Supporting Information

Rh-Catalyzed Regioselective C-H Activation and C-C Bond Formation: Synthesis and Photophysical Studies of Indazolo[2,3-a]quinolines Sundaravel Vivek Kumar, [†] Sundaram Ellairaja,[‡] Vanaparthi Satheesh,[†] Vairathevar Sivasamy Vasantha,^{*,‡} and Tharmalingam Punniyamurthy^{*,†}

[†]Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
[‡]Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai-625 021, India.

S.No.	Contents	Page No.
1.	General information	S2
2.	General procedure	S2
3.	Characterization data of compound 3	S2
4.	Mechanistic investigation	\$13-\$17
5.	Crystal structure of 3h	S17
6.	¹ H and ¹³ C NMR spectra	S19-87
7.	UV-Vis and emission spectra	S88-S102

Experimental

General Information. $[Cp*RhCl_2]_2$ and $Cu(OAc)_2 H_2O$ (>98%) were purchased from Aldrich and used as received. Indazoles¹⁵ and alkynes¹⁶ were prepared according to literature. Silica gel-G plates (Merck) were used for TLC analysis with a mixture of hexane and ethyl acetate as the eluent. Melting point of the products was measured on Büchi melting point apparatus, MP B-540. Open capillary tubes were used for the measurements and are uncorrected. The ¹H and ¹³C spectra were recorded on Bruker 600 MHz and Varian Mercury Plus 400 MHz NMR instruments using TMS as an internal standard and CDCl₃ as a solvent. Mestrenova software was used throughout the spectral analysis. Chemical shifts are given in parts per million (δ -scale) and the coupling constants are given in Hertz. Q-Tof ESI-MS instrument (model HAB 273) was used for recording HRMS data. Infrared spectra were recorded on Perkin Elmer FT-IR instrument using KBr disc. UV-vis spectra were recorded on Agilent spectrophotometer and Fluorescence spectra were recorded on Cary Eclipse spectrofluorimeter.

General procedure for Rh(III)-catalyzed oxidative annulation of 2-aryl-2*H*-indazoles with alkynes. 2-Aryl-2*H*-indazole (0.25 mmol), alkyne (0.30 mmol), Cu(OAc)₂·H₂O (0.30 mmol), K₂CO₃ (0.25 mmol) and [Cp*RhCl₂]₂ (4 mol%) were stirred at 100 °C for 6 h in (CH₂Cl)₂ under nitrogen atmosphere. The progress of the reaction was monitored by TLC using ethyl acetate and hexane as eluent. After completion, the reaction mixture was diluted with CH₂Cl₂ (30 mL) and washed with water (1 x 5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on silica gel column chromatography using a 1:50 ethyl acetate and hexane.

5,6-Diphenylindazolo[2,3-*a*]**quinoline** 3a.^{6d} Yellow solid; 61 mg, yield 66%; mp 242-243 °C; $R_f = 0.40$ (1:50 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 9.09 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.7 Hz, 1H), 7.81 (t, J = 7.3 Hz, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.36–7.35 (m, 3H), 7.32-7.27 (m, 5H), 7.25-7.23 (m, 2H), 6.90 (t, J = 7.5 Hz, 1H), 6.67 (d, J = 8.5 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 149.7, 136.5, 136.5, 134.0, 133.6, 131.7, 131.2, 130.7, 130.3, 129.2, 128.5, 128.0, 128.0, 127.8, 127.6, 126.2, 125.7, 121.8, 120.5, 117.6, 117.4, 116.5; FT-IR (KBr) 3065, 3025, 2958, 2922, 2851, 1643, 1626, 1607, 1442, 1351, 1127, 1073, 805, 742 cm⁻¹. HRMS (ESI) calcd for [C₂₇H₁₈N₂+H]⁺ 371.1543, found 371.1546.

3-Chloro-5,6-diphenylindazolo[**2**,**3**-*a*]**quinoline 3b.** Yellow solid; 71 mg, yield 70%; mp 260-261 °C; $R_f = 0.34$ (1:50 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 9.03 (d, J = 9.0 Hz, 1H), 7.93 (d, J = 8.7 Hz, 1H), 7.75 (dd, J = 9.0, 2.1 Hz, 1H), 7.58 (d, J = 2.1 Hz, 1H), 7.46 (d, J = 7.8 Hz, 1H), 7.37-7.36 (m, 3H), 7.34-7.27 (m, 5H), 7.21 (d, J = 6.6 Hz, 2H), 6.92 (d, J = 7.8 Hz, 1H), 6.66 (d, J = 8.5 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 149.7, 136.0, 135.6, 132.8, 132.0, 131.9, 131.8, 131.5, 131.0, 130.0, 129.4, 128.4, 128.1, 128.1, 127.9, 127.6, 126.9, 126.7, 121.6, 120.8, 118.9, 117.6, 116.4; FT-IR (KBr) 2960, 2919, 2850, 1638, 1540, 1485, 1383, 1224, 1147, 1085, 846, 752 cm⁻¹. HRMS (ESI) calcd for [C₂₇H₁₇ClN₂ +H]⁺ 405.1159, found 405.1156.

3-Ethyl-5,6-diphenylindazolo[**2**,**3**-*a*]**quinoline 3c.** Yellow solid; 61 mg, yield 62%; mp 261-262 °C; $R_f = 0.31$ (1:50 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 9.00 (d, J = 8.6 Hz, 1H), 7.94 (d, J = 8.7 Hz, 1H), 7.68 (dd, J = 8.6, 1.6 Hz, 1H), 7.44 (t, J = 7.2 Hz, 1H), 7.40 (s, 1H), 7.37-7.34 (m, 3H), 7.33-7.28 (m, 5H), 7.25-7.23 (m, 2H), 6.90 (t, J = 7.2 Hz, 1H), 6.66 (d, J = 8.4 Hz, 1H), 2.75 (q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.6, 142.5, 136.6, 136.6, 133.9, 131.9, 131.4, 131.2, 130.7, 130.4, 129.7, 128.5, 128.0, 127.9, 127.6, 127.4, 126.3, 125.7, 121.8, 120.3, 117.6, 117.4, 116.4, 29.06, 15.90; FT-IR (KBr) 3031, 2964, 2918, 2850, 1660, 1641, 1551, 1443, 1356, 1227, 1104, 1069 825, 744 cm⁻¹. HRMS (ESI) calcd for [C₂₉H₂₂N₂ +H]⁺ 399.1861, found 399.1866.

3-*Iso***propyl-5,6-diphenylindazolo**[2,3-*a*]**quinoline 3d.** Yellow solid; 66 mg, yield 64%; mp 282-283 °C; $R_f = 0.31$ (1:50 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 9.01 (d, J = 8.7 Hz, 1H), 7.94 (d, J = 8.7 Hz, 1H), 7.72 (dd, J = 8.7, 1.7 Hz, 1H), 7.44 (t, J = 7.8 Hz, 1H), 7.42 (d, J = 1.6 Hz, 1H), 7.38-7.34 (m, 3H), 7.33-7.30 (m, 2H), 7.29-7.27 (m, 3H), 7.25-7.23 (m, 2H), 6.90 (m, t, J = 7.5 Hz, 1H), 6.66 (d, J = 8.5 Hz, 1H), 3.07-2.94 (sep, J = 6.9 Hz, 1H), 1.26 (d, J = 6.9 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 149.6, 147.0, 136.7, 136.6, 134.0, 132.0, 131.4, 131.2, 130.6, 130.4, 128.5, 128.0, 127.97, 127.93, 127.6, 127.4, 125.6, 125.1, 121.8, 120.3, 117.6, 117.4, 116.4, 34.3, 24.2; FT-IR (KBr) 2960, 2919, 2851, 1637, 1557, 1462, 1384, 1358, 1261, 1105, 1068, 830, 743 cm⁻¹. HRMS (ESI) calcd for [C₃₀H₂₄N₂ +H]⁺ 413.2018, found 413.2024.

3-Methyl-5,6-diphenylindazolo[**2,3-***a*]**quinoline 3e.** Yellow solid; 65 mg, yield 68%; mp 253-254 °C; $R_f = 0.26$ (1:50 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 8.97 (d,

J = 8.6 Hz, 1H), 7.93 (d, J = 8.7 Hz, 1H), 7.64 (d, J = 8.6 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.37-7.35 (m, 4H), 7.33-7.28 (m, 5H), 7.23-7.22 (m, 2H), 6.89 (t, J = 7.5 Hz, 1H), 6.66 (d, J = 8.4 Hz, 1H), 2.46 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.6, 136.6, 136.6, 136.1, 133.8, 131.8, 131.4, 131.2, 130.9, 130.7, 130.3, 128.5, 128.0, 127.9, 127.6, 127.4, 127.4, 125.7, 121.7, 120.4, 117.6, 117.2, 116.4, 21.7; FT-IR (KBr) 2964, 2921, 2853, 1638, 1546, 1444, 1382, 1265, 1128, 1027, 808, 737 cm⁻¹. HRMS (ESI) calcd for $[C_{28}H_{20}N_2 + H]^+$ 385.1705, found 385.1700.

