## Catalytic Enantioselective $\alpha$ -Sulfenylation of $\beta$ -Ketocarbonyls by

## **Chiral Primary Amine**

Linfeng Cui,<sup>a</sup> Yang'en You,<sup>b</sup> Xueling Mi<sup>\*, a</sup> and Sanzhong Luo<sup>\*,b</sup>

<sup>a</sup> College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China

<sup>b</sup> Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China

E-mail: xlmi@bnu.edu.cn E-mail: luosz@iccas.ac.cn

# **Supporting Imformation**

| General Information  | S1  |
|----------------------|-----|
| Experimental Section | S2  |
| Mechanism Studies    | S15 |
| NMR Spectra          | S17 |
| HPLC Charts          | S45 |

General information: All commercial reagents were used without further purification unless otherwise noted. The corresponding β-Ketocarbonyls were prepared according to reported procedures.<sup>1</sup> NMR spectra were recorded on *Bruker* AV 400 and Bruker Avance 500 spectrometers. <sup>1</sup>H NMR spectra were obtained at 400 or 500 MHz in CDCl<sub>3</sub> unless otherwise noted. <sup>13</sup>C NMR spectra were obtained at 101 or 126 MHz using a proton-decoupled pulse sequence and are tabulated by observed peak. Chemical shifts were reported in parts per million (ppm) and referenced to 7.27 and 77.00 ppm respectively. Coupling constants were expressed in Hertz (Hz). The following abbreviations were used: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, br = broad.  $^{19}$ F spectra were obtained at 377 MHz using a proton-decoupled pulse sequence in the presence of fluorobenzene as an internal standard. High resolution mass spectra were obtained using electrospray ionization (ESI). The enantiomeric excesses were determined by HPLC analysis on Chiral Daicel Chiralpak OD-H, OJ-H, AS-H, AD-H or IC. Optical rotation were measured on a commercial polarimeter and reported as follows:  $[\alpha]_D^{25}$  (c = g/100 mL, solvent).

## **Experimental section:**

#### A) Optimization of reaction conditions

#### a) Screening of solvents<sup>a</sup>

|       |                   | NH <sub>2</sub> HOTf O<br>(20 mol%)<br>Na <sub>2</sub> CO <sub>3</sub> (1.0 eq.)<br>solvent | S<br>SPh |
|-------|-------------------|---------------------------------------------------------------------------------------------|----------|
| Entry | Solvent           | Yield <sup>b</sup>                                                                          | Eec      |
| 1     | CHCl <sub>3</sub> | 46%                                                                                         | 53%      |
| 2     | MeCN              | 71%                                                                                         | 35%      |
| 3     | THF               | 68%                                                                                         | 0        |
| 4     | DCM               | 60%                                                                                         | 51%      |
| 5     | DCE               | 43%                                                                                         | 50%      |
| 6     | toluene           | 0                                                                                           | -        |
| 7     | MTBE              | 14%                                                                                         | 19%      |
| 8     | Hexane            | 0                                                                                           | -        |
| 9     | EA                | 70%                                                                                         | 0        |
| 10    | MeOH              | 0                                                                                           | -        |
| 11    | EtOH              | 0                                                                                           | -        |
| 12    | DMF               | 72%                                                                                         | 0        |

<sup>a</sup>All reactions were carried out with 1.2 equivalents of *N*-(phenylthio)phthalimide **2a**, 1.0 equivalent of  $Na_2CO_3$  and 20 mol% of amine catalyst **(II**/TfOH) respect to ethyl 2-methylacetoacetate **1a** (0.10 mmol) in 0.5 ml of solvents for 36 h unless otherwise noted. <sup>b</sup>Yields were determined by <sup>1</sup>H NMR with 1,3,5-trimethoxybenzene as an internal standard. <sup>c</sup>Determined by HPLC on a chiral stationary phase.

#### b) Screening of primary amines<sup>a</sup>

|       |          | -SPh<br>Chiral amine<br>(20 mol%)<br>Na <sub>2</sub> CO <sub>3</sub> (1.0 eq.)<br>CHCl <sub>3</sub> | SPh             |  |
|-------|----------|-----------------------------------------------------------------------------------------------------|-----------------|--|
|       | 1a 2a    |                                                                                                     | 3a              |  |
| Entry | Catalyst | Yield <sup>b</sup>                                                                                  | Ee <sup>c</sup> |  |
| 1     | I/TfOH   | 32%                                                                                                 | 9%              |  |
| 2     | II/TfOH  | 62%                                                                                                 | 53%             |  |
| 3     | III/TfOH | 59%                                                                                                 | 89%             |  |
| 4     | IV/TfOH  | 21%                                                                                                 | 82%             |  |
| 5     | V/TfOH   | 20%                                                                                                 | 12%             |  |
| 6     | VI/TfOH  | 42%                                                                                                 | 19%             |  |

<sup>a</sup>All reactions were carried out with 1.2 equivalents of *N*-(phenylthio)phthalimide **2a**, 1.0 equivalent of Na<sub>2</sub>CO<sub>3</sub> and 20 mol% of amine catalyst respect to ethyl 2-methylacetoacetate **1a** (0.10 mmol) in 0.5 ml of CHCl<sub>3</sub> for 68 h unless otherwise noted. <sup>b</sup>Yields were determined by <sup>1</sup>H NMR with 1,3,5-trimethoxybenzene as an internal standard. <sup>c</sup>Determined by HPLC on a chiral stationary phase. **Chiral amines:** 



c) Screening of bases<sup>a</sup>

| o<br>L |                                                     | (20 mol%)<br>h addition, CHCl <sub>3</sub><br>4 day | O O<br>S<br>Ph |
|--------|-----------------------------------------------------|-----------------------------------------------------|----------------|
| Entry  | bases                                               | Yield <sup>b</sup>                                  | Eec            |
| 1      | NaHCO <sub>3</sub>                                  | 90%                                                 | 93%            |
| 2      | TsONa                                               | trace                                               | -              |
| 3      | KOAc                                                | 46%                                                 | 72%            |
| 4      | KHCO <sub>3</sub>                                   | 59%                                                 | 76%            |
| 5      | K <sub>2</sub> CO <sub>3</sub>                      | 90%                                                 | 73%            |
| 6      | Na <sub>3</sub> PO <sub>4</sub> .12H <sub>2</sub> O | 30%                                                 | 55%            |
| 7      | NaOAc                                               | 54%                                                 | 89%            |
| 8      | Na <sub>2</sub> CO <sub>3</sub>                     | 80%                                                 | 89%            |
| 9      | Li <sub>2</sub> CO <sub>3</sub>                     | trace                                               | -              |
| 10     | LiOAc                                               | trace                                               | -              |

<sup>a</sup>All reactions were carried out with 1.2 equivalents of *N*-(phenylthio)phthalimide **2a**, 1.0 equivalent of bases and 20 mol% of amine catalyst **(III**/TfOH) respect to ethyl 2-methylacetoacetate **1a** (0.10 mmol) in 0.5 ml of CHCl<sub>3</sub> for 4 days unless otherwise noted. <sup>b</sup>Yields were determined by <sup>1</sup>H NMR with 1,3,5-trimethoxybenzene as an internal standard. <sup>c</sup>Determined by HPLC on a chiral stationary phase.

