J* = 15.0, 10.6, 5.8 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.50, -104.01, -113.80. ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.07, 165.86 (d, *J* = 256.2 Hz), 162.31 (d, *J* = 247.6 Hz), 132.93 (d, *J* = 3.0 Hz), 131.81 (d, *J* = 2.9 Hz), 131.48 (d, *J* = 9.5 Hz), 129.63 (d, *J* = 8.2 Hz), 126.25 (d, *J* = 277.2 Hz), 116.42 (d, *J* = 21.6 Hz), 115.95 (d, *J* = 21.9 Hz), 46.35 (d, *J* = 2.8 Hz), 37.39 (q, *J* = 28.3 Hz).

1,2-bis(4-chlorophenyl)-4,4,4-trifluorobutan-1-one (**2e**):¹ According to the general procedure: **1e** (0.2 mmol, 55.6 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2e** (55.3 mg, 80%) as a colorless oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87-7.85 (m, 2H), 7.39-7.37 (m, 1H), 7.30-7.27 (m, 2H), 7.23-7.21 (m, 2H), 4.82 (dd, *J* = 7.3, 6.0 Hz, 1H), 3.24 (dqd, *J* = 15.1, 10.7, 7.3 Hz, 1H), 2.53 (dqd, *J* = 15.0, 10.6, 5.9 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.45. ¹³C NMR (101 MHz, CDCl₃) δ 195.22, 140.17, 135.48, 134.13, 133.65, 130.16, 129.67, 129.33, 129.13, 126.19 (d, *J* = 277.3 Hz), 46.58 (q, *J* = 2.7 Hz), 37.20 (q, *J* = 28.3 Hz).

diethyl 4,4'-(4,4,4-trifluoro-1-oxobutane-1,2-diyl)dibenzoate (2f): According to the general procedure: 1f (0.2 mmol, 70.8 mg), IV (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded 2f (50.6 mg, 60%) as a colorless oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 (d, *J* = 8.5 Hz, 2H), 7.99 (d, *J* = 8.4 Hz, 2H), 7.96 (d, *J* = 8.5 Hz, 2H), 7.37 (d, *J* = 8.3 Hz, 2H), 4.96 (t, *J* = 6.6 Hz, 1H), 4.40-4.32 (m, 3H), 3.37-3.23 (m, 1H), 2.66-2.52 (m, 1H), 1.40-1.34(m, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.41. ¹³C NMR (101 MHz, CDCl₃) δ 195.81, 165.84, 165.39, 141.60, 138.51, 134.65, 130.65, 130.35, 129.87, 128.64, 128.12, 126.16 (d, *J* = 277.3 Hz), 61.51, 61.13, 47.65, 37.05 (q, *J* = 28.6 Hz), 14.27, 14.23. HRMS (DART Positive) ([M+H]⁺) Calcd for C₂₂H₂₂F₃O₅: 423.1414; found: 423.1413.

4,4'-(4,4,4-trifluoro-1-oxobutane-1,2-diyl)bis(N,N-diethylbenzamide) (2g): According to the general procedure: **1g** (0.2 mmol, 81.6 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2g** (92.8 mg, 97%) as a white solid after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. m.p. 135-136 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H), 7.36-7.33 (m, 4H), 4.94 (dd, J = 7.8, 5.4 Hz, 1H), 3.56-3.51 (m, 4H), 3.38-3.26 (1H), 3.24-3.16 (4H), 2.62-2.49 (1H), 1.27-1.21 (m, 6H), 1.13-1.07 (m, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.55. ¹³C NMR (101 MHz, CDCl₃) δ 195.68, 170.44, 169.82, 142.17, 137.92, 136.97, 135.66, 129.07, 128.15, 127.43, 126.61, 126.20 (d, *J* = 277.2 Hz), 46.92 (d, *J* = 2.9 Hz), 43.28, 43.19, 39.25, 37.19 (q, *J* = 28.3 Hz), 14.17, 12.81. HRMS (DART Positive) ([M+H]⁺) Calcd for C₂₆H₃₂F₃N₂O₃: 477.2360; found: 477.2356.