3-Methoxy-5,6-diphenylindazolo[**2**,**3**-*a*]**quinoline 3f.** Yellow solid; 76 mg, yield 76%; mp 240-241 °C; $R_f = 0.54$ (1:9 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 9.01 (d, J = 9.2 Hz, 1H), 7.93 (d, J = 8.6 Hz, 1H), 7.45-7.42 (m, 2H), 7.36-7.35 (m, 3H), 7.32-7.28 (m, 4H), 7.27-7.26 (m, 1H), 7.24-7.23 (m, 2H), 6.99 (d, J = 2.6 Hz, 1H), 6.90 (t, J = 7.5 Hz, 1H), 6.66 (d, J = 8.4 Hz, 1H), 3.77 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 157.8, 149.5, 136.6, 136.5, 133.5, 131.2, 131.1, 130.9, 130.3, 128.5, 128.1, 128.0, 127.5, 127.4, 127.0, 121.6, 120.3, 118.9, 118.5, 117.7, 116.3, 109.2, 55.67; FT-IR (KBr) 2960, 2919, 2850, 1639, 1553, 1435, 1365, 1265, 1172, 1107, 1031, 845, 740 cm⁻¹. HRMS (ESI) calcd for [C₂₈H₂₀N₂O +H]⁺ 401.1654, found 401.1658.

3-(Methylthio)-5,6-diphenylindazolo[2,3-a]quinoline 3g. Yellow solid; 76 mg, yield 73%; mp 251-252 °C; $R_f = 0.27$ (1:50 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 8.99 (d, J = 8.8 Hz, 1H), 7.92 (d, J = 8.7 Hz, 1H), 7.69 (dd, J = 8.9, 2.0 Hz, 1H), 7.44 (ddd, J = 8.6, 6.6, 1.0 Hz, 1H), 7.41 (d, J = 2.0 Hz, 1H), 7.37-7.34 (m, 3H), 7.32-7.27 (m, 5H), 7.23-7.20 (m, 2H), 6.90 (ddd, J = 8.3, 6.7, 0.7 Hz, 1H), 6.66 (d, J = 8.5 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.7, 136.9, 136.4, 136.1, 133.2, 131.4, 131.4, 131.3, 131.1, 130.3, 128.5, 128.1, 128.0, 127.8, 127.6, 126.2, 124.6, 121.7, 120.6, 117.9, 117.7, 116.4, 16.1; FT-IR (KBr) 3057, 2954, 2920, 2851, 1641, 1626, 1547, 1489, 1441, 1365, 1264, 1112, 1028, 848, 743 cm⁻¹. HRMS (ESI) calcd for [C₂₈H₂₀N₂S +H]⁺ 417.1425, found 417.1431.

5,6-Diphenyl-3-(trifluoromethoxy)indazolo[2,3-a]quinoline 3h. Yellow solid; 98 mg, yield 86%; mp 107-108 °C; $R_f = 0.39$ (1:50 ethyl acetate/hexane);¹H NMR (600 MHz, CDCl₃) δ 9.13 (d, J = 9.2 Hz, 1H), 7.94 (d, J = 8.7 Hz, 1H), 7.67 (d, J = 9.3 Hz, 1H), 7.47 (d, J = 7.8 Hz, 1H), 7.45 (d, J = 1.9 Hz, 1H), 7.38-7.37 (m, 3H), 7.34-7.28 (m, 5H), 7.23-7.21 (m, 2H), 6.93 (t, J = 7.5 Hz, 1H), 6.67 (d, J = 8.5 Hz, 1H); ¹³C NMR (151 MHz,

CDCl₃) δ 149.8, 147.0, 136.0, 135.6, 133.2, 132.1, 131.8, 131.7, 131.0, 130.1, 128.6, 128.3, 128.2, 128.1, 127.8, 126.8, 122.3, 122.3, 121.7, 121.5, 121.0, 119.7, 119.6, 119.3, 117.7, 116.6; ¹⁹F NMR (376 Hz, DMSO-d₆) δ -57.1; FT-IR (KBr) 3082, 3062, 3043, 2925, 2852, 1628, 1553, 1445, 1435, 1258, 1219, 1170, 809, 753, 740 cm⁻¹. HRMS (ESI) calcd for [C₂₈H₁₇F₃N₂O +H]⁺ 455.1371, found 455.1370.

5,6-Diphenyl-3-(trifluoromethyl)indazolo[2,3-a]quinoline 3i. Yellow solid; 73 mg, yield 67%; mp 225-226 °C; $R_f = 0.39$ (1:50 ethyl acetate/hexane);¹H NMR (600 MHz, CDCl₃) δ 9.20 (d, J = 8.8 Hz, 1H), 8.01 (dd, J = 8.8, 1.7 Hz, 1H), 7.95 (d, J = 8.7 Hz, 1H), 7.90 (s, 1H), 7.48 (ddd, J = 8.6, 6.6, 0.9 Hz, 1H), 7.38-7.37 (m, 3H), 7.35-7.28 (m, 5H), 7.23-7.21 (m, 2H), 6.94 (dd, J = 7.9, 6.8 Hz, 1H), 6.68 (d, J = 8.5 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 150.1, 135.97, 135.4, 135.1, 133.7, 132.3, 132.2, 131.1, 130.1, 128.6, 128.4, 128.3, 128.0 (q, ² $J_{C-F} = 31.8$ Hz) 127.9, 125.3, 125.9 (¹ $J_{C-F} = 274.0$ Hz), 125.5 (q, ³ $J_{C-F} = 4.2$ Hz), 125.3 (q, ³ $J_{C-F} = 2.9$ Hz), 121.9, 121.2, 118.4, 117.7, 116.8; ¹⁹F NMR (376 Hz, DMSO-d₆) δ -61.4; FT-IR (KBr) 3062, 2958, 2921, 2851, 1636, 1555, 1386, 1361, 1319, 1263, 1171, 1122, 1081, 822, 741 cm⁻¹. HRMS (ESI) calcd for [C₂₈H₁₇F₃N₂ +H]⁺ 439.1422, found 439.1418.

2-Chloro-5,6-diphenylindazolo[**2,3-a**]**quinoline 3j.** Yellow solid; 84 mg, yield 83%; mp 238-239 °C; $R_f = 0.46$ (1:50 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 9.13 (d, J = 2.1 Hz, 1H), 7.96 (d, J = 8.7 Hz, 1H), 7.57 (d, J = 8.8 Hz, 1H), 7.50-7.47 (m, 2H), 7.39-7.38 (m, 3H), 7.35-7.30 (m, 5H), 7.24-7.23 (m, 2H), 6.94 (t, J = 7.5 Hz, 1H), 6.69 (d, J = 8.5 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 149.9, 136.2, 136.0, 135.5, 133.9, 133.5, 132.1, 131.1, 130.9, 130.2, 129.4, 128.6, 128.2, 128.2, 127.7, 126.8, 124.1, 121.8, 120.9, 117.6, 117.2, 116.6; FT-IR (KBr) 3060, 2955, 2924, 2852, 1729, 1649, 1627, 1606, 1544, 1491, 1309, 1108, 1091, 817, 742 cm⁻¹. HRMS (ESI) calcd for [C₂₇H₁₇ClN₂ +H]⁺ 405.1159, found 405.1148.

2-Ethyl-5,6-diphenylindazolo[2,3-a]quinoline 3k. Yellow solid; 70 mg, yield 71%; mp 171-172 °C; $R_f = 0.35$ (1:50 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 8.92 (s, 1H), 7.95 (d, J = 8.7 Hz, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.44 (ddd, J = 8.6, 6.6, 0.9 Hz, 1H), 7.34-7.35 (m, 4H), 7.31-7.25 (m, 5H), 7.23-7.21 (m, 2H), 6.90-6.88 (m, 1H), 6.67 (d, J = 8.5 Hz, 1H), 2.97 (q, J = 7.6 Hz, 2H), 1.41 (t, J = 7.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃)

δ 149.7, 146.5, 136.6, 136.6, 134.1, 133.6, 131.9, 131.2, 130.4, 129.8, 128.5, 128.0, 128.0, 127.9, 127.8, 127.4, 126.8, 123.7, 121.9, 120.3, 117.5, 116.4, 115.9, 29.4, 15.9; FT-IR (KBr) 3059, 3025, 2966, 2931, 2871, 1619, 1541, 1500, 1441, 1363, 1309, 1233, 1181, 1072, 1029, 828, 737 cm⁻¹. HRMS (ESI) calcd for $[C_{29}H_{22}N_2 +H]^+$ 399.1861, found 399.1870.