#### c) Screening of concentration<sup>a</sup>

| ,<br>, |           | NH2<br>(20 mol%)<br>h NaHCO <sub>3</sub> , CHCl <sub>3</sub><br>52 h | O O<br>S<br>Ph |
|--------|-----------|----------------------------------------------------------------------|----------------|
| Entry  | c (mol/L) | Yield <sup>b</sup>                                                   | Eec            |
| 1      | 0.20      | 33%                                                                  | 92%            |
| 2      | 0.33      | 50%                                                                  | 91%            |
| 3      | 0.50      | 91%                                                                  | 93%            |

<sup>a</sup>All reactions were carried out with 1.2 equivalents of *N*-(phenylthio)phthalimide **2a**, 1.0 equivalents of NaHCO<sub>3</sub> and 20 mol% of amine catalyst **(III**/TfOH) respect to ethyl 2-methylacetoacetate **1a** (0.10 mmol) in CHCl<sub>3</sub> for 52 h unless otherwise noted. <sup>b</sup>Yields were determined by <sup>1</sup>H NMR with 1,3,5-trimethoxybenzene as an internal standard. <sup>c</sup>Determined by HPLC on a chiral stationary phase.

#### B) General procedure for Sulfenylation reaction



To a flame-dried tube equipped with a magnetic stir bar were added  $\beta$ -ketocarbonyl (**1**, 0.10 mmol), amine catalyst (**III**/HOTf, 7.0 mg, 0.02 mmol), Sulfenylation reagent (**2**, 0.12 mmol), and NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 48-96 h, the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1 to 10:1) to give (*S*)-**3**.

#### C) Characterization data for new compounds:



To a flame-dried tube equipped with a magnetic stir bar were added **1a** (14.4 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 48 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3a** (21.9 mg, 87%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2982, 2935, 1713, 1474, 1439, 1246, 1109, 1016, 752, 693; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.45 – 7.40 (m, 2 H), 7.38 (d, *J* = 7.3 Hz, 1 H), 7.32 (t, *J* = 7.4 Hz, 2 H), 4.26 (q, *J* = 7.1 Hz, 2 H), 2.37 (s, 3 H), 1.50 (s, 3 H), 1.29 (t, *J* = 7.1 Hz, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  199.5, 170.1, 137.1, 130.0, 129.5, 129.1, 65.9, 62.6, 26.2, 20.8, 14.1; HRMS (ESI) calcd for C<sub>13</sub>H<sub>16</sub>O<sub>3</sub>NaS<sup>+</sup>: 275.0712, found 275.0710; HPLC analysis: Daicel Chiralpak OD-H, flow rate = 0.5 ml/min,  $\lambda$  = 210 nm, hexane/iso-propanol = 97:3, (*S*)-**3a**: 93% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -55.7 (c = 1.4, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 13.2 min (minor) and 13.8 min (major).





To a flame-dried tube equipped with a magnetic stir bar were added **1b** (15.8 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 48 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3b** (22.6 mg, 85%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2969, 2936, 1713, 1473, 1439, 1242, 1117, 967, 751, 692; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.44 – 7.40 (m, 2 H), 7.38 (t, *J* = 7.4 Hz, 1 H), 7.31 (t, *J* = 7.4 Hz, 2 H), 4.21 – 4.06 (m, 2 H), 2.37 (s, 3 H), 1.73 – 1.60 (m, 2 H), 1.50 (s, 3 H), 0.94 (t, *J* = 7.4 Hz, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  199.5, 170.1, 137.0, 130.0, 129.5, 129.1, 68.1, 65.9, 26.2, 21.9, 20.8, 10.4; HRMS (ESI) calcd for C<sub>14</sub>H<sub>18</sub>O<sub>3</sub>NaS<sup>+</sup>: 289.0869, found 289.0869; HPLC analysis: Daicel Chiralpak OJ-H, flow rate = 1 ml/min,  $\lambda$  = 210 nm, hexane/iso-propanol

= 70:30, (*S*)-**3b**: 90% *ee*;  $[\alpha]_D^{25}$  = -51.4 (c = 1.00, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 11.4 min (major) and 13.8 min (minor).



To a flame-dried tube equipped with a magnetic stir bar were added **1c** (15.8 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 48 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3c** (22.1 mg, 83%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2982, 2934, 1711, 1473, 1439, 1374, 1249, 1099, 749, 693; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 (dd, J = 6.9, 5.5 Hz, 2 H), 7.37 (dd, J = 7.9, 1.9 Hz, 1 H), 7.31 (t, *J* = 7.3 Hz, 2 H), 5.11 (dt, *J* = 12.5, 6.3 Hz, 1 H), 2.37 (s, 3 H), 1.48 (s, 3 H), 1.27 (dd, *J* = 6.1, 4.9 Hz, 6 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  199.4, 169.5, 137.0, 129.9, 129.5, 129.1, 70.5, 66.0, 26.1, 21.6, 21.5, 20.7; HRMS (ESI) calcd for C<sub>14</sub>H<sub>18</sub>O<sub>3</sub>NaS<sup>+</sup>: 289.0869, found 289.0868; HPLC analysis: Daicel Chiralpak IC, flow rate = 0.5 ml/min,  $\lambda$  = 210 nm, hexane/*iso*-propanol = 97:3, (*S*)-**3c**: 97% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -60.8 (c = 0.95, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 18.4 min (major) and 19.4 min (minor).



To a flame-dried tube equipped with a magnetic stir bar were added **1d** (17.2 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 48 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3d** (25.2 mg, 90%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2979, 2934, 1711, 1474, 1439, 1369, 1354, 1256, 1161, 1124, 850, 750, 692; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 (dd, *J* = 5.2, 3.1 Hz, 2 H), 7.38 – 7.33 (m, 1 H), 7.33 – 7.27 (m, 2 H), 2.38 (s, 3 H), 1.48 (s, 9 H), 1.45 (s, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  199.5, 169.0, 137.0, 129.8, 129.7, 129.0, 83.7, 66.6, 27.9, 26.1, 20.8; HRMS (ESI) calcd for C<sub>15</sub>H<sub>20</sub>O<sub>3</sub>NaS<sup>+</sup>: 303.1025, found 303.1026; HPLC analysis: Daicel Chiralpak IC, flow rate = 1 ml/min,  $\lambda$  = 210 nm, hexane/iso-propanol = 97:3, (*S*)-**3d**: 95% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -55.3 (c = 0.95, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 7.3 min (major) and 7.9 min (minor); The spectroscopic data for **3d** matched those described in the literature; For the *S*-enantiomer 88% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -50.8 (c = 0.535, CH<sub>2</sub>Cl<sub>2</sub>) is reported in the literature.<sup>2a</sup>



To a flame-dried tube equipped with a magnetic stir bar were added **1e** (13.0 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO3 (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl3. The reaction was conducted at room temperature for 48 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3e** (21.7 mg, 91%) as a colorless oil: IR (thin film, cm-

1) 2953, 1713, 1474, 1439, 1355, 1250, 1199, 974, 869, 752, 693; <sup>1</sup>H NMR (500 MHz, CDCl3)  $\delta$  7.44 – 7.40 (m, 2 H), 7.38 (t, *J* = 7.4 Hz, 1 H), 7.31 (t, *J* = 7.4 Hz, 2 H), 4.21 – 4.06 (m, 2 H), 2.37 (s, 3 H), 1.73 – 1.60 (m, 2 H), 1.50 (s, 3 H), 0.94 (t, *J* = 7.4 Hz, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl3)  $\delta$  199.5, 170.5, 137.0, 130.1, 129.4, 129.1, 65.8, 53.3, 26.1, 20.9; HRMS (ESI) calcd for C<sub>12</sub>H<sub>14</sub>O<sub>3</sub>NaS<sup>+</sup>: 261.0556, found 261.0556; HPLC analysis: Daicel Chiralpak IC, flow rate = 0.5 ml/min,  $\lambda$  = 210 nm, hexane/iso-propanol = 97:3, (S)-**3e**: 95% ee; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -60.7 (c = 0.98, CH2Cl2), retention time: 24.4 min (major) and 25.5 min (minor).



