Supporting Information

Green Carbon Disulfide Surrogate via Combination of Potassium Sulfide and Chloroform for Benzothiazine-thione and Benzothiazole-thione Constructions

Wei Tan,^{*a*} Cuihong Wang^{*, *a*} and Xuefeng Jiang^{*, *a*,*b*}

^aShanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China. ^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China. <u>xfjiang@chem.ecnu.edu.cn</u>

Index

I.	General Information	2
II.	Synthesis of Starting Materials	3
III.	Optimization for Carbon Disulfide Surrogate	5
IV.	The Synthetic Procedure and Data for Compounds 2 and 3	6
V.	The Application of The Reaction	20
VI.	X-ray Crystallography Analysis of Compound 2a and 3a	22
VII.	Mechanistic Studies	24
VIII.	Reference	29
IX.	NMR Spectra	31

I. General Information

All experiments were conducted under N₂ atmosphere. For column chromatography, 300-400 mesh silica gel was employed. ¹H NMR were recorded on 400 MHz spectrometer (Bruker AVANCE) in CDCl₃ or DMSO-d₆ solution and ¹³C NMR were recorded on 100 MHz spectrometer in CDCl₃ or DMSO-d₆ solution. Chemical shifts are reported in parts per million (ppm). Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), integration. Unless otherwise noted, commercially available reagents were used as received.

Mass spectroscopy:

Mass spectra were in general recorded on a Shimadzu GCMS-QP2010 Ultra and a HP 5989A mass selective detector.

IR:

TENSOR (27) Series FT-IR Spectrometers.

II. Synthesis of Starting Materials.

1) General preparation of 1a-1k.^[1]

To a solution of substituted *o*-iodobenzaldehyde (1.00 equiv) in MeOH at 0 $^{\circ}$ C was added various amines (2.00 equiv) slowly, and the reaction mixture was stirred at r.t for 3 h. The reaction mixture was again cooled to 0 $^{\circ}$ C, and NaBH₄ (1.50 equiv) was added every 10 min in three portions. Then it was stirred at r.t for 1 h, and the solvent was evaporated to 1/3 of its original volume under reduced pressure. Saturated sodium bicarbonate was added, and the reaction mixture was stirred at r.t for 10 min. Aqueous phase was separated and extracted with CH₂Cl₂ three times. Combined organic layers were dried over K₂CO₃, filtered, and concentrated. The obtained residue was purified by silica gel column chromatography (PE/EA as eluting reagents) to afford corresponding product. PE = petroleum ether, EA = ethyl acetate.

2) General preparation of 11-1n.^[2]

To a solution of substituted *o*-iodobenzaldehyde (1.00 equiv) in MeOH at 0 $^{\circ}$ C was added various amines (2.00 equiv) slowly. The reaction mixture was stirred at r.t for 3 h, and the solvent was removed in vacuo. The crude imine was dissolved in toluene, cooled to -78 $^{\circ}$ C, and BF₃ Et₂O (4.0 equiv) was added under N₂. After 10 min at -78 $^{\circ}$ C, the corresponding grignard reagent (2.5 equiv) was added dropwise. The resulting mixture was stirred at room temperature for 5 h, poured into 2 N aqueous NaOH, and extracted with Et₂O. The organic layer was dried and concentrated. The residue was purified by chromatography to give target product.

3) Preparation of 1p.^[3]

To a solution of *o*-iodobenzaldehyde (771 mg, 3.0 mmol) in *t*-BuOH (30 mL) was added 1,3-diaminopropane (245 mg, 3.3 mmol). The mixture was stirred at 70 $^{\circ}$ C for 30 min, and then K₂CO₃, (1.24 g, 9.0 mmol) and I₂ (495 mg, 3.9 mmol) were added. After stirring at this temperature for 3 h, the mixture was quenched with sat. Na₂SO₃ until the iodine color almost disappeared. The organic layer was separated and concentrated in vacuo. The resulting solid was recrystallised from MeOH–Et₂O to give 2-(2-iodophenyl)-1,4,5,6-tetrahydropyrimidine hydroiodide. The resulting crystal was dissolved with H₂O, and then pH was adjusted to 12–14 with 2N NaOH. The whole was extracted with CHCl₃. The extract was dried over MgSO₄. The filtrate was concentrated in vacuo, and the resulting solid was recrystallised from CHCl₃–*n*-hexane to give 2-(2-iodophenyl)-1,4,5,6-tetrahydropyrimidine **1p** in 74% yield (632 mg) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.0 Hz, 1H), 7.38 – 7.30 (m, 2H), 7.06 – 7.01 (m, 1H), 3.45 – 3.40 (m, 4H), 1.90 – 1.82 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 142.6, 139.3, 130.3, 129.3, 128.2, 95.2, 42.1, 20.4. HRMS (EI) Calcd for C₁₀H₁₁IN₂ 285.9967, Found 285.9962.

4) General preparation of raw material for 3f-3r.^[4]

To a solution of substituted *o*-iodoaniline (1.0 equiv) and the corresponding aldehyde (1.5 equiv) were dissolved in MeOH. Acetic acid (1.5 equiv) was added and the reaction was stirred at r.t for 30 min. Then, the reaction was cooled down to 0 $\$ and sodium cyanoborohydride (1.3 equiv) was added in two portions over 30 min. The reaction was allowed to stir from 0 $\$ to r.t overnight (or until complete by TLC). The reaction was quenched with a saturated *aq*. solution of sodium bicarbonate and then extracted with Et₂O. The combined organic layers were dried with Na₂SO₄, filtered and the solvent was removed under reduced pressure. The residue was purified by chromatography to give target product.

5) Data of raw material for Ferrocene derivate 3q.

According to the above procedure, the title compound was isolated in 82% yield (performed on 4.0 mmol scale) as an orange solid. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.6 Hz, 1H), 7.26 – 7.23 (m, 1H), 6.62 (d, *J* = 8.0 Hz, 1H), 6.48 (t, *J* = 7.6 Hz, 1H), 4.31 – 4.29 (m, 7H), 4.21 (s, 2H), 3.95 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.2, 139.0, 129.5, 118.6, 110.6, 86.2, 85.1, 68.8, 68.0, 67.5, 43.1. HRMS (EI) Calcd for C₁₇H₁₆FeIN 416.9677, Found 416.9681.

6) Data of raw material for Citronellal derivate 3r.

According to the above procedure, the title compound was isolated in 69% yield (performed on 4.0 mmol scale) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, J = 7.6, 1.2 Hz, 1H), 7.25 – 7.19 (m, 1H), 6.63 – 6.54 (m, 1H), 6.47 – 6.42 (m, 1H), 5.13 (t, J = 7.2 Hz, 1H), 4.20 (s, 1H), 3.24 – 3.12 (m, 2H), 2.09 – 1.97 (m, 2H),

1.76 – 1.69 (m, 4H), 1.66 – 1.59 (m, 4H), 1.56 – 1.49 (m, 1H), 1.44 – 1.37 (m, 1H), 1.29 – 1.21 (m, 1H), 0.98 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 138.9, 131.4, 129.4, 124.6, 118.4, 110.6, 85.4, 42.2, 37.0, 36.2, 30.4, 25.7, 25.4, 19.6, 17.7. **HRMS** (EI) Calcd for C₁₆H₂₄IN 357.0954, Found 357.0957.

7) Data of raw material for Lidocaine derivate 3s.

According to the modified procedure,^[5] the title compound was isolated in 66% yield (performed on 6.0 mmol scale) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.73 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.31 – 7.26 (m, 1H), 7.09-7.07 (m, 1H), 7.06 – 7.03 (m, 2H), 6.70 (d, *J* = 8.4 Hz, 1H), 6.64 – 6.57 (m, 1H), 4.05 (s, 2H), 2.14 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 138.9, 131.4, 129.4, 124.6, 118.4, 110.6, 85.4, 42.2, 37.0, 36.2, 30.4, 25.7, 25.4, 19.6, 17.7. HRMS (ESI⁺) Calcd for C₁₆H₁₈IN₂O⁺ [M + H⁺] 381.0464, Found 381.0475.