2-Methyl-5,6-diphenylindazolo[**2**,**3**-*a*]**quinoline 31.** Yellow solid; 56 mg, yield 59%; mp 252-253 °C; $R_f = 0.27$ (1:50 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 8.90 (s, 1H), 7.94 (d, J = 8.6 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.45 (t, J = 7.8 Hz, 1H), 7.36-7.33 (m, 4H), 7.31-7.27 (m, 5H), 7.22-7.23 (m, 2H), 6.90 (t, J = 7.2 Hz, 1H), 6.67 (d, J = 8.4 Hz, 1H), 2.68 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.7, 140.2, 136.6, 136.6, 134.1, 133.5, 131.9, 131.2, 130.4, 129.7, 128.5, 128.0, 127.9, 127.9, 127.8, 127.4, 123.5, 121.9, 120.3, 117.5, 117.0, 116.4, 22.0; FT-IR (KBr) 2960, 2920, 2849, 1641, 1553, 1442, 1384, 1261, 1173, 1104, 1024, 805, 737 cm⁻¹. HRMS (ESI) calcd for [C₂₈H₂₀N₂ +H]⁺ 385.1705, found 385.1696.

2-Methoxy-5,6-diphenylindazolo[2,3-a]quinoline **3**m and 4-methoxy-5,6diphenylindazolo[2,3-a]quinoline 3m' (Regioisomers). Yellow solid; 68 mg, yield 68%; mp 222-223 °C; $R_f = 0.46$ (1:9 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 8.75 (d, J = 8.5 Hz, 1H), 8.48 (d, J = 2.5 Hz, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.91 (s, 1H), 7.75 (t, 10.15)J = 8.2 Hz, 1H), 7.52 (d, J = 9.0 Hz, 1H), 7.45 (t, J = 7.8 Hz, 1H), 7.43-7.42 (m, 1H), 7.36-7.35 (m, 5H), 7.31-7.25 (m, 10H), 7.23-7.20 (m, 3H), 7.17-7.10 (m, 3H), 6.95 (d, J = 7.9 Hz, 1H), 6.89 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 7.1 Hz, 1H), 6.69 (d, J = 8.4 Hz, 1H), 6.49 $(d, J = 8.5 \text{ Hz}, 1\text{H}), 4.12 (s, 3\text{H}), 3.43 (s, 3\text{H}); {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, \text{CDCl}_3) \delta 160.9, 158.0,$ 149.8, 149.8, 140.7, 136.6, 136.6, 134.8, 134.2, 132.3, 131.8, 131.2, 130.6, 130.5, 130.0, 129.7, 129.5, 128.5, 128.3, 128.2, 128.0, 127.9, 127.9, 127.6, 127.4, 126.6, 125.8, 122.6, 122.0, 121.9, 120.5, 120.4, 120.2, 119.7, 118.1, 117.5, 117.4, 117.2, 116.4, 116.2, 114.1, 113.1, 110.3, 108.1, 106.9, 98.3, 56.2, 56.0; FT-IR (KBr) 2962, 2925, 2849, 1737, 1629, 1612, 1516, 1493, 1362, 1258, 1148, 1026, 843, 739 cm⁻¹. HRMS (ESI) calcd for $[C_{28}H_{20}N_2O + H]^+ 401.1654$, found 401.1636.

2,3-Dimethyl-5,6-diphenylindazolo[**2,3-***a*]**quinoline 3n.** Yellow solid; 71 mg, yield 71%; mp 274-275 °C; $R_f = 0.20$ (1:50 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 8.86 (s, 1H), 7.93 (d, J = 8.7 Hz, 1H), 7.43 (ddd, J = 8.6, 6.6, 1.1 Hz, 1H), 7.35- 7.34 (m, 4H),

7.32-7.26 (m, 5H), 7.23-7.21 (m, 2H), 6.88 (ddd, J = 8.4, 6.6, 0.8 Hz, 1H), 6.66 (d, J = 8.5 Hz, 1H), 2.58 (s, 3H), 2.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.6, 139.6, 136.7, 136.7, 135.7, 133.8, 132.0, 131.6, 131.2, 130.5, 129.7, 128.4, 128.0, 127.9, 127.8, 127.6, 127.3, 123.8, 121.8, 120.2, 117.5, 117.5, 116.3, 20.5, 20.2; FT-IR (KBr) 2953, 2920, 2849, 1638, 1542, 1491, 1441, 1263, 1148, 1108, 1072, 816, 741 cm⁻¹. HRMS (ESI) calcd for [C₂₉H₂₂N₂ +H]⁺ 399.1861, found 399.1848.

5,6-Diphenyl-[1,3]dioxolo[4,5-*g***]indazolo[2,3-***a***]quinoline 30.** Yellow solid; 85 mg, yield 82%; mp 294-295 °C; $R_f = 0.15$ (1:50 ethyl acetate/hexane); ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 8.9 Hz, 1H), 7.90 (d, J = 8.7 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.37-7.33 (m, 4H), 7.26-7.23 (m, 2H), 7.19 (m, 5H), 6.88 (t, J = 7.6 Hz, 1H), 6.53 (d, J = 8.5 Hz, 1H), 5.83 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 149.5, 145.6, 143.9, 137.4, 136.1, 131.4, 130.8, 130.6, 130.4, 130.1, 129.3, 128.4, 127.9, 127.6, 127.13, 127.07, 121.6, 120.7, 117.9, 116.4, 112.2, 111.0, 110.8, 101.8; FT-IR (KBr) 3061, 3025, 2958, 2922, 2852, 1740, 1637, 1548, 1491, 1450, 1367, 1269, 1127, 1105, 1039, 806, 742 cm⁻¹. HRMS (ESI) calcd for [C₂₈H₁₈N₂O₂ +H]⁺ 415.1447, found 415.1432.

1-Methyl-5,6-diphenylindazolo[2,3-*a*]**quinoline 3p.** Yellow solid; 77 mg, yield 80%; mp 207-208 °C; $R_f = 0.55$ (1:50 ethyl acetate/hexane);¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.7 Hz, 1H), 7.57 (d, J = 7.2 Hz, 1H), 7.44-7.39 (m, 2H), 7.36-7.30 (m, 4H), 7.30-7.25 (m, 5H), 7.21-7.19 (m, 2H), 6.89-6.85 (m, 1H), 6.58 (d, J = 8.5 Hz, 1H), 3.47 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 148.9, 137.3, 136.8, 134.3, 133.4, 132.7, 132.7, 131.2, 130.6, 130.6, 130.3, 128.5, 128.0, 127.8, 127.4, 127.3, 127.1, 126.1, 125.3, 121.6, 120.4, 116.8, 116.3, 26.1; FT-IR (KBr) 2966, 2924, 2852, 1645, 1628, 1550, 1493, 1441, 1363, 1304, 1263, 1154, 1104, 1026 797, 741 cm⁻¹. HRMS (ESI) calcd for [C₂₈H₂₀N₂+H]⁺ 385.1705, found 385.1695.

6,7-Diphenyl-2,3-dihydro-1*H***-cyclopenta**[*h*]**indazolo**[**2,3-***a*]**quinoline 3q.** Yellow solid; 76 mg, yield 74%; mp 234-235 °C; $R_f = 0.50$ (1:50 ethyl acetate/hexane); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.7 Hz, 1H), 7.40 (ddd, J = 8.7, 6.6, 1.1 Hz, 1H), 7.37 (d, J = 1.7 Hz, 2H), 7.35-7.30 (m, 3H), 7.29-7.24 (m, 5H), 7.22-7.19 (m, 2H), 6.86 (ddd, J = 8.5, 6.6, 0.8 Hz, 1H), 6.61 (d, J = 8.5 Hz, 1H), 4.23 (t, J = 7.4 Hz, 2H), 3.16 (t, J = 7.7 Hz, 2H), 2.33 (p, J = 7.6 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 149.4, 147.3, 137.4, 136.9, 134.5, 134.3, 132.4, 131.6, 131.1, 130.4, 129.6, 128.4, 128.0, 127.8, 127.2, 127.1, 126.5, 125.4, 122.7, 121.7, 120.2, 116.7, 116.6, 36.6, 33.6, 25.6; FT-IR (KBr) 3058, 2962, 2921, 2843, 1629, 1549, 1495, 1440, 1380, 1260, 1106, 1070, 820, 735 cm⁻¹. HRMS (ESI) calcd for $[C_{30}H_{22}N_2+H]^+$ 411.1861, found 411.1845.