To a flame-dried tube equipped with a magnetic stir bar were added **1f** (20.6 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 48 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3f** (30.8 mg, 98%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2933, 1712, 1473, 1455, 1439, 1354, 1235, 1115, 1093, 946, 750, 693; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.37 (dd, *J* = 7.2, 3.2 Hz, 8 H), 7.28 (dd, *J* = 10.5, 6.3 Hz, 2 H), 5.26 – 5.17 (m, 2 H), 2.27 (s, 3 H), 1.51 (s, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  199.4, 169.8, 137.1, 134.9, 130.0, 129.3, 129.1, 128.8, 128.7, 68.1, 65.9, 26.1, 20.8; HRMS (ESI) calcd for C<sub>18</sub>H<sub>18</sub>O<sub>3</sub>NaS<sup>+</sup>: 337.0869, found 337.0868; HPLC analysis: Daicel Chiralpak OD-H, flow rate = 1 ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 95:5, (*S*)-**3f**: 87% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = - 59.9 (c = 1.25, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 10.6 min (minor) and 11.5 min (major); The spectroscopic data for **3f** matched those described in the literature.<sup>2b</sup>

3g

To a flame-dried tube equipped with a magnetic stir bar were added **1g** (15.6 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 48 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3g** (25.1 mg, 95%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2935, 1713, 1474, 1439, 1355, 1238, 1118, 1093, 940, 750, 692; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.42 (dd, *J* = 8.5, 7.3 Hz, 2 H), 7.39 – 7.34 (m, 1 H), 7.32 (t, *J* = 7.4 Hz, 2 H), 5.95 – 5.82 (m, 1 H), 5.37 (dd, *J* = 17.2, 1.2 Hz, 1 H), 5.29 (dd, *J* = 10.4, 0.8 Hz, 1 H), 4.68 (d, *J* = 5.9 Hz, 2 H), 2.37 (s, 3 H), 1.51 (s, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  199.4, 169.8, 137.1, 131.1, 130.1, 129.4, 129.1, 119.8, 67.0, 65.9, 26.2, 20.9; HRMS (ESI) calcd for C<sub>14</sub>H<sub>16</sub>O<sub>3</sub>NaS<sup>+</sup>: 287.0712, found 287.0716; HPLC analysis: Daicel Chiralpak OJ-H, flow rate = 1 ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 70:30, (*S*)-**3g**: 89% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -58.4 (c = 1.15, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 13.5 min (major) and 16.6 min (minor).



To a flame-dried tube equipped with a magnetic stir bar were added **1h** (15.8 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 96 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3h** (18.9 mg, 71%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2974, 2923, 1710, 1439, 1382, 1354, 1281, 1229, 1183, 1126, 1024, 751, 692; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.37 (dd, *J* = 7.1, 5.0 Hz, 3 H), 7.33 – 7.26 (m, 2 H), 4.26 (q, *J* = 7.1 Hz, 2 H), 2.34 (s, 3 H), 1.94 (dq, *J* = 14.8, 7.4 Hz, 1 H), 1.29 (t, *J* = 7.1 Hz, 3 H), 1.00 (t, *J* = 7.4 Hz, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  198.9, 169.2, 136.7, 129.9, 129.3, 129.1, 72.0, 62.4, 26.5, 25.1, 14.2, 8.6; HRMS (ESI) calcd for C<sub>14</sub>H<sub>18</sub>O<sub>3</sub>NaS<sup>+</sup>: 289.0869, found 289.0871; HPLC analysis: Daicel Chiralpak OJ-H, flow rate = 1 ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 70:30, (*S*)-**3h**: 92% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -35.8 (c = 0.55, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 9.9 min (major) and 13.0 min (minor).



To a flame-dried tube equipped with a magnetic stir bar were added **1i** (20.0 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 96 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3i** (22.2 mg, 72%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2962, 2932, 2873, 1709, 1489, 1417, 1369, 1354, 1339, 1295, 1228, 1155, 1127, 1025, 837, 749, 693; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 – 7.33 (m, 3 H), 7.33 – 7.27 (m, 2 H), 2.37 (s, 3 H), 1.81 (ddd, *J* = 14.0, 12.2, 4.3 Hz, 1 H), 1.74 – 1.63 (m, 1 H), 1.61 – 1.51 (m, 2 H), 1.49 (s, 9 H), 1.32 – 1.24 (m, 1 H), 0.91 (t, *J* = 7.3 Hz, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  198.9, 168.2, 136.7, 129.8, 129.7, 129.1, 83.7, 72.0, 33.7, 28.0, 26.3, 17.5, 14.2; HRMS (ESI) calcd for C<sub>17</sub>H<sub>24</sub>O<sub>3</sub>NaS<sup>+</sup>: 331.1338, found 331.1339; HPLC analysis: Daicel Chiralpak IC, flow rate = 1 ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 97:3, (*S*)-**3i**: 95% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -41.7 (c = 0.81, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 6.2 min (major) and 6.8 min (minor).



To a flame-dried tube equipped with a magnetic stir bar were added **1j** (22.8 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 96 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3j** (22.6 mg, 82%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2972, 2936, 2882, 1709, 1457, 1439, 1353, 1328, 1279, 1236, 1184, 1123, 1025, 869, 816, 750, 692; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 – 7.32 (m, 3 H), 7.29 (t, *J* = 7.3 Hz, 2 H), 2.42 (s, 3 H), 1.97 – 1.83 (m, 7 H), 1.70 (dq, *J* = 14.9, 7.5 Hz, 1 H), 1.04 (t, *J* = 7.4 Hz, 3 H), 0.88 (t, *J* = 7.5 Hz, 9 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  199.3, 167.8, 136.4, 129.8, 129.7, 129.1, 92.7, 72.8, 27.3, 27.0, 25.2, 8.8, 8.0; HRMS (ESI) calcd for C<sub>19</sub>H<sub>28</sub>O<sub>3</sub>NaS<sup>+</sup>: 359.1651, found 359.1653; HPLC analysis: Daicel Chiralpak OJ-H, flow rate = 1

ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 70:30, (*S*)-**3j**: 96% *ee*;  $[\alpha]_D^{25}$  = -23.3 (c = 0.90, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 7.2 min (major) and 11.9 min (minor).