III. Optimization for Carbon Disulfide Surrogate.^{*a,b*}

		Catalyst, 2,2'-dip	S S S S S S S S S S S S S S S S S S S		
	N.	Bn [S], CHCl ₃ , base, s	olvent	N.Bn	
	1a			2a	
Entry	Catalyst	Sulfur source [S]	Base	Solvent	Yield (%)
1	CuBr ₂	K_2S	NaOH	CH ₃ CN	33
2^c	CuBr ₂	S_8	NaOH	CH ₃ CN	16
3	CuBr ₂	Na ₂ S [·] 9H ₂ O	NaOH	CH ₃ CN	trace
4	CuBr ₂	Na ₂ S	NaOH	CH ₃ CN	15
5 ^{<i>c</i>}	CuBr ₂	NaHS [·] H ₂ O	NaOH	CH ₃ CN	11
6	CuBr ₂	thiourea	NaOH	CH ₃ CN	n.r
7	CuBr ₂	$Na_2S_2O_3$	NaOH	CH ₃ CN	n.r
8^d	CuBr ₂	K_2S	NaOH	CH ₃ CN	n.r
9		K_2S	NaOH	CH ₃ CN	n.r
10	CuBr	K_2S	NaOH	CH ₃ CN	28
11	Cu(OAc)2 [·] H ₂ O	K_2S	NaOH	CH ₃ CN	39
12	Cu(OAc)2 [·] H ₂ O	K_2S	NaOH	DMSO	32
13	Cu(OAc)2 [·] H ₂ O	K_2S	NaOH	DMF	30
14	Cu(OAc) ₂ ·H ₂ O	K_2S	NaOH	NMP	33
15	Cu(OAc) ₂ ·H ₂ O	K_2S	NaOH	dioxane	n.r

16	Cu(OAc) ₂ ·H ₂ O	K_2S	NaOH	toluene	n.r
17	$Cu(OAc)_2 H_2O$	K_2S	NaOH	ClCH ₂ CH ₂ Cl	n.r
18	$Cu(OAc)_2 H_2O$	K_2S	NaOH	^t BuOH	n.r
19	Cu(OAc) ₂ ·H ₂ O	K_2S		CH ₃ CN	trace
20	Cu(OAc)2 [·] H ₂ O	K_2S	KOH	CH ₃ CN	44
21	Cu(OAc) ₂ ·H ₂ O	K_2S	^t BuOK	CH ₃ CN	54
22	Cu(OAc) ₂ ·H ₂ O	K_2S	LiOH	CH ₃ CN	69
23^e	$Cu(OAc)_2H_2O$	K_2S	LiOH	CH ₃ CN	82

^{*a*}The reaction conditions: **1a** (0.1 mmol), Cu(OAc)₂:H₂O (0.01 mmol), 2,2'-dipyridyl (0.01 mmol), K₂S (0.3 mmol), CHCl₃ (1.0 mmol), base (0.45 mmol), was stirred in solvent (1.0 mL) at 70 °C under N₂ atmosphere for 16 h. ^{*b*}Isolated yields.^{*c*1}H NMR yield. ^{*d*}Air instead of N₂ as atmosphere. ^{*e*}LiOH (0.6 mmol) and K₂S (0.4 mmol) at 80 °C.

IV. The Synthetic Procedure and Data for Compounds 2 and 3.

To a solution of substrate **1** (0.2 mmol, 1.0 equiv), $Cu(OAc)_2 H_2O$ (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in MeCN (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere. After the reaction was finished, the solvent was removed under vacuum and purification by column chromatography on silica gel afforded product **2** (PE/EA as eluting reagents). PE = petroleum ether, EA = ethyl acetate.

To a solution of substrate **1** (0.2 mmol, 1.0 equiv), $Cu(OAc)_2H_2O$ (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was stirred at 80

^oC for 16 h under N₂ atmosphere. After the reaction was finished, the solvent was removed under vacuum and purification by column chromatography on silica gel afforded product **3** (PE/EA as eluting reagents). NMP = N-methyl pyrrolidone, PE = petroleum ether, EA = ethyl acetate.

The reaction mixture of N-benzyl-1-(2-iodophenyl)methanamine (0.2 mmol, 1.0 equiv), Cu(OAc)₂·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv),

LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in MeCN (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **2a** in 82% yield (44.4 mg) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.20 (m, 6H), 7.19 – 7.12 (m, 2H), 6.97 (d, *J* = 7.6 Hz, 1H), 5.29 (s, 2H), 4.36 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 191.5, 134.8, 133.0, 129.5, 128.9, 128.2, 128.0, 127.5, 126.0, 123.7, 57.2, 55.1. **IR** (neat) 3025, 2964, 2876, 1515, 1434, 1336, 1226, 1142, 1006, 750 cm⁻¹. **HRMS** (EI) Calcd for C₁₅H₁₃NS₂ 271.0489, Found 271.0486.

The reaction mixture of N-(2-iodobenzyl)aniline (0.2 mmol, 1.0 equiv), $Cu(OAc)_2$ [·]H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0

equiv) and CHCl₃ (2 mmol, 10 equiv) in MeCN (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **2b** in 67% yield (34.4 mg) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.45 (m, 2H), 7.42 – 7.37 (m, 2H), 7.35 – 7.29 (m, 4H), 7.24 (d, *J* = 7.2 Hz, 1H), 4.92 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 145.3, 133.6, 129.7, 129.1, 128.3, 127.6, 126.4, 126.3, 124.0, 59.7. **IR** (neat) 2922, 1636, 1591, 1410, 1316, 1263, 1198, 1129, 1056, 749 cm⁻¹. **HRMS** (EI) Calcd for C₁₄H₁₁NS₂ 257.0333, Found 257.0330.

The reaction mixture of N-(2-iodobenzyl)propan-2-amine (0.2 mmol, 1.0 equiv), $Cu(OAc)_2$ ·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv),

LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in MeCN (2.0 mL) was

stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **2c** in 76% yield (33.8 mg) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.24 (m, 1H), 7.22 – 7.18 (m, 3H), 5.67 – 5.60 (m, 1H), 4.31 (s, 2H), 1.23 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 190.4, 133.5, 130.2, 128.8, 127.6, 125.6, 123.9, 52.3, 49.0, 19.3. **IR** (neat) 2974, 2930, 1478, 1423, 1326, 1259, 1156, 1056, 955, 747 cm⁻¹. **HRMS** (EI) Calcd for C₁₁H₁₃NS₂ 223.0489, Found 223.0490.

The reaction mixture of N-(2-iodobenzyl)butan-1-amine (0.2 mmol, 1.0 equiv), Cu(OAc)₂·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv),

LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in MeCN (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **2d** in 80% yield (37.8 mg) as a pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.31 – 7.24 (m, 1H), 7.24 – 7.15 (m, 3H), 4.47 (s, 2H), 4.08 – 3.95 (m, 2H), 1.70 – 1.63 (m, 2H), 1.34 – 1.24 (m, 2H), 0.88 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.1, 133.4, 129.6, 128.9, 127.5, 125.9, 123.9, 56.4, 54.9, 28.93, 20.0, 13.8. **IR** (neat) 2957, 2929, 2870, 1636, 1489, 1419, 1338, 1160, 1117, 1002, 747 cm⁻¹. **HRMS** (EI) Calcd for C₁₂H₁₅NS₂ 237.0646, Found 237.0645.