7,8-Diphenylbenzo[*h*]**indazolo**[**2,3**-*a*]**quinoline 3r.** Yellow solid; 61 mg, yield 58%; mp 170-171 °C; $R_f = 0.42$ (1:50 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 11.46 (d, J = 8.8 Hz, 1H), 8.11 (d, J = 8.6 Hz, 1H), 8.07 (d, J = 7.9 Hz, 1H), 8.00 (t, J = 7.3 Hz, 1H), 7.88 (d, J = 8.9 Hz, 1H), 7.82 (t, J = 7.4 Hz, 1H), 7.66 (d, J = 8.9 Hz, 1H), 7.53 (t, J = 7.5 Hz, 1H), 7.40-7.37 (m, 3H), 7.35-7.30 (m, 5H), 7.28-7.26 (m, 2H), 6.96 (t, J = 7.5 Hz, 1H), 6.72 (d, J = 8.4 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 149.5, 137.4, 136.7, 134.4, 134.0, 131.3, 131.2, 130.3, 129.7, 129.14, 129.11, 128.5, 128.3, 128.1, 128.0, 127.8, 127.8, 127.7, 127.66, 127.62, 127.4, 125.4, 124.9, 124.4, 121.8, 120.4, 116.6, 116.0; FT-IR (KBr) 2962, 2921, 2851, 1635, 1548, 1475, 1362, 1442, 1263, 1195, 1165, 1027, 824, 748 cm⁻¹. HRMS (ESI) calcd for [C₃₁H₂₀N₂+H]⁺ 421.1705, found 421.1706.

5,6-Diphenylindazolo[2,3-*a*][1,6]naphthyridine 3s. Yellow solid; 73 mg, yield 79%; mp 209-210 °C; $R_f = 0.27$ (1:4 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 8.96 (s, 1H), 8.90 (d, J = 5.7 Hz, 1H), 8.83 (d, J = 5.7 Hz, 1H), 7.95 (d, J = 8.7 Hz, 1H), 7.49 (ddd, J = 8.7, 6.6, 1.0 Hz, 1H), 7.39-7.38 (m, 3H), 7.34-7.29 (m, 5H), 7.26-7.25 (m, 2H), 6.95 (ddd, J = 8.4, 6.6, 0.6 Hz, 1H), 6.69 (d, J = 8.5 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 151.4, 150.6, 147.9, 137.6, 135.7, 134.7, 133.1, 132.5, 132.2, 131.2, 130.2, 128.8, 128.7, 128.4, 128.3, 128.0, 121.9, 121.5, 120.9, 117.6, 117.0, 110.5; FT-IR (KBr) 2964, 2924, 2853, 1631, 1598, 1479, 1436, 1347, 1310, 1262, 1183, 1031, 826, 745 cm⁻¹. HRMS (ESI) calcd for [C₂₆H₁₇N₃+H]⁺ 372.1501, found 372.1505.

8-Fluoro-5,6-diphenylindazolo[2,3-*a*]**quinoline 3t.** Yellow solid; 72 mg, yield 74%; mp 231-232 °C; $R_f = 0.27$ (1:50 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 9.03 (dd, J = 8.4, 0.7 Hz, 1H), 7.90 (dd, J = 9.3, 4.6 Hz, 1H), 7.79 (ddd, J = 8.4, 7.1, 1.3 Hz, 1H), 7.61 (dd, J = 8.2, 1.0 Hz, 1H), 7.52-7.49 (m, 1H), 7.37-7.35 (m, 3H), 7.31-7.21 (m, 8H), 6.24 (dd, J = 9.7, 2.3 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 157.3 (d, ¹ $J_{C-F} = 238.2$ Hz), 146.9, 136.3, 136.1, 133.7 (d, ³ $J_{C-F} = 13.7$ Hz), 131.2, 130.6, 130.2, 129.8, 129.3, 128.6, 128.2, 128.08, 128.06, 127.5, 126.4, 125.7, 121.04, 118.8, (d, ² $J_{C-F} = 28.3$ Hz), 118.3 (d,

 ${}^{3}J_{C-F} = 9.5 \text{ Hz}$, 117.2, 105.0 (d, ${}^{2}J_{C-F} = 25.6 \text{ Hz}$); ¹⁹F NMR (376 Hz, DMSO-d₆) δ -120.3; FT-IR (KBr) 3054, 3026, 2921, 2852, 1633, 1588, 1545, 1524, 1491, 1434, 1275, 1198, 1098, 761 cm⁻¹. HRMS (ESI) calcd for [C₂₇H₁₇FN₂+H]⁺ 389.1454, found 389.1438.

8-Methoxy-5,6-diphenylindazolo[2,3-*a***]quinoline 3u.** Yellow solid; 68 mg, yield 68%; mp 229-230 °C; $R_f = 0.29$ (1:9 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 9.00-8.99 (m, 1H), 7.84 (d, J = 9.2 Hz, 1H), 7.77 (ddd, J = 8.4, 7.1, 1.3 Hz, 1H), 7.59 (dd, J = 8.2, 0.9 Hz, 1H), 7.48 (ddd, J = 8.2, 7.1, 1.1 Hz, 1H), 7.39-7.25 (m, 10H), 7.14 (dd, J = 9.3, 2.4 Hz, 1H), 5.81 (d, J = 2.4 Hz, 1H), 3.44 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 154.0, 146.2, 136.6, 136.6, 133.8, 132.7, 131.3, 131.0, 130.7, 130.5, 129.0, 128.4, 128.0, 127.9, 127.8, 127.4, 125.9, 125.6, 121.9, 117.9, 117.4, 117.0, 99.0, 55.0; FT-IR (KBr) 2952, 2923, 2853, 1638, 1548, 1522, 1489, 1435, 1384, 1213, 1169, 1105, 1072, 812, 754 cm⁻¹. HRMS (ESI) calcd for [C₂₈H₂₀N₂O +H]⁺ 401.1654, found 401.1658.

8,9-Dimethoxy-5,6-diphenylindazolo[2,3-*a***]quinoline 3v.** Yellow solid; 77 mg, yield 72%; mp 256-257 °C; $R_f = 0.29$ (1:4 ethyl acetate/hexane);¹H NMR (400 MHz, CDCl₃) δ 8.94 (d, J = 8.6 Hz, 1H), 7.78-7.73 (m, 1H), 7.57 (dd, J = 8.2, 1.1 Hz, 1H), 7.46-7.41 (m, 1H), 7.40-7.34 (m, 2H), 7.28-7.33 (m, 5H), 7.27-7.24 (m, 4H), 5.80 (s, 1H), 4.00 (s, 3H), 3.49 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 152.3, 146.45, 146.40, 136.7, 136.6, 133.9, 133.1, 131.25, 131.20, 130.6, 130.2, 129.1, 128.4, 128.02, 128.0, 127.8, 127.4, 125.4, 125.0, 116.6, 111.3, 99.5, 95.3, 56.1, 55.5; FT-IR (KBr) 3002, 2960, 2921, 2853, 2833, 1639, 1545, 1496, 1463, 1441, 1159, 1099, 836, 737 cm⁻¹. HRMS (ESI) calcd for [C₂₉H₂₂N₂O₂+H]⁺ 431.1760, found 431.1768.

5,6-Bis(4-bromophenyl)indazolo[2,3-*a***]quinoline 3ab.** Yellow solid; 99 mg, yield 75%; mp 243-244 °C; $R_f = 0.30$ (1:50 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 9.08 (d, J = 8.3 Hz, 1H), 7.96 (d, J = 8.7 Hz, 1H), 7.82 (ddd, J = 8.4, 6.7, 1.7 Hz, 1H), 7.56-7.50 (m, 4H), 7.49-7.46 (m, 3H), 7.18-7.15 (m, 2H), 7.10-7.08 (m, 2H), 6.97 (ddd, J = 8.4, 6.6, 0.7 Hz, 1H), 6.73 (d, J = 8.5 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 149.7, 135.2, 135.1, 133.6, 132.7, 132.0, 131.9, 131.6, 131.0, 129.7, 129.5, 128.0, 127.7, 126.4, 125.1, 122.6, 122.1, 121.4, 121.0, 117.5, 117.4, 116.8; FT-IR (KBr) 2960, 2919, 2847, 1641, 1544, 1488, 1387, 1130, 1072, 827, 742 cm⁻¹. HRMS (ESI) calcd for $[C_{27}H_{16}Br_2N_2+H]^+$ 526.9758, found 526.9761.