To a flame-dried tube equipped with a magnetic stir bar were added **1k** (19.6 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 96 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3k** (16.4 mg, 54%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 3285, 2979, 2930, 1734, 1712, 1369, 1310, 1258, 1147, 839, 753, 693, 647; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.49 – 7.43 (m, 2 H), 7.40 (t, *J* = 7.4 Hz, 1 H), 7.33 (t, *J* = 7.5 Hz, 2 H), 2.73 (dd, *J* = 17.7, 2.6 Hz, 1 H), 2.44 (d, *J* = 2.7 Hz, 1 H), 2.43 (s, 3 H), 2.41 (d, *J* = 2.6 Hz, 1 H), 2.18 (t, *J* = 2.6 Hz, 1 H), 1.52 (s, 9 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.4, 166.7, 137.3, 130.4, 129.3, 128.7, 84.4, 79.17, 72.3, 70.1, 27.9, 25.8, 23.2; HRMS (ESI) calcd for C<sub>17</sub>H<sub>20</sub>O<sub>3</sub>NaS<sup>+</sup>: 327.1025, found 327.1027; HPLC analysis: Daicel Chiralpak OJ-H, flow rate = 1 ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 90:10, (*S*)-**3k**: 82% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -40.6 (c = 0.68, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 10.4 min (major) and 20.4 min (minor).



To a flame-dried tube equipped with a magnetic stir bar were added **1I** (17.0 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 96 h. Then, the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3I** (16.7 mg, 60%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2921, 2850, 1734, 1711, 1437, 1353, 1257, 1212, 1178, 1126, 1025, 922, 751, 692; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.44 – 7.40 (m, 2 H), 7.38 (t, *J* = 7.4 Hz, 1 H), 7.31 (t, *J* = 7.4 Hz, 2 H), 4.21 – 4.06 (m, 2 H), 2.37 (s, 3 H), 1.73 – 1.60 (m, 2 H), 1.50 (s, 3 H), 0.94 (t, *J* = 7.4 Hz, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  199.5, 170.1, 137.0, 123.0, 129.5, 129.1, 79.17 68.1, 65.9, 26.2, 21.9, 20.8, 10.4; HRMS (ESI) calcd for C<sub>15</sub>H<sub>18</sub>O<sub>3</sub>NaS<sup>+</sup>: 301.0869, found 301.0872; HPLC analysis: Daicel Chiralpak OJ-H, flow rate = 1 ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 90:10, (*S*)-**3I**: 84% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -76.7 (c = 0.28, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 12.1 min (major) and 16.6 min (minor).



To a flame-dried tube equipped with a magnetic stir bar were added 1m (20.2 mg, 0.10 mmol), III/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12

mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 96 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3m** (19.7 mg, 64%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2957, 2929, 2859, 1740, 1714, 1467, 1439, 1356, 1232, 1177, 1025, 751, 693; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.38 (dd, *J* = 9.8, 4.4 Hz, 3 H), 7.31 (dd, *J* = 9.2, 5.7 Hz, 2 H), 4.34 – 4.15 (m, 2 H), 2.34 (s, 3 H), 1.94 – 1.80 (m, 1 H), 1.71 – 1.52 (m, 2 H), 1.37 – 1.16 (m, 8 H), 0.87 (t, *J* = 6.9 Hz, 3 H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 198.9, 169.3, 136.8, 129.9, 129.4, 129.1, 71.4, 62.4, 31.9, 31.80, 26.4, 23.8, 22.5, 14.2, 14.1; HRMS (ESI) calcd for C<sub>17</sub>H<sub>24</sub>O<sub>3</sub>NaS<sup>+</sup>: 331.1338, found 331.1340; HPLC analysis: Daicel Chiralpak IC, flow rate = 0.5 ml/min, λ= 210 nm, hexane/iso-propanol = 97:3, (*S*)-**3m**: 96% *ee*; [α]<sub>D</sub><sup>25</sup> = -37.0 (c = 0.46, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 29.9 min (major) and 30.1 min (minor).



To a flame-dried tube equipped with a magnetic stir bar were added **1n** (17.0 mg, 0.10 mmol), III/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 72 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3n** (18.4 mg, 66%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2937, 2865, 1716, 1473, 1439, 1237, 1203, 1125, 1071, 1023, 755, 703, 692; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 (d, *J* = 7.1 Hz, 2 H), 7.37 (t, *J* = 7.3 Hz, 1 H), 7.30 (t, *J* = 7.4 Hz, 2 H), 4.24 – 4.02 (m, 2 H), 2.67 (dt, *J* = 13.9, 3.7 Hz, 1 H), 2.53 – 2.34 (m, 2 H), 2.06 – 1.92 (m, 1 H), 1.90 – 1.66 (m, 3 H), 1.63 – 1.48 (m, 1 H), 1.20 (t, *J* = 7.1 Hz, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  203.1, 168.6, 137.3, 131.1, 129.8, 129.7, 129.5, 128.8, 67.7, 62.1, 41.0, 37.6, 27.2, 23.1, 14.1; HRMS (ESI) calcd for C<sub>15</sub>H<sub>18</sub>O<sub>3</sub>NaS<sup>+</sup>: 301.0869, found 301.0872; HPLC analysis: Daicel Chiralpak OJ-H, flow rate = 1 ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 90:10, (*S*)-**3n**: 91% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -26.1 (c = 0.65, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 33.0min (minor) and 49.7 min (major).

#### 30

To a flame-dried tube equipped with a magnetic stir bar were added **10** (15.6 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 48 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **30** (24.6 mg, 93%) as a colorless oil: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 – 7.50 (m, 2 H), 7.36 (dd, *J* = 8.5, 6.1 Hz, 1 H), 7.31 (t, *J* = 7.4 Hz, 2 H), 4.26 – 4.12 (m, 2 H), 2.57 (ddd, *J* = 15.8, 9.4, 3.9 Hz, 1 H), 2.51 – 2.42 (m, 1 H), 2.41 – 2.30 (m, 1 H), 2.16 – 2.02 (m, 2 H), 2.02 – 1.91 (m, 1 H), 1.24 (t, *J* = 7.1 Hz, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  207.3, 169.3, 136.4, 130.2, 129.7, 129.0, 64.8, 62.4, 36.9, 35.0, 19.2, 14.2; HPLC analysis: Daicel Chiralpak OD-H, flow rate = 1 ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 90:10, (*S*)-**30**: 32% *ee*, retention time: 6.5 min (minor) and 7.3 min (major); The spectroscopic data for **30** matched those described in the literature.<sup>2</sup>c



To a flame-dried tube equipped with a magnetic stir bar were added **1p** (15.6 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 72 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3p** (20.3 mg, 77%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2959, 2930, 2872, 1699, 1683, 1458, 1367, 1288, 1196, 1166, 1069, 1024, 949, 749, 704, 692; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.40 – 7.33 (m, 3 H), 7.34 – 7.28 (m, 2 H), 2.54 (qd, *J* = 17.7, 6.7 Hz, 2 H), 2.34 (s, 3 H), 2.21 (td, *J* = 13.4, 6.7 Hz, 1 H), 1.41 (s, 3 H), 0.95 (dd, *J* = 6.7, 1.2 Hz, 6 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  204.7, 201.9, 136.6, 129.8, 129.4, 129.2, 72.7, 47.8, 27.0, 24.3, 22.7, 22.5, 20.0; HRMS (ESI) calcd for C<sub>15</sub>H<sub>20</sub>O<sub>2</sub>NaS<sup>+</sup>: 287.1076, found 287.1076; HPLC analysis: Daicel Chiralpak OJ-H, flow rate = 1 ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 90:10, (*S*)-**3p**: 92% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -32.3 (c = 0.80, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 17.1 min (major) and 24.4 min (minor).