The reaction mixture of N-(2-iodobenzyl)prop-2-en-1-amine (0.2 mmol, 1.0 equiv), Cu(OAc)₂·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv),

LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in MeCN (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **2e** in 71% yield (31.2 mg) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.32 (m, 1H), 7.30 – 7.26 (m, 1H), 7.26 – 7.22 (m, 2H), 5.92 – 5.82 (m, 1H), 5.33 – 5.86 (m, 2H), 4.75 (dt, J = 6.0, 1.2 Hz, 2H), 4.51 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 133.1, 130.6, 129.5, 128.9, 127.6, 126.1, 123.8, 119.6, 56.8, 55.2. **IR** (neat) 3083, 2923, 1643, 1488, 1420, 1336, 1241, 1153, 1013, 922, 761 cm⁻¹. **HRMS** (EI) Calcd for C₁₁H₁₁NS₂ 221.0333, Found 221.0336.

The reaction mixture of N-(2-iodobenzyl)cyclopropanamine (0.2 mmol, 1.0 equiv), $Cu(OAc)_2$ 'H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv),

LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in MeCN (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **2f** in 65% yield (28.6 mg) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.29 – 7.23 (m, 1H), 7.23 – 7.14 (m, 3H), 4.52 (s, 2H), 3.19 – 3.07 (m, 1H), 1.03 – 0.98 (m, 2H), 0.76 – 0.69 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 194.0, 133.1, 130.5, 128.8, 127.5, 125.7, 123.7, 57.5, 36.9, 10.1. **IR** (neat) 3072, 2987, 1443, 1420, 1346, 1320, 1260, 1172, 1013, 966, 756 cm⁻¹. **HRMS** (EI) Calcd for C₁₁H₁₁NS₂ 221.0333, Found 221.0332.

ThereactionmixtureofN-benzyl-1-(2-iodo-3-methylphenyl)methanamine(0.2 mmol, 1.0 equiv)equiv), Cu(OAc)₂·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol,

6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in MeCN (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **2g** in 67% yield (38.1 mg) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.29 (m, 5H), 7.18 – 7.11 (m, 2H), 6.87 (d, *J* = 7.2 Hz, 1H), 5.36 (s, 2H), 4.42 (s, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 134.8, 132.8, 132.4, 130.0, 129.2, 128.9, 128.1, 128.1, 127.3, 123.7, 57.2, 55.4, 19.4, 19.4. **IR** (neat) 2958, 1496, 1449, 1418, 1340, 1227, 1141, 998, 771, 701 cm⁻¹. **HRMS** (EI) Calcd for C₁₆H₁₅NS₂ 285.0646, Found 285.0648.

ThereactionmixtureofN-benzyl-1-(2-iodo-4-(trifluoromethyl)phenyl)methanamine(0.2 mmol, 1.0 equiv), Cu(OAc)₂:H₂O (0.02 mmol, 0.1 equiv),

2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in MeCN (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **2h** in 82% yield (55.5 mg) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.48 (d, *J* = 8.0 Hz, 1H),

7.36 – 7.33 (m, 3H), 7.32 – 7.28 (m, 2H), 7.16 (d, J = 8.0 Hz, 1H), 5.36 (s, 2H), 4.49 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 190.3, 134.5, 134.3, 133.1, 131.5 (q, $J_{C-F} = 33$ Hz), 129.0, 128.4, 128.1, 126.5, 124.3 (q, $J_{C-F} = 3.0$ Hz), 123.4 (q, $J_{C-F} = 271$ Hz), 120.8 (q, $J_{C-F} = 4.0$ Hz), 57.3, 54.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.74. IR (neat) 3028, 2963, 1648, 1496, 1399, 1323, 1263, 1174, 1142, 1083, 699 cm⁻¹. HRMS (EI) Calcd for C₁₆H₁₂F₃NS₂ 339.0363, Found 339.0367.

ThereactionmixtureofN-benzyl-1-(2-iodo-4-methoxyphenyl)methanamine(0.2mmol, 1.0 equiv), Cu(OAc)₂·H₂O(0.02 mmol, 0.1 equiv),

2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in MeCN (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **2i** in 64% yield (38.5 mg) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 5H), 6.94 (d, *J* = 8.0 Hz, 1H), 6.78 – 6.73 (m, 2H), 5.36 (s, 2H), 4.39 (s, 2H), 3.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 160.0, 134.8, 134.1, 128.9, 128.1, 128.0, 126.9, 121.5, 113.7, 108.6, 57.2, 55.5, 54.6. **IR** (neat) 2927, 1602, 1496, 1476, 1338, 1266, 1128, 1013, 697 cm⁻¹. **HRMS** (EI) Calcd for C₁₆H₁₅NOS₂ 301.0595, Found 301.0597.

ThereactionmixtureofN-benzyl-1-(5-chloro-2-iodophenyl)methanamine(0.2 mmol,1.0 equiv),Cu(OAc)₂·H₂O(0.02 mmol,0.1 equiv),

2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in MeCN (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **2j** in 70% yield (42.7 mg) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.33 (m, 3H), 7.32 – 7.30 (m, 3H), 7.18 (d, *J* = 8.0 Hz, 1H), 7.04 (d, *J* = 2.0 Hz, 1H), 5.34 (s, 2H), 4.40 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 134.6, 133.3, 131.6, 131.1, 130.0, 129.1, 128.4, 128.1, 126.2, 125.0, 57.3, 54.6. **IR** (neat) 2924, 2853, 1652, 1493, 1401, 1335, 1227, 1125, 1031, 819, 704 cm⁻¹. **HRMS** (EI) Calcd for C₁₅H₁₂ClNS₂ 305.0100, Found

305.0105.

ThereactionmixtureofN-benzyl-1-(2-iodo-5-methylphenyl)methanamine(0.2 mmol,1.0 equiv),Cu(OAc)₂·H₂O(0.02 mmol, 0.1 equiv),

2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in MeCN (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **2k** in 72% yield (41.2 mg) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.29 (m, 5H), 7.13 (s, 2H), 6.87 (s, 1H), 5.36 (s, 2H), 4.40 (s, 2H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 137.7, 134.9, 129.7, 129.6, 129.4, 128.9, 128.1, 128.0, 126.7, 123.6, 57.3, 55.2, 21.0. **IR** (neat) 2962, 2924, 2855, 1654, 1484, 1328, 1221, 1132, 1016, 817, 700 cm⁻¹. **HRMS** (EI) Calcd for C₁₆H₁₅NS₂ 285.0646, Found 285.0648.

The reaction mixture of N-benzyl-1-(2-iodophenyl)nonan-1-amine (0.2 mmol, 1.0 equiv), $Cu(OAc)_2$ ·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in

MeCN (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **2l** in 54% yield (41.3 mg) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.20 (m, 4H), 7.19 – 7.16 (m, 2H), 7.13 – 7.08 (m, 2H), 6.80 (d, *J* = 7.6 Hz, 1H), 6.12 (d, *J* = 15.2 Hz, 1H), 4.63 (d, *J* = 15.2 Hz, 1H), 4.47 (dd, *J* = 9.6, 5.6 Hz, 1H), 1.97 – 1.89 (m, 1H), 1.68 – 1.60 (m, 1H), 1.21 – 1.18 (m, 3H), 1.16 – 1.11 (m, 9H), 0.78 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.08, 135.1, 131.7, 131.1, 128.8, 128.5, 128.0, 128.0, 127.1, 126.8, 123.8, 65.84, 6.74, 31.7, 30.5, 29.2, 29.1, 29.0, 26.2, 22.6, 14.0. **IR** (neat) 2925, 2854, 1636, 1479, 1455, 1340, 1147, 1127, 752, 699 cm⁻¹. **HRMS** (EI) Calcd for C₂₃H₂₉NS₂ 383.1741, Found 383.1740.