5,6-Bis(4-chlorophenyl)indazolo[2,3-*a***]quinoline 3ac.** Yellow solid; 79 mg, yield 72%; mp 244-245 °C; $R_f = 0.30$ (1:50 ethyl acetate/hexane);¹H NMR (600 MHz, CDCl₃) δ 9.08 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.7 Hz, 1H), 7.82 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.55 (dd, J = 8.2, 1.2 Hz, 1H), 7.52 (ddd, J = 8.2, 6.9, 1.1 Hz, 1H), 7.47 (ddd, J = 8.6, 6.6, 1.0 Hz, 1H), 7.38-7.36 (m, 2H), 7.33-7.30 (m, 2H), 7.23-7.21 (m, 2H), 7.16-7.13 (m, 2H), 6.96 (ddd, J = 8.4, 6.6, 0.8 Hz, 1H), 6.73 (d, J = 8.5 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 149.7, 134.7, 134.3, 133.8, 133.6, 132.8, 132.4, 131.7, 131.1, 129.6, 129.6, 129.1, 128.6, 128.0, 127.7, 126.4, 125.2, 121.4, 121.0, 117.5, 117.4, 116.8; FT-IR (KBr) 3063, 2961, 2924, 2853, 1904, 1731, 1628, 1599, 1521, 1494, 1390, 1145, 1091, 830, 752 cm⁻¹. HRMS (ESI) calcd for [C₂₇H₁₆Cl₂N₂+H]⁺ 439.0769, found 439.0773.

5,6-Bis(4-fluorophenyl)indazolo[2,3-*a***]quinoline 3ad.** Yellow solid; 80 mg, yield 79%; mp 245-246 °C; $R_f = 0.27$ (1:50 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 9.08 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 8.7 Hz, 1H), 7.81 (ddd, J = 8.3, 7.1, 1.3 Hz, 1H), 7.58-7.56 (m, 1H), 7.53-7.51 (m, 1H), 7.47-7.45 (m, 1H), 7.26-7.23 (m, 2H), 7.18-7.16 (m, 2H), 7.08 (t, J = 8.6 Hz, 2H), 7.02 (t, J = 8.6 Hz, 2H), 6.95 (t, J = 7.2 Hz, 1H), 6.72 (d, J = 8.5 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 162.5 (d, ¹ $J_{C-F} = 248.1$ Hz), 162.2 (d, ¹ $J_{C-F} = 247.5$ Hz), 149.7, 133.6, 133.2, 132.8 (d, ³ $J_{C-F} = 8.0$ Hz), 132.3 (d, ⁴ $J_{C-F} = 3.5$ Hz), 132.0 (d, ³ $J_{C-F} = 8.1$ Hz), 131.4, 130.0, 129.5, 127.9, 127.8, 126.4, 125.5, 121.5, 120.8, 117.5, 116.7, 115.8 (d, ² $J_{C-F} = 21.5$ Hz), 115.3 (d, ² $J_{C-F} = 21.5$ Hz); ¹⁹F NMR (376 Hz, DMSO-d₆) δ -114.2, -113.2; FT-IR (KBr) 2960, 2921, 2852, 1629, 1602, 1549, 1504, 1429, 1354, 1223, 1154, 1093, 829, 744 cm⁻¹. HRMS (ESI) calcd for [C₂₇H₁₆F₂N₂+H]⁺ 407.1360, found 407.1365.

5,6-Bis(4-methoxyphenyl)indazolo[2,3-*a***]quinoline 3ae.** Yellow solid; 78 mg, yield 73%; mp 246-247 °C; $R_f = 0.36$ (1:9 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 9.07 (dd, J = 8.4, 0.7 Hz, 1H), 7.94 (d, J = 8.7 Hz, 1H), 7.79 (ddd, J = 8.4, 7.0, 1.3 Hz, 1H), 7.65 (dd, J = 8.2, 0.9 Hz, 1H), 7.51 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.45 (ddd, J = 8.6, 6.6, 1.0 Hz, 1H), 7.21-7.19 (m, 2H), 7.14-7.12 (m, 2H), 6.94-6.89 (m, 3H), 6.87-6.84 (m, 2H), 6.78 (d, J = 8.5 Hz, 1H), 3.86 (s, 3H), 3.82 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 159.1, 158.7, 149.7, 134.1, 133.5, 132.3, 132.2, 131.5, 130.7, 129.1, 129.0, 128.8, 128.0, 127.8, 126.1, 126.0, 122.0, 120.4, 117.6, 117.3, 116.5, 113.9, 113.5, 55.36, 55.34; FT-IR (KBr)

2997, 2958, 2922, 2851, 1737, 1651, 1628, 1607, 1510, 1459, 1243, 1175, 1107, 1027, 830, 746 cm⁻¹. HRMS (ESI) calcd for [C₂₉H₂₂N₂ O₂+H]⁺ 431.1760, found 431.1763.

5,6-Di-*p*-tolylindazolo[2,3-*a*]quinoline 3af. Yellow solid; 71 mg, yield 71%; mp 259-260 °C; $R_f = 0.35$ (1:50 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 9.07 (dd, J = 8.5, 0.8 Hz, 1H), 7.93 (d, J = 8.7 Hz, 1H), 7.78 (ddd, J = 8.4, 7.0, 1.3 Hz, 1H), 7.61 (dd, J = 8.2, 0.9 Hz, 1H), 7.49 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.44 (ddd, J = 8.6, 6.6, 1.1 Hz, 1H), 7.18-7.15 (m, 4H), 7.13-7.10 (m, 4H), 6.91 (ddd, J = 8.4, 6.6, 0.8 Hz, 1H), 6.71-6.69 (m, 1H), 2.40 (s, 3H), 2.35 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.7, 137.5, 136.9, 134.1, 133.6, 133.52, 133.51, 132.1, 131.0, 130.8, 130.1, 129.2, 129.1, 128.7, 128.1, 127.7, 126.1, 125.9, 122.0, 120.4, 117.6, 117.3, 116.5, 21.58, 21.44; FT-IR (KBr) 3056, 3027, 2962, 2920, 1640, 1622, 1546, 1503, 1304, 1187, 1108, 1019, 818, 740 cm⁻¹. HRMS (ESI) calcd for [C₂₉H₂₂N₂+H]⁺ 399.1861, found 399.1866.

5,6-Bis(3-chlorophenyl)indazolo[2,3-*a***]quinoline 3ag.** Yellow solid; 73 mg, yield 67%; mp 281-282 °C; $R_f = 0.32$ (1:50 ethyl acetate/hexane); 1:1 mixture of rotomers; ¹H NMR (600 MHz, CDCl₃) δ 9.09 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.7 Hz, 1H), 7.84 (t, J = 7.5 Hz, 1H), 7.58-7.54 (m, 2H), 7.48 (t, J = 7.8 Hz, 1H), 7.38 (t, J = 7.2 Hz, 1H), 7.36-7.33 (m, 1H), 7.32-7.29 (m, 2H), 7.27-7.24 (m, 2H), 7.20 (d, J = 7.2 Hz, 1H), 7.14-7.10 (m, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.72 (dd, J = 8.3, 2.9 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 149.7, 138.0, 137.9, 134.7, 134.5, 134.3, 134.1, 133.6, 132.5, 131.1, 131.0, 130.9, 130.30, 130.27, 130.1, 129.9, 129.8, 129.6, 129.5, 129.41, 129.40, 129.38, 129.34, 128.59, 128.55, 128.52, 128.08, 128.06, 128.0, 127.7, 126.5, 125.0, 121.4, 121.1, 117.5, 117.4, 116.8; FT-IR (KBr) 2962, 2921, 2851, 2096, 1639, 1497, 1472, 1433, 1351, 1308, 1183, 1096, 789, 736 cm⁻¹. HRMS (ESI) calcd for [C₂₇H₁₆Cl₂N₂+H]⁺ 439.0769, found 439.0774.