To a flame-dried tube equipped with a magnetic stir bar were added **1q** (14.2 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 72 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3q** (14.5 mg, 58%) as a colorless oil: IR (thin film, cm<sup>-1</sup>). 2971, 2931, 1699, 1474, 1439, 1381, 1353, 1261, 1202, 1099, 1002, 800, 749, 692; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 – 7.27 (m, 5 H), 3.22 – 3.08 (m, 1 H), 2.36 (s, 3 H), 1.41 (s, 3 H), 1.18 (dd, *J* = 23.5, 6.7 Hz, 6 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  209.9, 202.0, 136.5, 129.8, 129.4, 129.22, 72.6, 37.4, 27.3, 20.8, 20.4, 19.8; HRMS (ESI) calcd for C<sub>14</sub>H<sub>18</sub>O<sub>2</sub>NaS<sup>+</sup>: 273.0920, found 273.0924; HPLC analysis: Daicel Chiralpak OJ-H, flow rate = 1 ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 70:30, (*S*)-**3q**: 92% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -15.0 (c = 0.50, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 11.4 min (major) and 13.0 min (minor).

To a flame-dried tube equipped with a magnetic stir bar were added **1r** (12.8 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 72 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3r** (14.6 mg, 62%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2978, 2933, 1699, 1473, 1439, 1354, 1208, 1171, 1085, 1024, 969, 749, 704, 692; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.40 – 7.27 (m, 5 H), 2.69 (ddq, *J* = 87.3, 17.9, 7.2 Hz, 2 H), 2.33 (s, 3 H), 1.43 (s, 3 H), 1.13 (t, *J* = 7.2 Hz, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  205.6, 202.2, 136.7, 129.9, 129.3, 129.2, 72.4,

32.5, 26.9, 20.1, 8.6; HRMS (ESI) calcd for  $C_{13}H_{16}O_2NaS^+$ : 259.0763, found 259.0767; HPLC analysis: Daicel Chiralpak OJ-H, flow rate = 1 ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 70:30, (*S*)-**3r**: 88% *ee*;  $[\alpha]_D^{25} = -17.1$  (c = 0.48, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 15.7 min (major) and 25.4 min (minor).

To a flame-dried tube equipped with a magnetic stir bar were added **1s** (20.5 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2a** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 48 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 10:1) to afford **3s** (31.0 mg, 99%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 3332 (br), 3061, 2929, 1712, 1658, 1515, 1454, 1439, 1262, 1204, 1081, 1025, 1000, 750, 693; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 – 7.29 (m, 6 H), 7.30 – 7.23 (m, 4 H), 4.46 (d, *J* = 5.8 Hz, 2 H), 2.35 (s, 3H), 1.57 (s, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  202.5, 169.2, 137.7, 136.3, 130.0, 129.3, 129.2, 128.9, 128.0, 127.8, 65.2, 44.3, 26.5, 21.40; HRMS (ESI) calcd for C<sub>18</sub>H<sub>19</sub>O<sub>2</sub>NNaS<sup>+</sup>: 336.1029, found 336.1030; HPLC analysis: Daicel Chiralpak OD-H, flow rate = 1 ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 95:5, (*S*)-**3s**: 45% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -25.7 (c = 1.25, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 24.3 min (major) and 26.1 min (minor).



To a flame-dried tube equipped with a magnetic stir bar were added **1a** (14.4 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2b** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 48 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3t** (16.6 mg, 52%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2985, 2936, 1714, 1607, 1446, 1399, 1324, 1247, 1168, 1127, 1104, 1063, 1016, 841, 704, 599; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (q, *J* = 8.4 Hz, 4 H), 4.26 (q, *J* = 7.1 Hz, 2 H), 2.36 (s, 3 H), 1.54 (s, 3 H), 1.28 (t, *J* = 7.1 Hz, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  199.2, 169.7, 136.6, 134.7, 131.74 (q, *J* = 32.7 Hz), 125.9 (q, *J* = 3.6 Hz), 123.89 (q, *J* = 272.4 Hz), 66.1, 62.8, 26.0, 20.9, 14.1; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -62.91; HRMS (ESI) calcd for C<sub>14</sub>H<sub>15</sub>O<sub>3</sub>F<sub>3</sub>NaS<sup>+</sup>: 343.0586, found 343.0591; HPLC analysis: Daicel Chiralpak OJ-H, flow rate = 0.5 ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 97:3, (*S*)-**3t**: 89% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -37.7 (c = 0.69, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 18.5 min (major) and 19.9 min (minor).



To a flame-dried tube equipped with a magnetic stir bar were added **1a** (14.4 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2c** (30.6mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 48 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3u** (23.5 mg, 82%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2982, 2935, 1711, 1573, 1476, 1444, 1389, 1355, 1246, 1197, 1109, 1091, 1013, 826, 747, 507; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 (d, *J* = 8.5 Hz, 2 H), 7.29 (d, *J* = 8.4 Hz, 2 H), 4.25 (q, *J* = 7.1 Hz, 2 H), 2.35 (s, 3 H), 1.49 (s, 3 H), 1.29 (t, *J* = 7.1 Hz, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  199.2, 169.8, 138.2, 136.7, 129.4, 128.0, 66.0, 62.7, 26.1, 20.8, 14.1; HRMS (ESI) calcd for C<sub>13</sub>H<sub>15</sub>O<sub>3</sub>ClNaS<sup>+</sup>: 309.0323, found 309.0329; HPLC analysis: Daicel Chiralpak IC, flow rate = 0.5 ml/min,  $\lambda$  = 210 nm, hexane/iso-propanol = 97:3, (*S*)-**3u**: 91% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -48.5 (c = 1.04, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 39.2 min (major) and 41.0 min (minor).



To a flame-dried tube equipped with a magnetic stir bar were added **1a** (14.4 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2d** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 48 h. Then, the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3v** (24.2 mg, 91%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2982, 2934, 1713, 1575, 1563, 1462, 1398, 1372, 1355, 1246, 1197, 1117, 1015, 864, 781, 684; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 (d, *J* = 8.0 Hz, 2 H), 7.12 (d, *J* = 7.9 Hz, 2 H), 4.25 (q, *J* = 7.1 Hz, 2 H), 2.36 (s, 3 H), 2.34 (s, 3 H), 1.48 (s, 3 H), 1.29 (t, *J* = 7.1 Hz, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  199.5, 170.1, 140.4, 137.1, 129.9, 125.8, 65.8, 62.5, 26.2, 21.4, 20.7, 14.1; HRMS (ESI) calcd for C<sub>14</sub>H<sub>18</sub>O<sub>3</sub>NaS<sup>+</sup>: 289.0869, found 289.0873; HPLC analysis: Daicel Chiralpak OJ-H, flow rate = 1 ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 70:30, (*S*)-**3v**: 93% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -55.5 (c = 1.10, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 9.5 min (major) and 13.0 min (minor).