4,4'-(4,4,4-trifluoro-1-oxobutane-1,2-diyl)bis(N-methoxy-N-methylbenzamide)

(2h): According to the general procedure: 1a (0.2 mmol, 76.8 mg), IV (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded 2h (88.7 mg, 98%) as a yellow oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 8.5 Hz, 2H), 7.69 (d, *J* = 8.5 Hz, 2H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 4.95 (dd, *J* = 7.6, 5.6 Hz, 1H), 3.50 (s, 6H), 3.34 (s, 3H), 3.33-3.24 (m, 4H), 2.64-2.51 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.50. ¹³C NMR (101 MHz, CDCl₃) δ 195.80, 168.99, 168.53, 139.34, 138.85, 136.71, 133.80, 129.32, 128.47, 128.42, 127.78, 126.19 (d, *J* = 277.2 Hz), 61.30, 61.08, 47.18 (q, *J* = 2.3 Hz), 37.16 (q, *J* = 28.5 Hz), 33.57, 33.30. HRMS (DART Positive) ([M+Na]⁺) Calcd for C₂₆H₃₁F₃N₂O₃Na: 475.1451; found: 475.1452.

1,2-bis(3-chlorophenyl)-4,4,4-trifluorobutan-1-one (2i):¹ According to the general procedure: **1i** (0.2 mmol, 55.6 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2i** (54.6 mg, 79%) as a colorless oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 (t, *J* = 1.9 Hz, 1H), 7.80 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.51 (ddd, *J* = 8.0, 2.1, 1.1 Hz, 1H), 7.37 (t, *J* = 7.9 Hz, 1H), 7.29-7.23 (m, 3H), 7.19 (dt, *J* = 6.9, 1.9 Hz, 1H), 4.81 (dd, *J* = 7.7, 5.5 Hz, 1H), 3.26 (dqd, *J* = 15.0, 10.6, 7.6 Hz, 1H), 2.60-2.47 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.59. ¹³C NMR (101 MHz, CDCl₃) δ 195.01, 138.67, 136.91, 135.30, 135.25, 133.61, 130.73, 130.10, 128.87, 128.44, 128.04, 127.44, 126.80, 126.26, 126.07 (d, *J* = 277.1 Hz), 46.90 (q, *J* = 2.5 Hz), 37.28 (q, *J* = 28.6 Hz).

1,2-bis(2-chlorophenyl)-4,4,4-trifluorobutan-1-one (**2j**):¹ According to the general procedure: **1j** (0.2 mmol, 55.6 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2j** (49.2 mg, 71%) as a colorless oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35-7.15 (m, 8H), 5.39 (t, *J* = 6.5 Hz, 1H), 3.31 (dqd, *J* = 15.1, 10.7, 6.7 Hz, 1H), 2.56 (dqd, *J* = 15.1, 10.6, 6.4 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.57. ¹³C NMR (101 MHz, CDCl₃) δ 198.43, 137.63, 134.22,

133.75, 131.96, 131.28, 130.55, 130.23, 129.39, 129.30, 129.00, 127.61, 126.61, 126.23 (d, *J* = 277.2 Hz), 35.33 (q, *J* = 29.0 Hz).

4,4,4-trifluoro-1,2-di(thiophen-2-yl)butan-1-one (**2k**): According to the general procedure: **1k** (0.2 mmol, 44.4 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2k** (30.1 mg, 52%) a yellow oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (dd, *J* = 3.9, 1.1 Hz, 1H), 7.67 (dd, *J* = 4.9, 1.1 Hz, 1H), 7.22 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.12 (dd, *J* = 4.9, 3.9 Hz, 1H), 6.99 (ddd, *J* = 3.5, 1.3, 0.6 Hz, 1H), 6.93 (dd, *J* = 5.1, 3.5 Hz, 1H), 5.01 (dd, *J* = 8.3, 5.0 Hz, 1H), 3.37-3.23 (m, 1H), 2.70-2.57 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.86. ¹³C NMR (101 MHz, CDCl₃) δ 188.34, 142.10, 139.18, 135.05, 133.14, 128.37, 127.31, 126.38, 125.89 (d, *J* = 277.4 Hz), 125.82, 43.21, 37.82 (q, *J* = 28.6 Hz). HRMS (DART Positive) ([M+H]⁺) Calcd for C₁₂H₁₀F₃OS₂: 291.0120; found: 291.0118.