The reaction mixture of N-benzyl-1-(2-iodophenyl)propan-1-amine (0.2 mmol, 1.0 equiv), Cu(OAc)₂·H₂O (0.02 mmol, 0.1 equiv),

2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in MeCN (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **2m** in 50% yield (30.0 mg) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.28 (m, 4H), 7.25 – 7.23 (m, 2H), 7.20 – 7.16 (m, 2H), 6.88 (d, *J* = 7.6 Hz, 1H), 6.23 (d, *J* = 15.2 Hz, 1H), 4.69 (d, *J* = 15.2 Hz, 1H), 4.47 (dd, *J* = 9.6, 5.2 Hz, 1H), 2.09 – 2.00 (m, 1H), 1.84 – 1.74 (m, 1H), 0.79 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.1, 135.1, 131.3, 131.1, 128.8, 128.5, 128.0, 127.9, 127.0, 127.0, 123.8, 67.3, 56.8, 23.8, 10.9. IR (neat) 2965, 2927, 1654, 1479, 1437, 1340, 1150, 1126, 1002, 752, 698 cm⁻¹. HRMS (EI) Calcd for C₁₇H₁₇NS₂ 299.0802, Found 299.0800.

ThereactionmixtureofN-benzyl-1-(2-iodophenyl)-2-methylbutan-1-amine(0.2 mmol, 1.0 equiv)equiv), Cu(OAc)₂·H₂O(0.02 mmol, 0.1 equiv)2,2'-dipyridylmmol, 0.1 equiv), K₂S(0.8 mmol, 4.0 equiv)LiOH(1.2 mmol, 6.0 mmol)

equiv) and CHCl₃ (2 mmol, 10 equiv) in MeCN (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **2n** in 53% yield (34.7 mg) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.24 (m, 6H), 7.22 – 7.14 (m, 2H), 6.88 (d, J = 7.2 Hz, 1H), 6.15 (d, J = 14.8 Hz, 1H), 4.69 (d, J = 15.2 Hz, 1H), 4.67 – 4.61 (m, 1H), 2.09 – 2.00 (m, 1H), 1.47 – 1.40 (m, 1H), 1.31 – 1.26 (m, 1H), 0.89 (d, J = 6.8 Hz, 3H), 0.79 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.2, 135.1, 131.7, 131.1, 128.8, 128.5, 128.2, 128.1, 127.1, 126.5, 123.9, 63.7, 56.5, 39.0, 24.4, 23.2, 21.5. IR (neat) 3060, 2956, 2868, 1485, 1425, 1343, 1146, 1126, 1001, 700 cm⁻¹. HRMS (EI) Calcd for C₁₉H₂₁NS₂ 327.1115, Found 327.1113.

The reaction mixture of 1-(2-iodophenyl)-1,2,3,4-tetrahydroisoquinoline^[6] (0.2 mmol, 1.0 equiv), $Cu(OAc)_2$ ·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in MeCN (2.0 mL) was

stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **20** in 51% yield (28.8 mg) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.37 (m, 4H), 7.35-7.31 (m, 1H), 7.24 – 7.13 (m, 2H), 6.41 (d, *J* = 7.6 Hz, 1H), 5.49 (s, 1H), 5.00 (d, *J* = 12.0 Hz, 1H), 3.45 (td, *J* = 12.8, 3.2 Hz, 1H), 2.98 – 2.75 (m, 2H). ³C NMR (100 MHz, CDCl₃) δ 191.5, 136.3, 135.2, 134.0, 130.6, 128.6, 128.5, 128.5, 128.4, 127.7, 127.1, 124.6, 124.6, 64.7, 64.7, 49.1, 28.8. **IR** (neat) 3061, 2920, 2868, 1467, 1408, 1192, 1148, 993, 889, 754 cm⁻¹. **HRMS** (EI) Calcd for C₁₆H₁₃NS₂ 283.0489, Found 283.0492.

The reaction mixture of N-benzyl-2-iodoaniline (0.2 mmol, 1.0 equiv), $Cu(OAc)_2$ 'H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0

equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **3a** in 84% yield (43.2 mg) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 1H), 7.36 – 7.28 (m, 5H), 7.28 – 7.24 (m, 2H), 7.12 – 7.10 (m, 1H), 5.71 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 190.2, 141.5, 134.3, 128.9, 127.9, 127.6, 127.1, 127.0, 124.8, 121.3, 113.0, 49.5. **IR** (neat) 2921, 1640, 1372, 1317, 1209, 1196, 1132, 990, 748, 701 cm⁻¹. **HRMS** (EI) Calcd for C₁₄H₁₁NS₂ 257.0333, Found 257.0334.

The reaction mixture of 2-iodo-N-methylaniline^[7] (0.2 mmol, 1.0 equiv), $Cu(OAc)_2$:H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0

equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **3b** in 86% yield (31.1 mg) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.47 (dd, J = 7.6, 0.4 Hz, 1H), 7.44 – 7.39 (m, 1H), 7.32 – 7.28 (m, 1H), 7.20 (d, J = 8.4 Hz, 1H), 3.85 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 189.4, 142.0, 127.6, 127.0, 124.8, 121.3, 112.3, 33.1. **IR** (neat) 3053, 1460, 1427, 1342, 1314, 1267, 1138, 1102, 966, 744 cm⁻¹. **HRMS** (EI) Calcd for C₈H₇NS₂ 181.0020, Found 181.0019.

The reaction mixture of N-allyl-2-iodoaniline^[8] (0.2 mmol, 1.0 equiv), Cu(OAc)₂:H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0

equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **3c** in 71% yield (29.2 mg) as a pale yellow solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.0 Hz, 1H), 7.41 – 7.36 (m, 1H), 7.31 – 7.28 (m, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 5.96 – 5.87 (m, 1H), 5.29 (d, *J* = 10.4 Hz, 1H), 5.20 (d, *J* = 17.2 Hz, 1H), 5.11 – 5.09 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 189.4, 141.3, 129.5, 127.6, 126.9, 124.7, 121.3, 118.7, 112.8, 48.3. **IR** (neat) 2957, 1461, 1378, 1375, 1314, 1221, 1134, 981, 930, 749 cm⁻¹. **HRMS** (EI) Calcd for C₁₀H₉NS₂ 207.0176, Found 207.0179.

The reaction mixture of N-cyclopentyl-2-iodoaniline^[9] (0.2 mmol, 1.0 equiv), Cu(OAc)₂·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was

stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **3d** in 55% yield (25.8 mg) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.0 Hz, 1H), 7.39 – 7.32 (m, 2H), 7.30 – 7.25 (m, 1H), 6.18 – 6.09 (m, 1H), 2.24 – 2.10 (m, 4H), 2.09 – 2.00 (m, 2H), 1.90 – 1.79 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 189.7, 139.8, 127.6, 126.1, 124.2, 121.5, 113.4, 58.3, 27.3, 25.5. **IR** (neat) 2951, 2869, 1459, 1400, 1376, 1263, 1131, 1171, 995, 747 cm⁻¹. **HRMS** (EI) Calcd for C₁₂H₁₃NS₂ 235.0489, Found 235.0493.

The reaction mixture of 2-iodo-N-isopropylaniline^[10] (0.2 mmol, 1.0 equiv), $Cu(OAc)_2 H_2O$ (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0

equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **3e** in 53% yield (22.1 mg) as a pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 7.6 Hz, 1H),

7.37 (t, J = 7.6 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 6.12 (s, 1H), 1.64 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 189.1, 140.3, 127.5, 126.2, 124.1, 121.4, 113.6, 50.2, 19.0. IR (neat) 2977, 2932, 1462, 1397, 1318, 1284, 1265, 1130, 1089, 747 cm⁻¹. HRMS (EI) Calcd for C₁₀H₁₁NS₂ 209.0333, Found 209.0336.