5,6-Di-*m***-tolylindazolo**[**2,3***-a*]**quinoline 3ah.** Yellow solid; 82 mg, yield 83%; mp 212-213 °C; $R_f = 0.37$ (1:50 ethyl acetate/hexane); 1:1 mixture of rotomers; ¹H NMR (600 MHz, CDCl₃) δ 9.08 (d, J = 8.4 Hz, 2H), 7.94 (d, J = 8.7 Hz, 2H), 7.81-7.80 (m, 2H), 7.63-7.62 (m, 2H), 7.52-7.50 (m, 2H), 7.44 (dd, J = 11.5, 3.9 Hz, 2H), 7.25-7.24 (m, 2H), 7.21-7.17 (m, 2H), 7.16 (d, J = 7.7 Hz, 2H), 7.11-7.02 (m, 10H), 6.93-6.88 (m, 2H), 6.69 (d, J = 8.5 Hz, 2H), 2.31-2.30 (m, 9H), 2.30 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.7, 137.99, 137.95, 137.5, 137.4, 136.39, 136.38, 134.09, 134.07, 133.5, 131.88, 131.86, 130.9, 130.8, 129.1, 128.65, 128.64, 128.30, 128.28, 128.27, 128.1, 127.8, 127.7, 127.7, 127.3, 126.1,

125.8, 122.0, 121.2, 120.4, 117.6, 117.3, 116.5, 21.57, 21.56, 21.54, 21.53; FT-IR (KBr) 2953, 2921, 2853, 1793, 1731, 1629, 1522, 1488, 1308, 1261, 1103, 1033, 790, 733 cm⁻¹. HRMS (ESI) calcd for $[C_{29}H_{22}N_2+H]^+$ 399.1861, found 399.1865.

5,6-Di(naphthalen-1-yl)indazolo[2,3-*a***]quinoline 3ai.** Yellow solid; 87 mg, yield 74%; mp 301-302 °C; $R_f = 0.17$ (1:50 ethyl acetate/hexane); 10:1 mixture of rotomers; ¹H NMR (600 MHz, CDCl₃) δ 9.18 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.7 Hz, 1H), 7.85-7.81 (m, 3H), 7.74 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.65 (d, J = 8.6 Hz, 1H), 7.56 (d, J = 8.5 Hz, 1H), 7.47-7.35 (m, 5H), 7.32-7.29 (m, 1H), 7.26 (d, J = 6.9 Hz, 1H), 7.18 (d, J = 6.3 Hz, 1H), 7.15-7.08 (m, 3H), 6.67-6.64 (m, 1H), 5.99 (d, J = 8.5 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 149.8, 134.1, 134.0, 133.6, 133.4, 133.3, 133.2, 132.3, 132.2, 130.0, 129.5, 128.6, 128.5, 128.4, 128.34, 128.32, 127.8, 127.6, 126.7, 126.6, 126.42, 126.41, 126.4, 126.1, 126.0, 125.9, 125.7, 125.5, 125.2, 121.4, 120.9, 117.4, 117.4, 116.5; FT-IR (KBr) 2962, 2920, 2853, 1638, 1468, 1384, 1261, 1222, 1091, 1015, 802, 742 cm⁻¹. HRMS (ESI) calcd for [C₃₅H₂₂N₂+H]⁺ 471.1861, found 471.1861.

5-(4-methoxyphenyl)-6-phenylindazolo[2,3-a]quinolone 6-(4-3ai and methoxyphenyl)-5-phenylindazolo[2,3-a]quinoline 3aj'. (Regioisomers). Yellow solid; 78 mg, yield 78%; mp 222-223 °C; $R_f = 0.54$ (1:50 ethyl acetate/hexane); ¹H NMR (600 MHz, CDCl₃) δ 9.08 (d, J = 8.4, 2H), 7.96-7.93 (m, 2H), 7.81-7.80 (m, 2H), 7.66 (dd, J =8.3, 1.3, 1H), 7.60 (dd, J = 8.3, 1.3, 1H), 7.52-7.50 (m, 2H), 7.46-7.44 (m, 2H), 7.38-7.37 (m, 3H), 7.34-7.29 (m, 5H), 7.24-7.22 (m, 2H), 7.22-7.22 (m, 2H), 7.15-7.13 (m, 2H), 6.95-6.88 (m, 4H), 6.85-6.83 (m, 2H), 6.80-6.78 (m, 1H), 6.66 (d, J = 8.5, 1H), 3.85 (s, 3H), 3.81 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 159.1, 158.8, 149.7, 136.7, 136.6, 134.3, 133.8, 133.5, 133.5, 132.3, 132.1, 131.8, 131.5, 131.2, 130.9, 130.4, 130.3, 129.2, 129.1, 128.7, 128.6, 128.5, 128.1, 128.0, 127.9, 127.8, 127.4, 126.1, 126.0, 125.7, 121.9, 121.8, 120.5, 120.4, 117.7, 117.5, 117.3, 116.5, 116.5, 113.9, 113.5, 55.34, 55.32; FT-IR (KBr) 2924, 2853, 1649, 1624, 1606, 1458, 1244, 1028, 740 cm⁻¹. HRMS (ESI) calcd for $[C_{28}H_{21}N_2O+H]^+$ 401.1654, found 401.1686.

5,6-Dipropylindazolo[**2,3**-*a*]**quinoline 3al.** Yellow solid; 47 mg, yield 63%; mp 125-126 °C; $R_f = 0.30$ (1:50 ethyl acetate/hexane); ¹H NMR (400 MHz, CDCl₃) δ 9.01 (d, J = 8.0 Hz, 1H), 8.07 (t, J = 8.0 Hz, 2H), 7.96 (d, J = 8.4 Hz, 1H), 7.74-7.72 (m, 1H), 7.63-7.62 (m, 1H), 7.53 (t, J = 7.0 Hz, 1H), 7.26-7.23 (m, 1H), 3.30-3.29 (m, 2H), 3.13-3.11 (m, 2H),

S12

1.87-1.85 (m, 2H), 1.77-1.75 (m, 2H), 1.24-1.23 (m, 3H), 1.16 (t, J = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.6, 133.3, 132.2, 131.4, 129.8, 128.2, 127.4, 126.1, 125.0, 124.9, 121.8, 120.7, 117.9, 116.9, 116.4, 31.5, 29.9, 24.4, 22.9, 14.8, 14.6; FT-IR (KBr) 3079, 2956, 2924, 2868, 1626, 1553, 1517, 1458, 1364, 1263, 1148, 1089, 884, 737 cm⁻¹. HRMS (ESI) calcd for [C₂₁H₂₂N₂+H]⁺ 303.1861, found 303.1863.

Synthesis of 2-(4-Methylphenyl-2,6-d₂)-2H-indazole 1e-d₂. 2-Bromobenzaldehyde (0.5 mmol) and p-toluidine-d₂ aniline 84% D (0.6 mmol) were stirred in DMSO (5 mL) at room temperature for 0.25 h. The resultant mixture was treated with NaN₃ (0.75 mmol), CuI (15 mol%) and TMEDA (15 mol%) and stirred at 120 °C for 12 h. The progress of the reaction was monitored by TLC using ethyl acetate and hexane. After completion, the reaction mixture was cooled to room temperature and poured in ice cold water. The mixture was extracted using EtOAc (3 x 40 mL) and dried over Na₂SO₄. The solution was passed through a short pad of cellite and evaporated on a rotary evaporator to produce a residue that was purified on silica gel column chromatography using 1:50 ethyl acetate and hexane to give 1e- d_2 as a colorless solid with 82% D and 74% yield (163 mg). $R_f = 0.26$ (1:50 ethyl acetate/hexane); mp 99-100 °C;¹H NMR (600 MHz, CDCl₃) δ 8.37 (s, 1H), 7.80-7.37 (m, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.34-7.30 (m, 3H), 7.12-7.10 (m, 1H), 2.42 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 149.8, 138.0, 130.2, 130.1, 126.8, 122.8, 122.4, 120.9, 120.5, 120.4, 118.0, 21.2; FT-IR (KBr) 3118, 3043, 2920, 2853, 1624, 1517, 1488, 1448, 1378, 1194, 1034, 792, 739 cm⁻¹. HRMS (ESI) calcd for $[C_{14}H_{10}D_2N_2+H]^+$ 211.1204, found 211.1208. **Mechanistic investigation**

Competition experiment using 1f and 1i. 2-(4-Methoxyphenyl)-2*H*-indazole **1f** (0.125 mmol), 2-(4-(trifluoromethyl)phenyl)-2*H*-indazole **1i** (0.125 mmol), 1,2-diphenylethyne **2a** (0.14 mmol), Cu(OAc)₂·H₂O (0.30 mmol), K₂CO₃ (0.25 mmol) and [Cp*RhCl₂]₂ (4 mol%) were stirred at 100 °C for 6 h in (CH₂Cl)₂ under nitrogen atmosphere. The progress of the reaction was monitored by TLC using ethyl acetate and hexane as an eluent. The reaction mixture was cooled to room temperature and diluted with CH₂Cl₂ (30 mL) and washed with water (1 x 5 mL). Drying (Na₂SO₄) and evaporation of the solvent in vacuo provided a residue that was purified by column chromatography on silica gel using a 1:50 ethyl acetate and hexane as an eluent.