4,4,4-trifluoro-1,2-di(pyridin-2-yl)butan-1-one (**2l**): According to the general procedure: **1l** (0.2 mmol, 42.4 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2l** (33.9 mg, 61%) as a yellow oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.64 (ddd, *J* = 4.8, 1.7, 0.9 Hz, 1H), 8.49 (ddd, *J* = 4.8, 1.9, 1.0 Hz, 1H), 8.05 (m, 1H), 7.78 (td, *J* = 7.7, 1.7 Hz, 1H), 7.59 (td, *J* = 7.6, 1.8

Hz, 1H), 7.53 (d, J = 7.8 Hz, 2H), 7.41 (ddd, J = 7.6, 4.8, 1.2 Hz, 1H), 7.09 (ddd, J = 7.4, 4.8, 1.4 Hz, 1H), 5.88 (t, J = 6.6 Hz, 1H), 3.27 (dqd, J = 15.2, 11.0, 6.7 Hz, 1H), 2.90 (dqd, J = 15.2, 10.9, 6.5 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.50. ¹³C NMR (101 MHz, CDCl₃) δ 196.80, 156.95, 151.97, 149.66, 148.81, 136.94, 136.67, 127.27, 126.84 (d, J = 276.8 Hz), 124.97, 123.11, 122.11, 47.29 (q, J = 2.4 Hz), 35.00 (q, J = 28.6 Hz). HRMS (DART Positive) ([M+Na]⁺) Calcd for Chemical Formula: C14H11F3N2ONa: Exact Mass: 303.0716; found: 303.0709.

2m

4,4,4-trifluoro-2-methyl-1,2-diphenylbutan-1-one (**2m**):² According to the general procedure: **1m** (0.2 mmol, 44.8 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2m** (29.5 mg, 50%) as a yellow oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42-7.31 (m, 8H), 7.24-7.20 (m, 2H), 3.06 (dq, *J* = 15.5, 11.1 Hz, 1H), 2.83 (dq, *J* = 15.5, 11.2 Hz, 1H), 1.82 (d, *J* = 1.4 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -58.58. ¹³C NMR (101 MHz, CDCl₃) δ 201.42, 140.81, 136.04, 131.85, 129.34, 129.26, 128.10, 127.77, 126.43 (d, *J* = 277.2 Hz), 126.30, 51.88, 43.41 (q, *J* = 26.8 Hz), 22.02.

phenyl(2-phenyl-3-(trifluoromethyl)tetrahydro-2H-pyran-2-yl)methanone (2n):³ According to the general procedure: 1n (0.2 mmol, 53.2 mg), IV (0.4 mmol, 175.3

³ Chen, Z.- M.; Bai, W.; Wang, S.-H.; Yang, B.-M.; Tu, Y.-Q.; Zhang, F.-M. Angew. Chem., Int. Ed. 2013, 52, 9781.

mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2n** (44.3 mg, 66%) as a yellow oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 (dd, *J* = 8.4, 1.4 Hz, 2H), 7.48-7.44 (m, 1H), 7.41-7.38 (m, 2H), 7.35-7.27 (m, 5H), 3.85-3.80 (m, 1H), 3.55 (ddd, *J* = 12.3, 8.9, 3.6 Hz, 1H), 3.09-2.99 (m, 1H), 2.22-2.12 (m, 1H), 2.07-1.99 (m, 1H), 1.87-1.80 (m, 1H), 1.76-1.65 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -60.08. ¹³C NMR (101 MHz, CDCl₃) δ 199.31, 139.88, 135.19, 132.71, 130.44, 128.44, 128.28, 127.92, 126.87, 126.30 (d, *J* = 281.6 Hz), 86.27, 64.15, 49.95 (q, *J* = 25.9 Hz), 23.61, 21.00 (q, *J* = 3.2 Hz).