To a flame-dried tube equipped with a magnetic stir bar were added **1a** (14.4 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2e** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 48 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3w** (24.9 mg, 88%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2980, 2935, 2838, 1711, 1591, 1569, 1494, 1442, 1354, 1287, 1246, 1173, 1096, 1027, 832, 799, 720, 531; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 (d, *J* = 8.6 Hz, 2 H), 6.83 (d, *J* = 8.6 Hz, 2 H), 4.25 (q, *J* = 7.1 Hz, 2 H), 3.79 (s, 3 H), 2.36 (s, 3 H), 1.46 (s, 3 H), 1.29 (t, *J* = 7.1 Hz, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  199.5, 170.2, 161.3, 138.8, 119.9, 114.6, 65.8, 62.5, 55.4, 26.2, 20.6, 14.1; HRMS (ESI) calcd for C<sub>14</sub>H<sub>18</sub>O<sub>4</sub>NaS<sup>+</sup>: 305.0818, found 305.0822; HPLC analysis: Daicel Chiralpak OJ-H, flow rate = 1 ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 80:20, (*S*)-**3w**: 92% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -43.8 (c = 1.15, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 21.8 min (minor) and 24.6 min (major).



To a flame-dried tube equipped with a magnetic stir bar were added **1a** (14.4 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2f** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 48 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3x** (17.5 mg, 61%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2981, 2933, 1712, 1597, 1491, 1444, 1371, 1354, 1245, 1107, 1096, 1017, 865, 811, 510; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.44 (s, 1 H), 7.37 (d, *J* = 7.8 Hz, 1 H), 7.31 (d, *J* = 7.7 Hz, 1 H), 7.26 (dd, *J* = 9.8, 5.6 Hz, 1 H), 4.26 (q, *J* = 7.1 Hz, 2 H), 2.36 (s, 3H), 1.53 (s, 3 H), 1.30 (t, *J* = 7.1 Hz, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  199.2, 169.8, 136.6, 135.0, 134.5, 131.5, 130.2, 130.1, 66.1, 62.7, 26.0, 20.9, 14.1; HRMS (ESI) calcd for C<sub>13</sub>H<sub>15</sub>O<sub>3</sub>ClNaS<sup>+</sup>: 309.0323, found 309.0328; HPLC analysis: Daicel Chiralpak OJ-H, flow rate = 1 ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 70:30, (*S*)-**3x**: 86% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -46.0 (c = 0.55, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 7.1 min (major) and 8.3 min (minor).



To a flame-dried tube equipped with a magnetic stir bar were added **1a** (14.4 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2g** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 48 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3y** (1.9 mg, 7%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2925, 1742, 1712, 1468, 1354, 1276, 1245, 1109, 1046, 1018, 865, 755, 716, 526; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 (d, *J* = 7.7 Hz, 1 H), 7.30 – 7.22 (m, 2 H), 7.17 – 7.09 (m, 1 H), 4.25 (qd, *J* = 7.1, 3.4 Hz, 2 H), 2.46 (s, 3 H), 2.39 (s, 3 H), 1.44 (s, 3 H), 1.29 (t, *J* = 7.1 Hz, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  199.9, 170.2, 144.2, 138.2, 130.9, 130.1, 128.9, 126.5, 65.8, 62.5, 26.2, 21.5, 20.2, 14.1; HRMS (ESI) calcd for C<sub>14</sub>H<sub>18</sub>O<sub>3</sub>NaS<sup>+</sup>: 289.0869, found 289.0871; HPLC analysis: Daicel Chiralpak OJ-H, flow rate = 1 ml/min,  $\lambda$  = 210 nm, hexane/iso-propanol = 70:30, (*S*)-**3y**: 91% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -74.1 (c = 0.15, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 7.7 min (major) and 15.0 min (minor).



To a flame-dried tube equipped with a magnetic stir bar were added **1a** (14.4 mg, 0.10 mmol), **III**/TfOH (0.02 mmol) NaHCO<sub>3</sub> (8.4 mg, 0.10 mmol) and sulfenylation reagents **2h** (30.6 mg, 0.12 mmol). The resulting mixture was then diluted with 0.2 mL of CHCl<sub>3</sub>. The reaction was conducted at room temperature for 48 h. Then the crude mixture was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 20:1) to afford **3z** (20.8 mg, 78%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 2980, 2934, 1732, 1709, 1495, 1453, 1354, 1247, 1200, 1108, 1091, 1054, 1017, 864, 699, 468; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 – 7.16 (m, 5 H), 4.25 (q, *J* = 7.0 Hz, 2 H), 3.70 (s, 2 H), 2.29 (s, 3 H), 1.68 (s, 3 H), 1.30 (t, *J* = 7.1 Hz, 3 H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  200.2, 170.2, 136.5, 129.4, 128.7, 127.5, 63.2, 62.4, 34.7, 25.3, 20.7, 14.1; HRMS (ESI) calcd for C<sub>14</sub>H<sub>18</sub>O<sub>3</sub>NaS<sup>+</sup>: 289.0869, found 289.0875; HPLC analysis: Daicel Chiralpak OJ-H, flow rate = 1 ml/min,  $\lambda$ = 210 nm, hexane/iso-propanol = 70:30, (*S*)-**3z**: 87% *ee*; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -5.8 (c = 0.45, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 11.8 min (major) and 12.7 min (minor).



#### 4n

To a solution of α-sulfenylated β-keto ester (**3n**, 61mg, 0.22 mmol) in THF (0.3 ml) was added BH<sub>3</sub>•DMS (0.66 mmol) at 0 °C, and the obtained mixture was stirred for 4 h. The reaction was quenched with saturated aq. NH<sub>4</sub>Cl, and the mixture was extracted with Et<sub>2</sub>O (5 mL x 3). The organic layers were combined, dried over Na<sub>2</sub>SO<sub>4</sub>, concentrated and chromatographed on silica gel (petroleum ether : ethyl acetate = 20:1) to give **4n** (31.8 mg, 52%) as a colorless oil: IR (thin film, cm<sup>-1</sup>) 3446 (br), 2936, 1634, 1438, 1201, 1068, 967; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.53 – 7.46 (m, 2 H), 7.38 (ddd, *J* = 6.3, 3.7, 1.3 Hz, 1 H), 7.35 – 7.28 (m, 2 H), 4.21 – 3.98 (m, 2 H), 3.85 (dt, *J* = 8.3, 3.5 Hz, 1 H), 3.45 (d, *J* = 7.5 Hz, 1 H), 2.16 – 2.03 (m, 2 H), 1.68 (td, *J* = 10.8, 9.3 Hz, 2 H), 1.60 – 1.50 (m, 2 H), 1.46 – 1.35 (m, 1 H), 1.28 (dd, *J* = 12.2, 8.8 Hz, 1 H), 1.18 (t, *J* = 7.1 Hz, 3 H).; <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 173.2, 137.5, 130.1, 129.5, 128.6, 73.5, 61.2, 59.3, 32.0, 31.4, 22.6, 22.4, 14.0; HRMS (ESI) calcd for C<sub>15</sub>H<sub>20</sub>O<sub>3</sub>NaS<sup>+</sup>: 303.1025, found 303.1023; HPLC analysis: Daicel Chiralpak OJ-H, flow rate = 1 ml/min,

 $\lambda$ = 254 nm, hexane/iso-propanol = 95:5, **4n**: 90% *ee*; [α]<sub>D</sub><sup>25</sup> = -12.8 (c = 1.10, CH<sub>2</sub>Cl<sub>2</sub>), retention time: 9.0 min (major) and 10.2 min (minor).