The reaction mixture of 2-iodo-N-(naphthalen-1-ylmethyl)aniline (0.2 mmol, 1.0 equiv), Cu(OAc)₂:H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was stirred at 80 $^{\circ}$ C for 16 h under N₂ atmosphere,

affording compound **3f** in 74% yield (45.4 mg) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.4 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.25 – 7.23 (m, 1H), 7.18 (t, *J* = 8.0 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 1H), 6.81 (d, *J* = 7.2 Hz, 1H), 6.14 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 190.2, 141.6, 133.8, 130.6, 129.1, 128.6, 128.3, 127.5, 127.1, 126.7, 126.1, 125.5, 124.9, 123.0, 122.3, 121.3, 113.2, 47.4. **IR** (neat) 2924, 1684, 1503, 1460, 1402, 1299, 1264, 1219, 1113, 986 cm⁻¹. **HRMS** (EI) Calcd for C₁₈H₁₃NS₂ 307.0489, Found 307.0494.

The reaction mixture of 2-iodo-N-(naphthalen-2-ylmethyl)aniline (0.2 mmol, 1.0 equiv), Cu(OAc)₂·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was stirred at 80 $^{\circ}$ C for 16 h under N₂ atmosphere,

affording compound **3g** in 78% yield (47.9 mg) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.75 – 7.64 (m, 3H), 7.62 (s, 1H), 7.43 – 7.30 (m, 4H), 7.18 – 7.12 (m, 2H), 7.08 – 7.01 (m, 1H), 5.76 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 190.2, 141.4, 133.2, 132.9, 131.8, 128.9, 127.8, 127. 7, 127.5, 126.9, 126.4, 126.2, 126.0, 124.8, 124.8, 121.3, 113.1, 49.7. **IR** (neat) 3049, 2968, 1458, 1372, 1345, 1315, 1197, 1137, 985, 750 cm⁻¹. **HRMS** (EI) Calcd for C₁₈H₁₃NS₂ 307.0489, Found 307.0477.

The reaction mixture of N-(furan-2-ylmethyl)-2-iodoaniline (0.2 mmol, 1.0 equiv), Cu(OAc)₂·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was stirred at 80 $^{\circ}$ C for 16 h under N₂ atmosphere,

affording compound **3h** in 79% yield (39.1 mg) as a white solid. ¹**H** NMR (400 MHz, CDCl₃) δ 7.50 – 7.45 (m, 2H), 7.44 – 7.39 (m, 1H), 7.34 (d, *J* = 1.2 Hz, 1H), 7.31 – 7.21 (m, 1H), 6.50 (d, *J* = 3.2 Hz, 1H), 6.33 – 6.32 (m, 1H), 5.64 (s, 2H). ¹³**C** NMR (101 MHz, CDCl₃) δ 189.4, 147.8, 142.6, 141.4, 127.4, 126.9, 124.8, 121.2, 113.0, 110.7, 110.1, 42.4. **IR** (neat) 3115, 3068, 2926, 1461, 1364, 1314, 1250, 1179, 1101, 975, 739 cm⁻¹. **HRMS** (EI) Calcd for C₁₂H₉NOS₂ 247.0126, Found 247.0127.

The reaction mixture of 2-iodo-N-(thiophen-2-ylmethyl)aniline (0.2 mmol, 1.0 equiv), $Cu(OAc)_2$ ·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP

(2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **3i** in 83% yield (43.7 mg) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.0 Hz, 1H), 7.39 – 7.31 (m, 2H), 7.28 – 7.24 (m, 1H), 7.21 – 7.18 (m, 2H), 6.93 (dd, *J* = 4.8, 3.6 Hz, 1H), 5.79 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 189.4, 141.0, 136.1, 127.6, 127.6, 126.9, 126.7, 126.0, 124.9, 121.4, 112.6, 44.3. **IR** (neat) 3070, 2965, 1460, 1379, 1342, 1248, 1201, 1155, 971, 752, 707 cm⁻¹. **HRMS** (EI) Calcd for C₁₂H₉NS₃ 262.9897, Found 262.9900.

The reaction mixture of N-benzyl-2-iodo-5-methylaniline (0.2 mmol, 1.0 equiv), $Cu(OAc)_2H_2O$ (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv),

LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **3j** in 65% yield (35.2 mg) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 6H), 7.09

(d, J = 8.0 Hz, 1H), 6.92 (s, 1H), 5.68 (s, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.3, 141.6, 137.4, 134.3, 128.9, 127.8, 127.0, 126.0, 124.3, 120.9, 113.4, 49.4, 21. 6, 21.5. **IR** (neat) 3068, 2876, 1493, 1400, 1319, 1226, 1125, 1009, 960, 728 cm⁻¹. **HRMS** (EI) Calcd for C₁₅H₁₃NS₂ 271.0489, Found 271.0490.

The reaction mixture of N-benzyl-5-chloro-2-iodoaniline (0.2 mmol, 1.0 equiv), Cu(OAc)₂·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv),

LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **3k** in 73% yield (42.3 mg) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.28 (m, 6H), 7.24 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.09 (d, *J* = 1.6 Hz, 1H), 5.65 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 190.8, 142.3, 133.8, 133.3, 129.1, 128.2, 127.0, 125.7, 125.0, 121.9, 113.1, 49.5. **IR** (neat) 2966, 1415, 1356, 1300, 1198, 1132, 976, 803, 760, 697 cm⁻¹. **HRMS** (EI) Calcd for C₁₄H₁₀ClNS₂ 290.9943, Found 290.9945.

The reaction mixture of N-benzyl-2-iodo-4-methylaniline (0.2 mmol, 1.0 equiv), $Cu(OAc)_2$ 'H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv),

LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **3l** in 71% yield (38.6 mg) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.16 (m, 6H), 7.01 (d, *J* = 8.4 Hz, 1H), 6.91 (d, *J* = 8.4 Hz, 1H), 5.60 (s, 2H), 2.30 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 189.6, 139.4, 135.0, 134.4, 128.9, 127.9, 127.9, 127.5, 127.1, 121.4, 112.7, 49.5, 21.0, 21.0. **IR** (neat) 2966, 1479, 1364, 1309, 1206, 1198, 984, 806, 699 cm⁻¹. **HRMS** (EI) Calcd for C₁₅H₁₃NS₂ 271.0489, Found 271.0486.

The reaction mixture of N-benzyl-4-chloro-2-iodoaniline (0.2 mmol, 1.0 equiv), $Cu(OAc)_2$ ·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv),

LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was

stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **3m** in 84% yield (48.8 mg) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 2.0 Hz, 1H), 7.36 – 7.26 (m, 5H), 7.26 – 7.23 (m, 1H), 7.00 (d, *J* = 8.8 Hz, 1H), 5.66 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 189.9, 140.0, 133.9, 130.8, 129.0, 128.8, 128.1, 127.3, 127.0, 121.0, 113.5, 49.5. **IR** (neat) 2966, 1458, 1415, 1356, 1300, 1198, 1132, 976, 8<u>0</u>4, 698 cm⁻¹. **HRMS** (EI) Calcd for C₁₄H₁₀ClNS₂ 290.9943, Found 290.9947.

ThereactionmixtureofN-benzyl-2-iodo-4-(trifluoromethyl)aniline(0.2mmol,1.0equiv),Cu(OAc)₂·H₂O(0.02mmol,0.1equiv),2,2'-dipyridyl

(0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **3n** in 75% yield (49.0 mg) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.36 – 7.28 (m, 5H), 7.17 (d, J = 8.8 Hz, 1H), 5.71 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 143.7, 133.8, 129.1, 128.2, 128.0, 127.2 (q, $J_{C-F} = 33$ Hz), 127.0, 124.2 (q, $J_{C-F} = 4$ Hz), 123.7 (q, $J_{C-F} = 270$ Hz), 118.6 (q, $J_{C-F} = 4$ Hz), 112.8, 49.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.79. **IR** (neat) 2964, 1517, 1362, 1326, 1300, 1198, 1126, 977, 816, 697 cm⁻¹. **HRMS** (EI) Calcd for C₁₅H₁₀F₃NS₂ 325.0207, Found 325.0208.