(4-fluorophenyl)(2-(4-fluorophenyl)-3-(trifluoromethyl)tetrahydro-2H-pyran-2-y l)methanone (20):³ According to the general procedure: 10 (0.2 mmol, 60.4 mg), IV (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded 20 (33.9 mg, 46%) as a yellow oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02-7.98 (m, 2H), 7.35 (dd, *J* = 8.6, 5.2 Hz, 2H), 7.04-6.96 (m, 4H), 3.84 (dtd, *J* = 12.2, 4.6, 1.1 Hz, 1H), 3.52 (ddd, *J* = 12.5, 9.5, 3.5 Hz, 1H), 2.92 (pd, *J* = 10.0, 3.9 Hz, 1H), 2.16 (dtd, *J* = 14.3, 10.0, 4.5 Hz, 1H), 2.06-1.99 (m, 1H), 1.87-1.79 (m, 1H), 1.78-1.69(m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -60.25, -104.77, -113.27. ¹³C NMR (101 MHz, CDCl₃) δ 197.27, 165.48 (d, *J* = 255.6 Hz), 162.47 (d, *J* = 248.2 Hz), 135.72 (d, *J* = 3.5 Hz), 133.32 (d, *J* = 9.3 Hz), 131.13 (d, *J* = 3.2 Hz), 128.63 (d, *J* = 8.4 Hz), 126.07 (d, *J* = 281.3 Hz), 115.46 (d, *J* = 21.7 Hz), 115.17 (d, *J* = 21.7 Hz), 85.76, 64.37, 23.77, 20.97 (q, *J* = 2.7 Hz)..

(4-chlorophenyl)(2-(4-chlorophenyl)-3-(trifluoromethyl)tetrahydro-2H-pyran-2-y l)methanone (2p):³ According to the general procedure: 1p (0.2 mmol, 66.8 mg), IV (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded 2p (33.0 mg, 41%) as a yellow oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (d, *J* = 8.7 Hz, 1H), 7.34-7.28 (m, 6H), 3.84 (dt, *J* = 12.1, 4.7 Hz, 1H), 3.53 (ddd, *J* = 12.4, 9.2, 3.5 Hz, 1H), 2.93 (pd, *J* = 9.9, 3.9 Hz, 1H), 2.21-2.11 (m, 1H), 2.05-1.98 (m, 1H), 1.89-1.81 (m, 1H), 1.78-1.67 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -60.17. ¹³C NMR (101 MHz, CDCl₃) δ 197.58, 139.52, 138.28, 134.46, 133.03, 131.94, 128.75, 128.41, 128.21, 126.03 (d, *J* = 281.5 Hz), 85.75, 64.36, 50.19 (q, *J* = 26.0 Hz), 23.60, 20.89 (q, *J* = 2.8 Hz).

2q

4,4,4-trifluoro-1-(4-methoxyphenyl)-2-phenylbutan-1-one (**2q**):¹ According to the general procedure: **1q** (0.2 mmol, 48.0 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2q** \cdot **2q'** (48.6 mg, 79%, 5:1) as a yellow oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, *J* = 8.9 Hz, 2H), 7.32-7.20 (m, 5H), 6.87 (d, *J* = 8.9 Hz, 2H), 4.86 (dd, *J* = 7.6, 5.5 Hz, 1H), 3.81 (s, 3H), 3.29 (dqd, *J* = 15.0, 10.9, 7.6 Hz, 1H), 2.53 (dqd, *J* = 15.0, 10.8, 5.5 Hz, 1H). ¹⁹F NMR (376 MHz,

CDCl₃) δ -64.57. ¹³C NMR (101 MHz, CDCl₃) δ 195.16, 163.68, 137.91, 131.19, 129.26, 128.56, 127.96, 127.71, 126.47 (d, *J* = 277.2 Hz), 113.87, 55.46, 46.80 (q, *J* = 2.5 Hz), 37.37 (q, *J* = 28.1 Hz).