### **Mechanism studies**

#### In-situ ESI-MS studies of the reaction mixture

An oven-dried 10 mL schlenk tube was charged with **1a** (0.10 mmol), amine catalyst (**III**/HOTf, 0.02 mmol) and NaHCO<sub>3</sub> (0.10 mmol) followed by CHCl<sub>3</sub> (0.2 mL). The mixture was stirred under air at room temperature for 30 min. Then an aliquot was taken for ESI-MS analysis.



#### Reaction with N-(phenylthio)phthalimide 2a:

To the above reaction mixture, N-(phenylthio)phthalimide (**2a**, 0.12 mmol) was added. The reaction was stirred under air at room temperature for 6 h. Then an aliquot was taken for ESI-MS analysis. It was found that a sulfenylated iminium ion was clearly noted, a clear indication of the enamine pathway.



#### Reference

1. (a) H. -M. Gillis, L. Greene, A. Thompson, *Synlett.*, 2009, 112; (b) T.-C. Ollins, A.-M. Vijayakrishna, *Can. J. Chem.*, 1987, **65**, 38.

2. (a) M. Jereb, A. Togni, *Org. Lett.*, 2005, **7**, 4041; (b) M. Jereb, A. Togni, *Chem. Eur. J.*, 2007, **13**, 9384; (c) L. Fang, A. Lin, H. Hu, C. Zhu, *Chem. Eur. J.*, 2009, **15**, 7039.

## NMR spectra



S17





S19













210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)











210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)





















30











3р













S34






















# **HPLC charts**



<Chromatogram>



<Peak Results> PDA Ch1 210nm Index Time/mi

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 13.394   | 185094     | 4403491       | 49.153   |
| 2     | 14.188   | 180336     | 4555295       | 50.847   |

<Chromatogram>



| FDA CHI ZIOHII |          |            |               |          |  |  |  |
|----------------|----------|------------|---------------|----------|--|--|--|
| Index          | Time/min | Height/mAU | Quantity/Area | Area %/% |  |  |  |
| 1              | 13.150   | 12754      | 253861        | 3.569    |  |  |  |
| 2              | 13.814   | 283389     | 6858829       | 96.431   |  |  |  |



<Chromatogram>



<sup>&</sup>lt;Peak Results> PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 11.456   | 390559     | 6352540       | 50.267   |
| 2     | 13.900   | 310490     | 6285119       | 49.733   |



| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 11.418   | 276855     | 4466518       | 95.093   |
| 2     | 13.790   | 13028      | 230484        | 4.907    |



<Chromatogram>



<Peak Results> PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 18.364   | 383462     | 10771442      | 49.840   |
| 2     | 19.388   | 374228     | 10840424      | 50.160   |

<Chromatogram>



| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 18.356   | 149492     | 4286393       | 98.321   |
| 2     | 19.363   | 3208       | 73214         | 1.679    |



<Chromatogram>



<Peak Results> PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 7.374    | 229580     | 3406668       | 49.639   |
| 2     | 7.988    | 224453     | 3456193       | 50.361   |

<Chromatogram>



| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 7.334    | 755838     | 10922182      | 97.417   |
| 2     | 7.939    | 21618      | 289632        | 2.583    |





<Peak Results> PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 24. 223  | 352661     | 11665011      | 49.481   |
| 2     | 25. 319  | 356846     | 11909516      | 50.519   |

<Chromatogram>



| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 24.438   | 242770     | 7762476       | 97.658   |
| 2     | 25.526   | 8388       | 186184        | 2.342    |





<Peak Results>

| PDA ( | PDA Chi Ziunm |          |            |               |          |  |  |  |
|-------|---------------|----------|------------|---------------|----------|--|--|--|
| Ind   | ex            | Time/min | Height/mAU | Quantity/Area | Area %/% |  |  |  |
| 1     |               | 10.442   | 1164496    | 18654123      | 49.964   |  |  |  |
| 2     |               | 11.293   | 1029406    | 18680899      | 50.036   |  |  |  |

<Chromatogram>



| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 10.625   | 16535      | 254968        | 6.701    |
| 2     | 11.545   | 198208     | 3549835       | 93.299   |





<Peak Results> PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 13. 582  | 80294      | 1450974       | 51.354   |
| 2     | 16.659   | 60086      | 1374446       | 48.646   |

<Chromatogram>



| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 13.548   | 228693     | 4178667       | 94.362   |
| 2     | 16.602   | 12564      | 249666        | 5.638    |





<Peak Results> PDA Ch1 210nm

| 1 9.955 133267 2197114 | ndex | Time/min | Height/mAU | Quantity/Area | Area %/% |
|------------------------|------|----------|------------|---------------|----------|
| 0 10 005 05000 0100440 | 1    | 9.955    | 133267     | 2197114       | 50.008   |
| 2 12.995 95360 2196440 | 2    | 12.995   | 95360      | 2196440       | 49.992   |

<Chromatogram>



| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 9.966    | 558089     | 9259004       | 95.792   |
| 2     | 13.029   | 18497      | 406769        | 4.208    |





<Peak Results> PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 6.113    | 287044     | 5146677       | 49.463   |
| 2     | 6.756    | 289426     | 5258419       | 50.537   |

<Chromatogram>



| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 6.201    | 295505     | 5362433       | 97.227   |
| 2     | 6.850    | 9659       | 152916        | 2.773    |





<Peak Results≻ PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 7.164    | 1153442    | 33905500      | 50.634   |
| 2     | 12.102   | 454960     | 33055994      | 49.366   |
|       |          |            |               |          |

<Chromatogram>



| г | DA UII A | 2101111  |            |               |          |
|---|----------|----------|------------|---------------|----------|
|   | Index    | Time/min | Height/mAU | Quantity/Area | Area %/% |
| Γ | 1        | 7.160    | 127843     | 3766424       | 97.791   |
|   | 2        | 11.884   | 1567       | 85085         | 2.209    |





<Peak Results> PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 10.456   | 166612     | 3376968       | 49.978   |
| 2     | 20.375   | 67334      | 3379968       | 50.022   |

<Chromatogram>



| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 10.442   | 100907     | 2033950       | 91.071   |
| 2     | 20.354   | 4822       | 199411        | 8.929    |





<Peak Results> PDA Ch1 210nm

| Ì | Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|---|-------|----------|------------|---------------|----------|
|   | 1     | 12.133   | 74358      | 2833083       | 50.026   |
|   | 2     | 16.574   | 49515      | 2830194       | 49.974   |

<Chromatogram>



| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 12.121   | 29932      | 1147664       | 91.772   |
| 2     | 16.567   | 2036       | 102896        | 8.228    |





PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 29.883   | 412088     | 15926621      | 49.383   |
| 2     | 31.079   | 405078     | 16324842      | 50.617   |
|       |          |            |               |          |

<Chromatogram>



| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 29.902   | 529723     | 19180398      | 97.933   |
| 2     | 31.065   | 15761      | 404779        | 2.067    |





<Peak Results> PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 32.302   | 59749      | 4405795       | 49.892   |
| 2     | 49.231   | 32228      | 4424846       | 50.108   |

<Chromatogram>



| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 33.003   | 2499       | 163256        | 4.724    |
| 2     | 49.738   | 24536      | 3292722       | 95.276   |



30

<Chromatogram>



<Peak Results> PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 6.569    | 1638066    | 15206356      | 50.353   |
| 2     | 7.425    | 1419948    | 14992978      | 49.647   |

