Supporting Information

for

A Facile Synthesis of Diverse 5-Arylated Triazoles via Cu-Catalyzed

Oxidative Interrupted Click Reaction with Arylboronic Acids under

Air Conditions

Xiaoxia Yu,^{*a,b*} Jian Xu, ^{*a*} Yao Zhou ^{*a*} and Qiuling Song^{**a*}

^{*a*}Institute of Next Generation Matter Transformation, College of Chemical Engineering,

^b College of Materials Science & Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, P. R. China Fax:86-592-6162990; email: gsong@hqu.edu.cn

Table of Contents

1.General Considerations	3
2.Experimental Procedures	4
3. Characterization of Products	6
4.Crystal Structure of 4k	13
5.References	14
6.NMR spectroscopic data	15

1. General Considerations

All chemicals were purchased from Adamas Reagent, energy chemical company, J&K

Scientific Ltd, Bide Pharmatech Ltd and Tansoole. The solvents were purchased from commercial suppliers and used without further purification. Unless stated otherwise, reactions were conducted in an over-dried test tube with volume of 20 ml under air atmosphere at room temperature. Azides were prepared following the known procedures. Flash column chromatography was performed over silica gel (200-300 mesh). ¹H-NMR and ¹³C-NMR spectra were recorded on a Bruker Avance 500 spectrometer (500 MHz ¹H, 125 MHz ¹³C) at room temperature. Chemical shifts were reported in ppm on the scale relative to CDCl₃ (δ = 7.26 for ¹H-NMR , δ = 77.00 for ¹³C-NMR) as an internal reference. Coupling constants (J) were reported in Hertz (Hz). The following abbreviations are used to indicate signal multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and br = broad. High resolution mass spectra were recorded using a Thermo Fisher Scientific LTQ FT Ultra or Waters Micromass GCT Premier instrument.

2. Experimental Procedures

Typical procedure for the synthesis of benzyl azides

In a 100 mL round-bottom flask, benzyl bromide (0.297 mL, 2.5 mmol) was dissolved in water (10 mL) and acetone (40 mL). Sodium azide (0.244 g, 3.75 mmol) was added in one portion, and the solution stirred overnight. Dichloromethane (50 mL) was added, and the organic layer separated. The aqueous layer was washed with dichloromethane (3 \times 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and filtered. Solvent was removed under reduced pressure, the crude product was purified with flash chromatography (silica gel, pure petroleum ether). Spectroscopic data was consistent with previously reported results.¹

Typical procedure for the synthesis of other azide

In a 125 mL round-bottom flask, NaN₃ (0.715 g, 11 mmol) was dissolved in DMSO (20 mL) and stirred until homogeneous. Bromobutane1.072 mL, 10 mmol) was added, and the solution was stirred at 80°C overnight. Water (80 mL) was added, and the aqueous layer was extracted with ether (5 \times 20 mL). The organic layers were combined, dried over anhydrous Na₂SO₄, and filtered. Solvent was removed under reduced pressure, the crude product was purified with flash chromatography (silica gel, pure petroleum ether).

Note: Azides are explosive substances that must be carefully handled and stored.

General procedure for the copper(I)-catalyzed three-component coupling of arylboronic acid, alkynes and azides

$$R^{1} = + R^{2} - N_{3} + ArB(OH)_{2} \xrightarrow{\begin{array}{c} CuCl (20 \text{ mmol}\%) \\ MeOLi (2 \text{ eq}) \\ Air, \text{ rt, } CH_{3}CN \end{array}} \xrightarrow{\begin{array}{c} N \\ N \\ N \\ R^{1} \\ R^{1} \\ Ar \end{array}$$

General reaction: terminal alkynes (0.2 mmol), arylboronic acid (0.4 mmol), azides (0.3 mmol), CuCl (0.04 mmol), and MeOLi (0.4 mmol) were added in MeCN (2.5 mL) and stirred in a glass test tube for 12 h at room temperature under air. The reaction was monitored by TLC analysis. After the reaction was completed, the resulting mixture was evaporated to dryness and the crude product was purified with flash chromatography (silica gel, ethyl acetate: petroleum ether: =1:5 ~ 1:30).