The reaction mixture of N-benzyl-2,4-dichloro-6-iodoaniline (0.2 mmol, 1.0 equiv), $Cu(OAc)_2$ ·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in

NMP (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **30** in 68% yield (44.4 mg) as a white solid. ¹**H** NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 2.0 Hz, 1H), 7.32 – 7.27 (m, 3H), 7.25 – 7.22 (m, 1H), 7.07 (d, J = 7.2 Hz, 2H), 6.16 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 190.7, 136.3, 135.4, 131.1, 130.7, 129.7, 128.7, 127.4, 125.9, 119.6, 118.3, 51.4. **IR** (neat) 2931, 1444, 1353, 1292, 1188, 1154, 1070, 985, 848, 694 cm⁻¹. **HRMS** (EI) Calcd for C₁₄H₉Cl₂NS₂ 324.9553, Found

324.9547.

The reaction mixture of 2-iodo-N-(pyridin-4-ylmethyl)aniline (0.2 mmol, 1.0 equiv), $Cu(OAc)_2$ ·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere,

affording compound **3p** in 70% yield (36.3 mg) as a white solid. ¹**H** NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 5.2 Hz, 2H), 7.53 – 7.51 (m, 1H), 7.33 – 7.28 (m, 2H), 7.17 (d, *J* = 5.2 Hz, 2H), 7.00 – 6.98 (m, 1H), 5.70 (s, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ 190.4, 150.2, 143.4, 141.0, 127.4, 127.2, 125.2, 121.8, 121.6, 112.5, 48.3. **IR** (neat) 1637, 1600, 1460, 1415, 1368, 1212, 1194, 1142, 991, 750 cm⁻¹. **HRMS** (EI) Calcd for C₁₃H₁₀N₂S₂ 258.0285, Found 258.0288.

The reaction mixture of N-(ferrocene-2-ylmethyl)-2-iodoaniline (0.2 mmol, 1.0 equiv), Cu(OAc)₂·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **3q** in 82% yield (59.5 mg) as a yellow solid. ¹H

NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 7.6 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.22 (d, J = 8.0 Hz, 1H), 7.19 – 7.13 (m, 1H), 5.35 (s, 2H), 4.43 (s, 2H), 4.16 (s, 5H), 4.04 (s, 2H). ³C NMR (1001 MHz, CDCl₃) δ 189.0, 141.2, 127.6, 126.6, 124.6, 121.2, 112.7, 81.2, 69.7, 68.9, 68.3, 45.4. **IR** (neat) 3080, 2947, 1462, 1374, 1361, 1300, 1271, 1177, 961, 814, 737 cm⁻¹. **HRMS** (EI) Calcd for C₁₈H₁₅FeNS₂ 364.9995, Found 365.0000.

The reaction mixture of N-(3,7-dimethyloct-6-enyl)-2-iodoaniline (0.2 mmol, 1.0 equiv), Cu(OAc)₂·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv),

-S19-

LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **3r** in 50% yield (30.3 mg) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.48 (d, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 7.2 Hz, 1H), 7.29 (t, *J* = 7.6 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 1H), 5.10 (t, *J* = 7.2 Hz, 1H), 4.50 – 4.35 (m, 2H), 2.09 – 1.96 (m, 2H), 1.82 – 1.77 (m, 1H), 1.71 – 1.57 (m, 8H), 1.48 – 1.41 (m, 1H), 1.32 – 1.23 (m, 1H), 1.06 (d, *J* = 6.4 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 188.6, 141.3, 131.5, 127.9, 126.8, 124.6, 124.3, 121.4, 112.2, 44.8, 36.7, 33.2, 30.6, 25.7, 25.4, 19.5, 17.7. **IR** (neat) 2923, 1637, 1586, 1459, 1373, 1316, 1264, 1204, 1132, 747 cm⁻¹. **HRMS** (EI) Calcd for C₁₇H₂₃NS₂ 305.1272, Found 305.1275.

ThereactionmixtureofN-(2,6-dimethylphenyl)-2-(2-iodophenylamino)acetamide (0.2 mmol,1.0 equiv), Cu(OAc)₂·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl(0.02 mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol,6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) wasstirred at 80 °C for 16 h under N₂ atmosphere, affording compound

3s in 51% yield (33.5 mg) as a pale yellow solid. ¹**H NMR** (400 MHz, DMSO) δ 9.77 (s, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.41 – 7.36 (m, 1H), 7.08 – 7.04 (m, 3H), 5.42 (s, 2H), 2.19 (s, 6H). ¹³**C NMR** (100 MHz, DMSO) δ 189.2, 163.5, 142.0, 135.2, 134.4, 127.6, 127.1, 126.6, 126.3, 124.9, 121.8, 113.6, 48.1, 18.2. **IR** (neat) 3282, 2921, 1655, 1592, 1532, 1466, 1370, 1315, 1212, 1146, 999, 751 cm⁻¹. **HRMS** (EI) Calcd for C₁₇H₁₆N₂OS₂ 328.0704, Found 328.0708.

V. The Application of The Reaction.

1) The Synthetic Procedure and Data for chloromethiuron.

Thereactionmixtureof2-(2-iodophenyl)-1,4,5,6-tetrahydropyrimidine(0.2 mmol, 1.0 equiv)equiv), Cu(OAc)₂·H₂O (0.02 mmol, 0.1 equiv), 2,2'-dipyridyl (0.02

mmol, 0.1 equiv), K₂S (0.8 mmol, 4.0 equiv), LiOH (1.2 mmol, 6.0 equiv) and CHCl₃ (2 mmol, 10 equiv) in NMP (2.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, affording compound **2p** in 55% yield (25.9 mg) as a white solid. ¹H **NMR** (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.0 Hz, 1H), 7.43 – 7.39 (m, 1H), 7.31 (t, *J* = 8.0 Hz, 1H), 7.03 (d, *J* = 7.8 Hz, 1H), 4.44 (t, *J* = 6.0 Hz, 2H), 3.76 (t, *J* = 5.6 Hz, 2H), 2.04 (dt, *J* = 12.0, 6.0 Hz, 2H). ¹³C **NMR** (100 MHz, CDCl₃) δ 189.8, 144.4, 131.9, 131.2, 128.9, 127.5, 126.2, 121.6, 48.7, 45.4, 21.5. **IR** (neat) 2920, 2850, 1626, 1459, 1359, 1307, 1286, 1155, 1039, 954, 771, 726 cm⁻¹. **HRMS** (EI) Calcd for C₁₁H₁₀N₂S₂ 234.0285, Found 234.0283.

2) The Synthetic Procedure and Data for 2-Mercaptobenzothiazole (MBT).

The reaction mixture of *o*-iodoaniline (10.0 mmol, 1.0 equiv), Cu(OAc)₂·H₂O (1.0 mmol, 0.1 equiv), 2,2'-dipyridyl (1.0 mmol, 0.1 equiv), K₂S (40.0 mmol, 4.0 equiv), LiOH (60.0 mmol, 6.0 equiv)

and CHCl₃ (100 mmol, 10 equiv) in NMP (80 mL) was stirred at 80 °C for 22 h under N₂ atmosphere, affording **MBT** in 73% yield (1.22 g) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 11.95 (s, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.41 – 7.34 (m, 2H), 7.32 – 7.25 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 190.9, 140.2, 130.0, 127.2, 124.7, 121.4, 112.3. **IR** (neat) 3112, 3041, 2963, 2894, 1497, 1427, 1321, 1077, 1035, 751, 669 cm⁻¹. **HRMS** (EI) Calcd for C₇H₅NS₂ 166.9863, Found 166.9865.