4,4,4-trifluoro-1-phenyl-2-(pyridin-3-yl)butan-1-one (**2r**):¹ According to the general procedure: **1r** (0.2 mmol, 42.2 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2r** \sim **2r'** (52.0 mg, 93%, 3.5:1) as a yellow oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.65 (d, *J* = 2.4 Hz, 1H), 8.51 (dd, *J* = 4.8, 1.6 Hz, 1H), 7.97-7.94 (m, 2H), 7.62 (dt, *J* = 8.0, 2.0 Hz, 1H), 7.57-7.52 (m, 1H), 7.45-7.41 (m, 2H), 7.27-7.23 (m, 1H), 4.97 (t, *J* = 6.7 Hz, 1H), 3.27 (dqd, *J* = 15.1, 10.6, 7.2 Hz, 1H), 2.59 (dqd, *J* = 15.1, 10.5, 6.2 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.39. ¹³C NMR (101 MHz, CDCl₃) δ 196.13, 149.78, 149.34, 135.08, 135.08, 133.84, 133.14, 128.90, 128.78, 126.14 (q, *J* = 277.2 Hz), 124.05, 44.40 (q, *J* = 2.7 Hz), 37.18 (q, *J* = 28.5 Hz).

4,4,4-trifluoro-1-phenyl-2-(4-(trifluoromethyl)phenyl)butan-1-one(2s):1According to the general procedure: 1s (0.2 mmol, 55.6 mg), IV (0.4 mmol, 175.3mg), K2HPO4 (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded 2s (58.1 mg, 84%) asa yellow oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction

time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96-7.93 (m, 2H), 7.58 (d, J = 8.2 Hz, 2H), 7.54-7.52 (m, 1H), 7.46-7.41 (m, 4H), 4.99 (t, J = 6.6 Hz, 1H), 3.29 (dqd, J = 15.1, 10.7, 7.3 Hz, 1H), 2.58 (dqd, J = 15.0, 10.6, 5.9 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.77, -64.50. ¹³C NMR (101 MHz, CDCl₃) δ 196.14, 141.28, 135.29, 133.78, 130.22 (q, J = 32.7 Hz), 128.86, 128.79, 128.50, 126.30 (q, J = 3.8 Hz), 126.19 (q, J = 277.2 Hz), 123.81 (q, J = 272.2 Hz), 46.85 (q, J = 2.6 Hz), 37.28 (q, J = 28.6 Hz).

4-(4,4,4-trifluoro-1-oxo-1-phenylbutan-2-yl)benzonitrile (**2t**):¹ According to the general procedure: **1t** (0.2 mmol, 47.0 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2t** (46.1 mg, 76%) as a yellow oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (dd, J = 8.4, 1.3 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.58-7.53(m, 1H), 7.47-7.41 (m, 4H), 4.99 (t, J = 6.7 Hz, 1H), 3.32-3.18 (m, 1H), 2.66-2.53 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.33. ¹³C NMR (101 MHz, CDCl₃) δ 195.80, 142.46, 135.10, 133.96, 133.07, 128.96, 128.93, 128.77, 126.10 (d, J = 277.2 Hz), 118.20, 112.06, 47.00 (q, J = 2.7 Hz), 37.16 (q, J = 28.6 Hz).

4-(benzo[d]thiazol-2-yl)-6,6,6-trifluoro-1-phenylhexan-1-one (**2u**)⁴: According to the general procedure: **1u** (0.2 mmol, 59.0 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2u** (64.1 mg, 88%) as a yellow oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.87-7.84 (m, 3H), 7.54-7.46 (m, 2H), 7.42-7.36 (m, 3H), 3.75-3.65 (m, 1H),3.03-2.88 (m, 3H), 2.70-2.57(m, 1H), 2.47-2.28 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.05. ¹³C NMR (101 MHz, CDCl₃) δ 198.62, 172.04, 153.07, 136.56, 134.67, 133.21, 128.59, 127.96, 126.23, 126.12 (d, *J* = 277.4 Hz), 125.24, 123.00, 121.74, 39.35 (q, *J* = 28.5 Hz), 37.96 (q, *J* = 2.7 Hz), 35.28, 30.00.