<Chromatogram>



| DA CITI ZTOTIM |          |            |               |          |  |  |
|----------------|----------|------------|---------------|----------|--|--|
| Index          | Time/min | Height/mAU | Quantity/Area | Area %/% |  |  |
| 1              | 6.491    | 214925     | 2113829       | 34.193   |  |  |
| 2              | 7.327    | 373090     | 4068148       | 65,807   |  |  |





| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 17.230   | 212519     | 5092845       | 50.052   |
| 2     | 24.829   | 140580     | 5082227       | 49.948   |

<Chromatogram>



|   | IDA OIL A | 210mm    | the second s | 20 20 20 20 20 20 Addition of the |          |
|---|-----------|----------|----------------------------------------------------------------------------------------------------------------|-----------------------------------|----------|
| ſ | Index     | Time/min | Height/mAU                                                                                                     | Quantity/Area                     | Area %/% |
|   | 1         | 17.146   | 355095                                                                                                         | 8406987                           | 96.136   |
| l | 2         | 24.451   | 11289                                                                                                          | 337880                            | 3.864    |





<Peak Results> PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 11.540   | 131018     | 2272540       | 50.028   |
| 2     | 13.148   | 115351     | 2270022       | 49.972   |

<Chromatogram>



| < <b>Peak</b> | Results> |
|---------------|----------|
| PDA Ch1       | 210nm    |

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 11.382   | 74806      | 1256870       | 95.915   |
| 2     | 12.966   | 3024       | 53523         | 4.085    |





<Peak Results> PDA Ch1 210nm

| Index | Time/min                              | Height/mAU | Quantity/Area | Area %/% |
|-------|---------------------------------------|------------|---------------|----------|
| 1     | 15.586                                | 203621     | 4482230       | 49.991   |
| 2     | 25.441                                | 115636     | 4483807       | 50.009   |
|       | · · · · · · · · · · · · · · · · · · · |            |               |          |

<Chromatogram>



| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 15.664   | 235817     | 5172497       | 94.020   |
| 2     | 25.359   | 10094      | 328997        | 5.980    |





<Peak Results> PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 24.204   | 237999     | 11842353      | 50.615   |
| 2     | 25.834   | 227601     | 11554442      | 49.385   |

<Chromatogram>



<Peak Results>

| FDA CITI ZTOTIII |          |            |               |          |  |
|------------------|----------|------------|---------------|----------|--|
| Index            | Time/min | Height/mAU | Quantity/Area | Area %/% |  |
| 1                | 24.309   | 145141     | 6913175       | 72.413   |  |
| 2                | 26.093   | 53935      | 2633753       | 27.587   |  |





| PDA Ch1 254nm |          |            |               |          |  |  |
|---------------|----------|------------|---------------|----------|--|--|
| Index         | Time/min | Height/mAU | Quantity/Area | Area %/% |  |  |
| 1             | 18.546   | 43757      | 1255395       | 49.827   |  |  |
| 2             | 19.859   | 41926      | 1264092       | 50.173   |  |  |

<Chromatogram>



<sup>&</sup>lt;Peak Results> PDA Ch1 210nm

| PDA CHI ZIOHM |       |          |            |               |          |
|---------------|-------|----------|------------|---------------|----------|
|               | Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|               | 1     | 18.515   | 334832     | 9585753       | 94.323   |
|               | 2     | 19.934   | 22013      | 576943        | 5.677    |





<Peak Results> PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 39.241   | 215099     | 10685957      | 49.222   |
| 2     | 41.012   | 208743     | 11023912      | 50.778   |

<Chromatogram>



| FDA CHI ZIOHII |          |            |               |          |  |
|----------------|----------|------------|---------------|----------|--|
| Index          | Time/min | Height/mAU | Quantity/Area | Area %/% |  |
| 1              | 39.176   | 223493     | 10561044      | 95.516   |  |
| 2              | 40.972   | 11817      | 495801        | 4.484    |  |





<Peak Results> PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 9.469    | 419766     | 6429756       | 50.122   |
| 2     | 13.022   | 292225     | 6398446       | 49.878   |

<Chromatogram>



| IDA OIL | 1        |            |               |          |
|---------|----------|------------|---------------|----------|
| Index   | Time/min | Height/mAU | Quantity/Area | Area %/% |
| 1       | 9.461    | 453891     | 6918766       | 96.581   |
| 2       | 12.975   | 12882      | 244920        | 3.419    |







<Peak Results> PDA Ch1 210nm

| DA CITI ZTOTIMI |          |            |               |          |  |
|-----------------|----------|------------|---------------|----------|--|
| Index           | Time/min | Height/mAU | Quantity/Area | Area %/% |  |
| 1               | 21.775   | 126750     | 4189161       | 50.080   |  |
| 2               | 24.712   | 105624     | 4175852       | 49.920   |  |

<Chromatogram>



| < Pe | ak  | Resu. | lts) |
|------|-----|-------|------|
| PDA  | Ch1 | 210nr | n    |

| i DA UIII | 2 I VIIII |            |               |          |
|-----------|-----------|------------|---------------|----------|
| Index     | Time/min  | Height/mAU | Quantity/Area | Area %/% |
| 1         | 21.830    | 14192      | 438806        | 4.047    |
| 2         | 24.598    | 258635     | 10404828      | 95.953   |





<Peak Results> PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 7.128    | 478277     | 4596199       | 49.717   |
| 2     | 8.325    | 411046     | 4648546       | 50.283   |
|       |          |            |               |          |

<Chromatogram>



| 1 | DA UIII | 210mm    |            |               |          |  |
|---|---------|----------|------------|---------------|----------|--|
|   | Index   | Time/min | Height/mAU | Quantity/Area | Area %/% |  |
| Г | 1       | 7.085    | 1197275    | 11572967      | 92.942   |  |
| Г | 2       | 8.279    | 87243      | 878804        | 7.058    |  |





<Peak Results> PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 7.989    | 618851     | 7204030       | 49.950   |
| 2     | 16.056   | 267094     | 7218468       | 50.050   |





| i DA OILI |          |            |               |          |
|-----------|----------|------------|---------------|----------|
| Index     | Time/min | Height/mAU | Quantity/Area | Area %/% |
| 1         | 7.693    | 887113     | 9894686       | 95.449   |
| 2         | 14.957   | 21905      | 471788        | 4.551    |





<Peak Results> PDA Ch1 210nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 11.789   | 249937     | 3984155       | 49.977   |
| 2     | 12.663   | 232910     | 3987898       | 50.023   |

<Chromatogram>



| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 11.818   | 407640     | 6674103       | 93.646   |
| 2     | 12.748   | 29538      | 452884        | 6.354    |


<Chromatogram>



<Peak Results> PDA Ch1 254nm

| Inder | Time /min | Hoight /mAll | Quantity/Amag | 1200 0/10  |
|-------|-----------|--------------|---------------|------------|
| Index | 11me/min  | nergnt/mAu   | Quantity/Area | Area 70/70 |
| 1     | 9.031     | 69889        | 1135105       | 50.108     |
| 2     | 10.092    | 64895        | 1130226       | 49.892     |

<Chromatogram>



<Peak Results> PDA Chl 254nm

| Index | Time/min | Height/mAU | Quantity/Area | Area %/% |
|-------|----------|------------|---------------|----------|
| 1     | 9.028    | 104453     | 1524529       | 94.837   |
| 2     | 10.174   | 5671       | 83004         | 5.163    |