VI. X-ray Crystallography Analysis of Compound 2a and 3a.

1) X-ray Crystallography Analysis of Compound 2a (CCDC-1816889)

Datablock: exp_203

Bond precision: C-C		C-C = (-C = 0.0039 A		Wavelength=1.54184		
Cell: a=8.3766(2)	Ъ=6.2895	95(1) c=25.72		206(6)	
	alpha=90		beta=95.	618(2)	gamma=9	0	
Temperature:	293 K						
		Calculat	ed			Reported	
Volume		1348.57(5)			1348.57(5)	
Space group		P 21/c				P 1 21/c 1	
Hall group		-P 2ybc				-P 2ybc	
Moiety formu	la	C15 H13 I	N S2			C15 H13 N S2	
Sum formula		C15 H13 I	N S2			C15 H13 N S2	
Mr		271.38				271.38	
Dx,g cm-3		1.337				1.337	
Z		4				4	
Mu (mm-1)		3.402				3.402	
F000		568.0				568.0	
F000'		571.82					
h, k, lmax		10,7,30				10, 7, 30	
Nref		2414				2408	
Tmin, Tmax		0.382,0.	427			0.667,1.000	
Tmin'		0.256					
Correction method= # Reported T Limits: Tmin=0.667 Tmax=1.000							
AbsCorr = MULTI-SCAN							
Data completeness= 0.998 Theta(max)= 67.055							
R(reflection	s)= 0.042	0(2083)		wR2(refle	ctions)=	0.1121(2408)	
S = 1.043		Npar=	163				

The following ALERIS were generated. Each ALERI has the format test-name_ALERI_alert-type_alert-level. Click on the hyperlinks for more details of the test.

●Alert level C					
PLAT906 ALERT 3 C Large K Value in the Analysis of Variance	4.664	Check			
PLAT911 ALERT 3 C Missing FCF Refl Between Thmin & STh/L= 0.597	5	Report			
Alert level G					
PLAT199 ALERT 1 G Reported cell measurement temperature (K)	293	Check			
PLAT200 ALERT 1 G Reported diffrn ambient temperature (K)	293	Check			
PLAT909 ALERT 3 G Percentage of I>2sig(I) Data at Theta(Max) Still	71%	Note			
PLAT910 ALERT 3 G Missing # of FCF Reflection(s) Below Theta(Min).	1	Note			
PLAT933 ALERT 2 G Number of OMIT Records in Embedded .res File	4	Note			
PLAT978 ALERT 2 G Number C-C Bonds with Positive Residual Density.	4	Info			
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 2 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check					

2) X-ray Crystallography Analysis of Compound 3a (CCDC-1816887)

Datablock: exp_170

Bond precisi	.on:	C-C =	0.0027 A		١	Vavelength=1.54184
Cell:	a=7.2615	(1)	b=11.832	8(2)	c=14.229	92(3)
	alpha=90		beta=94.	546(2)	gamma=90)
Temperature:	293 K					
		Calculat	ed			Reported
Volume		1218.78((4)			1218.78(4)
Space group		P 21/n				P 1 21/n 1
Hall group		-P 2yn				-P 2yn
Moiety formu	ıla	C14 H11	N S2			C14 H11 N S2
Sum formula		C14 H11	N S2			C14 H11 N S2
Mr		257.36				257.36
Dx,g cm-3		1.403				1.403
Z		4				4
Mu (mm-1)		3.734				3.734
F000		536.0				536.0
F000'		539.76				
h, k, lmax		8,14,16				8,14,16
Nref		2177				2151
Tmin, Tmax		0.452,0.	457			0.600,1.000
Tmin'		0.342				
Correction method= # Reported T Limits: Tmin=0.600 Tmax=1.000 AbsCorr = MULTI-SCAN						
Data completeness= 0.988 Theta(max)= 67.070						
R(reflection	ns)= 0.034	3(2008)		wR2(refle	ctions)=	0.0954(2151)
S = 1.071		Npar	= 154			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

●Alert level C PLAT230 ALERT 2 C Hirshfeld Test Diff for S2C8 . PLAT906 ALERT 3 C Large K Value in the Analysis of Variance PLAT911 ALERT 3 C Missing FCF Refl Between Thmin & STh/L= 0.597	5.4 2.237 26	s.u. Check Report
Alert level G		
PLAT199 ALERT 1 G Reported _cell_measurement_temperature (K)	293	Check
PLAT200 ALERT 1 G Reporteddiffrn_ambient_temperature (K)	293	Check
PLAT909 ALERT 3 G Percentage of I>2sig(I) Data at Theta(Max) Still	84%	Note
PLAT933 ALERT 2 G Number of OMIT Records in Embedded .res File	23	Note
<u>PLAT978 ALERT 2 G</u> Number C-C Bonds with Positive Residual Density.	2	Info
0 ALERT level A = Most likely a serious problem - resolve or exp 0 ALERT level B = A potentially serious problem, consider carefu 3 ALERT level C = Check. Ensure it is not caused by an omission 5 ALERT level G = General information/check it is not something	lain lly or oversi unexpecte	ight ad
2 ALERI type 1 CIF construction/syntax error, inconsistent or miss 3 ALERI type 2 Indicator that the structure model may be wrong or 3 ALERI type 3 Indicator that the structure quality may be low 0 ALERI type 4 Improvement, methodology, query or suggestion 0 ALERI type 5 Informative message, check	ing data deficient	:

These data can be obtained free of charge from the Cambridge Crystallographic Data

Centre via www.ccdc.cam.ac.uk/data_request/ci.

VII. Mechanistic Studies.

1) Studies for CHCl₃:

Scheme S1. Procedure for the reaction of 1a with CHCl₃ in the presence of K₂S:

To a solution of substrate **1a** (0.1 mmol, 1.0 equiv), K_2S (0.4 mmol, 4.0 equiv), LiOH (0.6 mmol, 6.0 equiv) and CHCl₃ or CDCl₃ (1 mmol, 10 equiv) in MeCN/H₂O (0.5/0.5 mL) was stirred at 80 °C for 12 h under N₂ atmosphere, which was monitored by ¹H NMR using CH₂Br₂ as an internal standard, affording compound **2aa** in 66% ¹HNMR yield as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.63 (d, *J* = 30.8 Hz, 1H), 7.86 (t, *J* = 8.4 Hz, 1H), 7.39 – 7.29 (m, 5H), 7.19 – 7.08 (m, 2H), 7.07 – 6.98 (m, 1H), 5.05 (d, *J* = 11.2 Hz, 2H), 4.59 (d, *J* = 17.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 190.0, 140.2, 139.7, 136.4, 136.3, 134.4, 133.9, 130.2, 129.5, 129.4, 129.0, 128.8, 128.7, 128.6, 128.5, 128.5, 128.0, 128.0, 99.0, 98.9, 63.0, 59.2, 54.7, 49.9. **IR** (neat) 3060, 2923, 2855, 1672, 1495, 1436, 1211, 1015, 752, 699 cm⁻¹. **HRMS** (EI) Calcd for C₁₅H₁₄INS 366.9892, Found 366.9898.

Scheme S2. Possible approaches to the formation of 2aa.^[11]

Scheme S3. Procedure for the reaction of 2aa as possible intermediate excluded.

To a solution of substrate **2aa** (0.1 mmol, 1.0 equiv), $Cu(OAc)_2H_2O$ (0.01 mmol, 0.1 equiv), 2,2'-dipyridyl (0.01 mmol, 0.1 equiv), K₂S (0.4 mmol, 4.0 equiv), LiOH (0.6 mmol, 6.0 equiv) and CHCl₃ (1 mmol, 10 equiv) in MeCN (1.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere. The reaction was monitored by ¹H NMR using CH₂Br₂ as an internal standard.

2) Studies for K₂S:

Scheme S4. Procedure for the reaction of 4 with $CHCl_3$ in the presence of K_2S and possible approaches to the formation of 5a and 5a'.