6,6,6-trifluoro-1-phenyl-4-(thiazol-2-yl)hexan-1-one (2v):⁴ According to the general procedure: **1v** (0.2 mmol, 49.0 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2v** (58.9 mg, 94%) as a yellow oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88-7.85 (m, 2H), 7.74 (d, *J* = 3.3 Hz, 1H), 7.56-7.52(m, 1H), 7.45-7.41 (m, 2H), 7.25 (d, *J* = 3.3 Hz, 1H), 3.67-3.60 (m, 1H), 2.93-2.88 (m, 2H), 2.87-2.77 (m, 1H), 2.64-2.51 (m, 1H), 2.39-2.19 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.10. ¹³C NMR (101 MHz, CDCl₃) δ 198.73, 171.11, 142.74, 136.60, 133.19, 128.60, 127.93, 126.14 (d, *J* = 277.4 Hz), 118.55, 39.61 (q, *J* = 28.3 Hz), 36.90 (q, *J* = 2.7 Hz), 35.24, 30.27.

⁴ Wu, Z.; Wang, D.; liu, Y.; Huan, L.; Zhu, C. J. Am. Chem. Soc. 2017, 139, 1388.

6,6,6-trifluoro-1-phenyl-4-(pyridin-2-yl)hexan-1-one (**2w**):⁴ According to the general procedure: **1w** (0.2 mmol, 47.8 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2w** (42.4 mg, 69%) as a yellow oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.60 (ddd, *J* = 4.8, 1.9, 1.0 Hz, 1H), 7.85-7.82 (m, 2H), 7.61 (td, *J* = 7.6, 1.9 Hz, 1H), 7.55-7.51 (m, 1H), 7.44-7.39 (m, 2H), 7.18-7.12 (m, 2H), 3.26-3.19 (m, 1H), 2.91-2.71 (m, 3H), 2.54-2.40 (m, 1H), 2.22 (q, *J* = 7.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.02. ¹³C NMR (101 MHz, CDCl₃) δ 199.31, 161.32, 149.81, 136.69, 136.56, 133.08, 128.56, 127.94, 126.66 (q, *J* = 277.3 Hz), 123.55, 122.05, 40.64, 38.96 (q, *J* = 27.6 Hz), 35.61, 29.85.

13-(2,2,2-trifluoroethyl)-6,7,8,13-tetrahydro-5H-dibenzo[a,d][9]annulen-5-one (**2x**):⁵ According to the general procedure: **1x** (0.2 mmol, 52.8 mg), **IV** (0.4 mmol, 175.3 mg), K₂HPO₄ (0.3 mmol, 52.3 mg) in DMSO (2.0 mL) afforded **2x** (23.2 mg, 35%) as a yellow oil after purification on silica gel (Petroleum ether: EtOAc = 10:1). Reaction time: 10 h. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (dd, *J* = 7.4, 1.6 Hz, 1H), 7.32 (td, *J* = 7.4, 1.7 Hz, 1H), 7.28 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.25-7.19 (m, 1H), 7.18-7.11 (m, 4H), 3.36-3.30 (m, 2H), 3.25-3.11 (m, 2H), 2.93-2.85 (m, 1H),

⁵ Li, L.; Li, Z.-L.; Wang, F.-L.; Guo, Z.; Cheng, Y.-F.; Wang, N.; Dong, X.-W.; Fang, C.; Liu, J.; Hou, C.; Tan, B.; Liu, X.-Y. *Nat. Commun.* **2016**, *7*, 13852.

2.74-2.64 (m, 2H), 2.54-2.31 (m, 3H), 1.72-1.63 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.15. ¹³C NMR (101 MHz, CDCl₃) δ 206.91, 141.90, 140.37, 139.48, 137.64, 131.20, 130.89, 130.73, 129.23, 127.24, 126.94, 126.03 (q, *J* = 277.6 Hz), 125.45, 44.27, 39.84 (q, *J* = 27.5 Hz), 38.09, 36.24 (q, *J* = 2.4 Hz), 29.17, 26.77.

6. NMR spectra for all compounds

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

. 9.5 9.0 8.5 .0 7.5 . 7.0 . 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 6.5