Rh(III)-catalyzed H/D exchange studies in DCE:D₂O. To a stirred solution of 2-aryl-2*H*indazole (0.25 mmol), 1,2-diphenylethyne (0.30 mmol), Cu(OAc)₂·H₂O (0.30 mmol), K₂CO₃ (0.25 mmol) and [Cp*RhCl₂]₂ (4 mol%) in (CH₂Cl)₂ (2 mL) under nitrogen atmosphere was added D₂O (1 mmol). The resultant mixture was stirred at 100 °C for 6 h and then cooled to room temperature. The reaction mixture was diluted with CH₂Cl₂ (25 mL) and the organic layer was washed with water (5 mL). Drying (Na₂SO₄) and evaporation of the solvents gave a residue that was purified on silica gel column chromatography using a 1:50 ethyl acetate and hexane as the eluent. ¹H NMR (600 MHz) analysis showed no deutration incorporation.

Rh(III)-Catalyzed H/D Exchange in DCE:D₂O

Rh(III)-catalyzed H/D exchange studies in DCE:D₂O in the presence of alkyne. To stirred solution of 2-aryl-2*H*-indazole (0.25 mmol), 1,2-diphenylethyne (0.30 mmol), $Cu(OAc)_2 \cdot H_2O$ (0.30 mmol), K_2CO_3 (0.25 mmol) and $[Cp*RhCl_2]_2$ (4 mol%) in $(CH_2Cl)_2$ (2 mL) under nitrogen atmosphere was added D₂O (1 mmol). The resultant mixture was

stirred at 100 °C for 6 h and then cooled to room temperature. The reaction mixture was diluted with CH_2Cl_2 (25 mL) and the organic layer was washed with water (5 mL). Drying (Na₂SO₄) and evaporation of the solvents gave a residue that was purified on silica gel column chromatography using a 1:50 ethyl acetate and hexane as the eluent. ¹H NMR (600 MHz) analysis showed no deutration incorporation.

Rh(III)-Catalyzed H/D Exchange in DCE:D₂O in the presence of Alkyne

Kinetic isotope experiment in one pot competition reaction. 2-(4-Methylphenyl-2,6- d_2)-2*H*-indazole (0.125 mmol), 2-(*p*-tolyl)-2*H*-indazole (0.125 mmol), 1,2-diphenylethyne (0.20 mmol), Cu(OAc)₂·H₂O (0.30 mmol), K₂CO₃ (0.25 mmol) and [Cp*RhCl₂]₂ (4 mol%) were stirred at 100 °C for 3 h in (CH₂Cl)₂ under nitrogen atmosphere. The reaction mixture was cooled to room temperatue and diluted with CH₂Cl₂ (30 mL). The organic layer was washed with water (1 x 5 mL) and dried over Na₂SO₄. Evaporation of the solvents gave a reside that was purified by column chromatography on silica gel using a 1:50 ethyl acetate and hexane. ¹H NMR (600 MHZ) analysis showed k_H/k_D = 6.7.

Kinetic Isotope Experiment (Competition)

Parallel kinetic isotope experiment. A mixture of $2-(4-\text{methylphenyl}-2,6-d_2)-2H$ indazole (0.125 mmol), 1,2-diphenylethyne (0.15 mmol), Cu(OAc)₂·H₂O (0.15 mmol), K₂CO₃ (0.125 mmol) and [Cp*RhCl₂]₂ (4 mol%) were charged in (CH₂Cl)₂ under nitrogen atmosphere. In another reaction flask 2-(p-tolyl)-2H-indazole (0.125 mmol), 1,2diphenylethyne (0.15 mmol), Cu(OAc)₂·H₂O (0.15 mmol), K₂CO₃ (0.125 mmol) and [Cp*RhCl₂]₂ (4 mol%) were charged in (CH₂Cl)₂ under nitrogen atmosphere. These two reaction mixtures was stirred parallely in same preheated oil bath at 100° C for 1 hour. These reaction mixtures were combined diluted with CH₂Cl₂ (30 mL). The organic layer was washed with water (1 x 5 mL) and dried over Na₂SO₄. Evaporation of the solvents gave a residee that was purified by column chromatography on silica gel using a 1:50 ethyl acetate and hexane. ¹H NMR (600 MHZ) analysis showed $k_H/k_D = 3.8$.

Kinetic Isotope Experiment (Parallel)

Crystal Structure of 3h.

We obtained a green crystal of **3h** grown from slow evaporation technique using 2:1 mixture of dichloromethane and acetonitrile. This crystal suited for single-crystal X-ray diffraction study, other crystallographic details see table. The ORTEP diagram clearly indicated that indazolo[2,3-a]quinoline ring is coplanar geometry and two aryl rings are orthogonal. The angle between phenyl ring and indazolo[2,3-a]quinoline ring are observed to be 123.04° (C17-C8-C9) and 121.42° (C8-C9-C-23). The crystal packing shows that head to tail arrangement according to reduce the dipole-dipole interaction. Further, we observed π - π interaction of two antiparallel pair with 3.349 Å interplanar distance. Structural information was deposited at the Cambridge Crystallographic Data Center (CCDC 1817425).

Figure 1. ORTEP diagram of 3h (thermal elipsoids drawn at the 30% probability level)

Identification code	vk52iitb
Empirical formula	$C_{28}H_{17}F_{3}N_{2}O$
Formula weight	454.59
Temperature(K)	100.15
Radiation	MoKa ($\lambda = 0.71073$)
Crystal system	triclinic
Space group	P-1
a/Å	7.9330(6)
b/Å	11.1848(7)
c/Å	13.1762(10)
a /°	72.919(6)
b /°	73.841(6)
$\gamma/^{\circ}$	84.499(5)
V/ Å3	1073.27(14)
Crystal size(mm ³)	$0.164 \times 0.07 \times 0.04$
Z	2
Density(Mg /m ⁻³)	1.407
Final R[I>2s(I)]	$R_1 = 0.0827, wR_2 = 0.1973$
R(all data)	$R_1 = 0.1282, wR_2 = 0.2309$
Collected reflns	21709
Unique reflns	$3751 [R_{int} = 0.1169, R_{sigma} = 0.0832]$
Theta range for data collection	5.514 to 49.996
Absorption coefficient(mm ⁻¹)	0.104
Goodness of fit on F ²	1.051
CCDC No.	1817425

·

¹H and ¹³C NMR spectra

S23

S34

VK-52-OCF3-19F/2	00	
	57.1	Parameter Value
	Ì	1 Data File Name E:/ vk/ NMR/ F NMR/ VK-52- OCF3-19F/ 2/ fid
		2 Title VK-52- OCF3-19F/ 2
		3 Comment VK-52-OCF3-19F
		4 Origin Bruker BioSpin GmbH
		5 Owner nmr
		6 Site
		7 Spectrometer spect
		8 AUTHOR
		9 Solvent DMSO
		10 Iemperature 300.0
		12 Experiment 1D
		21 Modification Date 2018-06-01T15:
		52:57
		23 Spectrometer 376.55
		Frequency
		24 Spectral Width 89285.7 25 Lowest -82302.1
		26 Nucleus 19F

Sec. 19		A					1				14 C	- C		1.0					1.1.1					1.00				1 C C C C		
	5	()	-5	-10	-15	-20	D	-25	-30	-35	-40	-45	-50	-55 f1	-6((ppm)	0	-65	-70	-75	-80	-85	-90	-95	-100	-105	-110	-115	-120	