To a solution of substrate **4** (0.1 mmol, 1.0 equiv), K₂S (0.4 mmol, 4.0 equiv), LiOH (0.6 mmol, 6.0 equiv) and CHCl₃ (1 mmol, 10 equiv) in MeCN (1.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, which was monitored by ¹H NMR using CH₂Br₂ as an internal standard, affording corresponding compounds **5a** and **5a'**. Compound **5a** in 28% ¹HNMR yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.29 (m, 5H), 4.99 (s, 2H), 3.94 (t, *J* = 8.0 Hz, 2H), 3.24 (t, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 135.0, 128.9, 128.2, 128.1, 55.8, 52. 6, 27.0. IR (neat) 2944, 1661, 1489, 1449, 1411, 1316, 1245, 1045, 916, 731 cm⁻¹. HRMS (EI) Calcd for C₁₀H₁₁NS₂ 209.0333, Found 209.0336. Compound **5a'** in 5% ¹HNMR yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.29 (m, 5H), 4.84 (s, 2H), 4.47 (t, *J* = 8.8 Hz, 2H), 3.63 (t, *J* = 9.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.0, 134.5, 128.9, 128.3, 128.1, 65.9, 52.0, 47.2. IR (neat) 3027, 2914, 1521, 1427, 1325, 1255, 1155, 940, 735, 702 cm⁻¹. HRMS (EI) Calcd for C₁₀H₁₁NOS 193.0561, Found 193.0564.

Scheme S5. Procedure for the reaction of 6 with $CHCl_3$ in the presence of K_2S and possible approaches to the formation of 7a and 7aa.

To a solution of substrate **6** (0.1 mmol, 1.0 equiv), K₂S (0.4 mmol, 4.0 equiv), LiOH (0.6 mmol, 6.0 equiv) and CHCl₃ (1 mmol, 10 equiv) in MeCN (1.0 mL) was stirred at 80 °C for 16 h under N₂ atmosphere, which was monitored by ¹H NMR using CH₂Br₂ as an internal standard, affording corresponding compounds **7a**. Compound **7a** in 25% ¹HNMR yield as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.35 (m, 2H), 7.32 – 7.24 (m, 3H), 7.23 – 7.18 (m, 1H), 7.09 – 6.99 (m, 2H), 6.92 (d, *J* = 7.6 Hz, 1H), 5.24 (s, 2H), 4.32 (s, 2H). ¹³C NMR (100 MHz, DMSO) δ 183.3, 148.9, 135.7, 130.3, 129.8, 128.9, 128.6, 127.1, 126.3, 118.7, 116.1, 58.6, 47.8. **IR** (neat) 2251, 2125, 1655, 1055, 1028, 1008, 823, 761, 626 cm⁻¹. **HRMS** (EI) Calcd for C₁₅H₁₃NOS 255.0718, Found 255.0723.

3) Coupling of carbon carbone and [S].

Scheme S6. Procedure for the coupling of carbon carbone and [S]:^[12]

To a solution of substrate **8** (0.1 mmol, 1.0 equiv), K_2S (0.4 mmol, 4.0 equiv) and LiOH (0.6 mmol, 6.0 equiv) in MeCN (1.0 mL) was stirred at 80 °C for 7 h under N_2 atmosphere. After the reaction was finished, the solvent was removed under vacuum and purification by column chromatography on silica gel afforded product **3a** in 73% isolated yield. In the reaction, carbon carbene was considered as the intermediate according to literatures.

Scheme S7. The studies of trisulfur radical anion (S_3) by UV-visible spectra and EPR spectra:^[13]

To a 25 mL of Schlenk tube with a stir bar were added K_2S (0.4 mmol) in NMP (2.0 mL) and was stirred at room temperature under N₂ atmosphere for an hour. Then, 0.05 mL of the reaction solution was taken out into a small sample cell containing 2.5 mL NMP solvent quickly and analyzed by UV spectrometer at room temperature, which were operated within 30 seconds (Picture S1, blue line). Notably, when this cell containing solution sample was placed under the air and detected again in 2 minutes (red line), the trisulfur radical anion (S₃⁻) signal was markedly weakened. If in 5 minutes (green line), the signal reduced furtherly. Typical spectrometer parameters are shown as follows, scan range: 800 nm; wavelength from 300 nm-800 nm; Scan speed: 800 nm/min.

Picture S1. UV-visible spectra of K₂S in NMP.

To a 25 mL of Schlenk tube with a stir bar were added K_2S (0.4 mmol) in NMP (1.0 mL) and was stirred at room temperature under N_2 atmosphere for an hour. Then, the solution sample under N_2 atmosphere was taken out into a small tube and analyzed by EPR spectrometer at room temperature (Picture S2). EPR spectra was recorded on EPR spectrometer operated at 9.370 GHz. Typical spectrometer parameters are shown as follows, center field set: 3322.5 G; scan time: 60 s; modulation amplitude: 8.0 G; modulation frequency: 100 kHz.

Picture S2. EPR spectra of K₂S in NMP.

VIII. Reference.

- [1] H. Konishi, H. Tanaka, K. Manabe, Org. Lett. 2017, 19, 1578.
- [2] D. Sol é, O. Serrano, J. Org. Chem. 2010, 75, 6267.
- [3] T. Mizuhara, S. Inuki, S. Oishi, N. Fujii, H. Ohno, *Chem. Commun.* **2009**, *23*, 3413.
- [4] D. S. Roman, Y. Takahashi, A. B. Charette, Org. Lett. 2011, 13, 3242.
- [5] T. Yamamoto, A. Zhumagazin, T. Furusawa, R. Tanaka, T. Yamakawa, Y. Oe, T.
- Ohta, Adv. Synth. Catal. 2014, 356, 3525.
- [6] Z. Wu, M. Perez, M. Scalone, T. Ayad, V. Ratovelomanana-Vidal, *Angew. Chem. Int. Ed.* **2013**, *52*, 4925.
- [7] I. Nakamura, Y. Sato, S. Konta, M. Terada, Tetrahedron Lett. 2009, 50, 2075.
- [8] E. J. Yoo, S. Chang, Org. Lett. 2008, 10, 1163.
- [9] L. Åkerbladh, L. R. Odell, J. Org. Chem. 2016, 81, 2966.
- [10] T. J. Reddy, M. Leclair, M. Proulx, Synlett 2005, 4, 583.
- [11] a) M. Mihara, Y. Ishino, S. Minakata, M. Komatsu, Synthesis 2003, 15, 2317. b)
- L. A. Shastri, S. L. Shastri , C. D. Bathula, M. Basanagouda, M. V. Kulkarni, *Synth. Commun.* **2011**, *41*, 476.

[12] a) N. E. Kamber, W. Jeong, R. M. Waymouth, *Chem. Rev.* 2007, 107, 5813. For selected examples: b) S. Alwarsh, Y. Xu, S. Y. Qian, M. C. McIntosh, *Angew. Chem. Int. Ed.* 2016, 55, 355. [13] a) T. Chivers, P. J. W. Elder, *Chem. Soc. Rev.* 2013, 42, 5996. For selected examples: b) Z. Y. Gu, J. J. Cao, S. Y. Wang S. J. Ji, *Chem. Sci.* 2016, 7, 4067.

IX. NMR Spectra

2a

2b

2b

2c

2c

2d

2d

2e

2e

2f

2f

2g

2g

2h

2h

2i

2j

-S50-

2k

2k

31

3m

3m

3n

-S58-

3n

30

30

3a

3a

3b

3b

3c

3c

3d

3e

3e

3f

3g

3g

3h

3i

3i

3j

-S80-

3k

3k

31

31

3m

-S86-

3m

3n

3n

3n

30

30

3p

3p

3q

3q

3r

3r

3s

2p

2p

MBT

2aa

5a

5a

5a'

5a'

7a