VK-54-CF3-19F/2

12

12

9.493	7.397 6.727 6.727 6.727 1.249 1.249 9.143 8.543 8.324 8.075 8.075 8.075	7.731 7.731 7.656 7.656 7.619 7.619 4.919 4.919 4.919 6.355 6.557 6.557 6.557	.948	Parameter	Value
- 11		<u> </u>	77 76	1 Data File Name	E:/ VIVEK/ NMR files/ VK 05-09-17/ VK-53-13C/ 10 fid
				2 Title	VK-53-13C
				3 Comment	13C
				4 Origin	Bruker BioSpin GmbH
				5 Owner	nmr
				6 Site	
				7 Spectrometer	spect
				8 Author	
				9 Solvent	CDCB
				10 Temperature	297.9
				11 Pulse Sequence	zgpg30
				12 Number of Scans	34
				13 R	
				15 Pi	
				16 A	
				17 A	48
				18 M	50
				19 Si	
				Fi	
				20 Sj	
				21 La	
	11			22 N	
				23 Acquirea Size	32/00
				24 Spectral Size	65536
i					
	يستعداله والبورانا والترابي المحالي والمتعادية والمتعادية والمتعادية والمحالي والمحالي والمحالي والمحالي والمحا	فيتوفد المحدار واعداد واعداد والدار والالا والمتعارين فيحود والالميا اوراكوه الإستار والمأو ألماس	and the second	ومكرف المراجع والمتعالي والمتعالية والمحافظ	والمستوحية والمترجي والمترجي والأرجية
190 170 160 150	140 120 120	110 100 00 0	20 70 60	50 40	20 20
100 170 100 150	140 150 120	110 100 70 (0 70 00	JU 40	50 20

VK-70-13C VK-70-13C	.374 584 922	677 697 535 535 247 173 173 184 770	694 393 978 931 931	626 978 7727	48	Parameter	Value	
	151150147.	135 134 132 132 131 131 131 131	-128 -128 -128 -127	117	176.5	1 Data File Name	C:/ Users/ T Punniy Desktop/ VK-4-12-2 VK-70-13C/ 10/ fid	amurthy/ 017/
						2 Title	VK-70-13C	
						3 Comment	VK-70-13C	
						4 Origin	Bruker BioSpin Gmbl	4
						5 Owner	nmrsu	
						6 Site		
						7 Spectrometer	spect	
						8 Author		
						9 Solvent	CDCI3	
						10 Temperature	298.0	
						11 Pulse Sequence	zgpg30	
						12 Number of Scane	500	
						13 Receiv	Contraction of the	
						14 Relaxa		
						15 Pulse \		
						16 Acquis		
						17 Acquis		31
						18 Modific		32
						19 Spectr Freque		
						20 Spectr		
						21 Lowes		
						22 Nucleu		
						23 Acquired Size	32768	
						24 Spectral Size	65536	
		110						
	1. 1							
	li I							
		ومساعيه الافتروجي الإفالي المساهم						
<u></u>	10 P. P.	100 00 000 V		100.00		Nr. 01.000		
190 180 170 160	150	140 130 120	110 100	90 80	70 60 50 40 30	20 10		
			f1 (ppm)					

2	20.290		
		Parameter	Value
	I	1 Data File Name	E:/ vk/ NMR/ F NMR/ VK-67-19F/ 2/ fid
		2 Title	VK-67-19F/ 2
		3 Comment	VK-67-19F
		4 Origin	Bruker BioSpin GmbH
		5 Owner	nmr
		6 Site	
		7 Spectrometer	spect
		8 Author	
		9 Solvent	DMSO
		10 Temperature	299.9
		11 Pulse Sequence	zgfhigqn.2
		12 Experiment	1D
		13 Probe	5 mm PABBO BB/ 19F-1H/ D Z-GRD
		14 33 190 19	2100610/0077
		15	
		16	
		-	
		17	
		18	
		19	
		20	09:28
		21	09:29
		22	
		23 Spectrometer Frequency	376.55
		24 Spectral Width	89285.7
		25 Lowest Frequency	-82302.1
		26 Nucleus	19F
		27 Acquired Size	65536
			101070

VK-67-19F/2

			1	1		100	· · · · · · · · · · · · · · · · · · ·			1. A.	· · · · ·	1 A A A A A A A A A A A A A A A A A A A	· · · · · · · · · · · · · · · · · · ·				· · · · ·	· · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		· · · ·	· · · · ·	and the second second
-65	-70	-75	-80	-85	-90	-95	-100	-105	-110	-115	-120 f1	-125 1 (ppm)	-130	-135	-140	-145	-150	-155	-160	-165	-170	-175	-180

S63

T

L163.291 L162.994 L161.648	—149.714	1133.602 1132.731 132.731 132.731 132.738 132.738 132.738 132.738 132.738 132.738 132.738 112.6365 112.6365 117.500 111.75	$\left\{ \frac{77.372}{76.948} \right\}$	Parameter 1 Data File Name 2 Title 3 Comment 4 Origin 5 Owner	Value G:/ VK-71-13C/ 10/ fid VK-71-13C VK-71-1H Bruker BioSpin GmbH nmrsu
			h I	 6 Site 7 Spectrometer 8 Author 9 Solvent 10 Temperature 11 Personal State 12 N 13 R 14 R 15 Pi 16 A 17 A 	spect CDCI3 298.0
				18 M 19 Sj 20 Sj 21 L 22 N 23 A 24 Spectral Size	49:04 65536
İİ					
180 170 160	150	140 130 120 110 100 90 f1 (nom)	80 70 60 50 40	30 20 1	0

190

VK-71-19F/2	227				
	113.		Para	imeter	Value
	11		1 Data File I	Name E:/v VK-7	k/ NMR/ F NMR/ 1-19F/ 2/ fid
			2 Title	VK-7	1-19F/ 2
			3 Comment	VK-7	1-19F
			4 Origin	Bruk	er BioSpin GmbH
			5 Owner	nmr	
			6 Site		
			7 Spectrome	eter spec	t
			8 Author		
			9 Solvent	DMS	0
			10 Ter	19/24/2019/201	
			11 Pu		
			12 Ex		
			13 Pro		-1H/ D
			14 Nu		
			15 Re		
			16 Re		
			17 Pu		
			18 Pre		
			Fre		
			19 Ac		
			20 AC		2
			22 Class		<u>.</u>
			23 Spectrom	eter 376.	55
			24 Spectral V	Vidth 8928	5.7
			25 Lowest Fr	equency -823	02.1
	- 11		26 Nucleus	19F	
			27 Acquired S	Size 6553	6
	- 11		28 Spectral S	Size 1310	172
	- 11				
	- 11				
-70 -75 -80 -85 -90 -95 -100 -105 -110	- 10	15 -120 -125 -130 -135 -140 f1 (ppm)	-145	-150 -1	-160 -165

737	021 269 762 553 553 080 011 753 384	131 524 839 48 48	Parameter	Value
— 149.	131. 130. 130. 130. 129. 128. 128. 128. 128. 128. 128. 128. 128	1121. 117. 116. 146. 76.9	1 Data File Name 2 Title 3 Comment	H:/ NMR/ VK-79A-13C/ 10/ fid VK-79A-13C
			4 Origin 5 Owner 6 Site	Bruker BioSpin GmbH nmrsu
			7 Spectrometer 8 Author	spect
			9 Solvent 10 Temperature 11 Pulse Sequence	CDCl3 298.1 2gpg30
			12 Number of Scaps 13 R 14 R 15 P	
			16 A 17 A 18 M	35:46
			19 S 20 S 21 L	
			22 N 23 A 24 Spectral Size	65536
				
200 190 180 170 160 150	140 130 120 110 100 f1 (ppm)	90 80 70 60 50 40	30 20 10	20

001000000000000000000000000000000000000						
22233 22233 22235 22235 22235 22235 22235 22235 22235 2235 2235 2235 2235 2235 2235 2235 2335 2335 2335 2335 2335 2335 2335 2335 2335 2335 2335 2335 2335 2335 2335 2335 23555 23555 23555 23555 23555 23555 23555 23555	372 160 948		857 857 391 391 955 955 604	Parameter	Va	lue
	12.22		22 29 14	1 Data File Name	H:/ NMR/ VK-8	3_13C/ 10/ fid
	\checkmark		V V V	2 Title	VK-83_13C	
				3 Comment	VK-83_13C	
				4 Origin	Bruker BioSpin	GmbH
				5 Owner	nmrsu	
				6 Site		
				7 Spectrometer	spect	
				8 Author		
				9 Solvent	CDCI3	
				10 Temperature	298.0	
				11 Pulse Sequence	zgpg30	
				12 Number of Scans	500	
				13 Receiver Gain	200	
	ł			14 Relaxat		
				15 Pulse W		
				16 Acquisit		
				17 Acquisit		2:51:24
				18 Modifica		2:51:26
				19 Spectro		
				20 Spectra		
				21 Lowest		
				22 Nucleus		
				23 Acquired Size	32768	
				24 Spectral Size	65536	
			0 H - 1			
i ilillili						
JAL JAM J. All. 60.						
200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)	80 70	60 50 40	30 20	10		