Synthesis of terminal arylalkyne 1af

Ethyl-1-((4-bromophenyl)sulfonyl)piperidine-2-carboxylate was prepared according to the literature procedure.² Ethyl piperidine-2-carboxylate hydrochloride (0.79 g, 5 mmol) and 4-bromobenzenesulfonyl chloride (1.28 g, 5 mmol) were dissolved in 50 mL DMF. Triethylamine (3 equiv) was then added dropwise. After stirring for 8 h at room temperature, the residue was suspended in 50 mL of ethyl acetate and washed with 2 M HCl (25 mL×3) and H₂O (25 mL). The organic layer was dried over anhydrous Na₂SO₄, and concentrated in vacuo. The crude reaction mixture was purified on silica gel. An oven-dried schlenk tube was charged with bromo-substrate (1 mmol), Pd(PPh₃)₂Cl₂ (14mg, 0.02 mmol) and CuI (7.6 mg, 0.04 mmol). The tube was taken to the globe box and dry THF (1 ml) was added to it. The tube was capped and taken out from the glove box. Triethylamine (216 uL, 1.55 mmol) was injected in it and trimethylsilylacetylene (176 uL, 1.25 mmol) was added to the reaction mixture slowly. The reaction mixture was stirred at room temperature for 24 hours. Upon completion, the reaction mixture was diluted with ethyl acetate, filtered through a silica gel plug, rinsed with ethyl acetate, and concentrated in vacuo. The crude reaction mixture was purified on silica gel. The internal alkyne was dissolved with anhydrous THF (1 mL), and TBAF (1.5 mL, 1M in THF) was added. The resulting mixture was stirred at room temperature overnight. Upon completion, the reaction mixture was diluted with ethyl acetate, filtered through a silica gel plug, rinsed with ethyl acetate, and concentrated in vacuo. The crude reaction mixture was purified on silica gel to give the desired product as a brown-yellow oil.

3. Characterization of Products

1-benzyl-4,5-diphenyl-1*H*-1,2,3-triazole (4a)

white solid, 56.6 mg, 91% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.64 – 7.54 (m, 2H), 7.53 – 7.47 (m, 1H), 7.47 – 7.41 (m, 2H), 7.34 – 7.23 (m, 6H), 7.22 – 7.14 (m, 2H), 7.10 – 6.94 (m, 2H), 5.44 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 144.5, 135.4, 133.9, 130.9, 130.1, 129.7, 129.2, 128.7, 128.5, 128.2, 127.9, 127.7, 127.5, 126.7, 52.1. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₁₈N₃⁺, 312.1495; Found: 312.1499.

1-benzyl-5-phenyl-4-(p-tolyl)-1H-1,2,3-triazole (4b)

shallow yellow solid, 45.5 mg, 70% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.46 (m, 3H), 7.46 – 7.41 (m, 2H), 7.29 – 7.25 (m, 3H), 7.19 – 7.14 (m, 2H), 7.09 (m, *J* = 8.0 Hz, 2H), 7.07 – 7.04 (m, 2H), 5.43 (s, 2H), 2.32 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 144.6, 137.5, 135.4, 133.6, 130.1, 129.6, 129.2, 129.1, 128.7, 128.1, 128.1, 128.0, 127.5, 126.7, 52.0, 21.2. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₂₀N₃⁺, 326.1652; Found: 326.1655.

1-benzyl-5-phenyl-4-(m-tolyl)-1*H*-1,2,3-triazole (4c)

shallow yellow liquid, 59.1 mg, 91% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.56 (s, 1H), 7.53 – 7.47 (m, 1H), 7.46 – 7.38 (m, 2H), 7.32 – 7.20 (m, 4H), 7.20 – 7.15 (m, 2H), 7.15 – 7.11 (m, 1H), 7.09 – 7.01 (m, 3H), 5.44 (s, 2H), 2.30 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 144.7, 138.1, 135.4, 133.9, 130.8, 130.1, 129.7, 129.1, 128.7, 128.5, 128.3, 128.1, 127.9, 127.6, 127.5, 123.8, 52.1, 21.4. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₂₀N₃⁺,

326.1652; Found: 326.1651.

1-benzyl-4-(4-(tert-butyl)phenyl)-5-phenyl-1H-1,2,3-triazole (4d)

white solid, 69.7 mg, 95% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.56 – 7.53 (m, 2H), 7.52 – 7.48 (m, 1H), 7.46 – 7.42 (m, 2H), 7.32 – 7.29 (m, 2H), 7.28 – 7.25 (m, 3H), 7.19 – 7.16 (m, 2H), 7.05 – 7.02 (m, 2H), 5.42 (s, 2H), 1.30 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 150.7, 144.5, 135.5, 133.6, 130.2, 129.6, 129.1, 128.7, 128.1, 128.1, 128.0, 127.5, 126.2, 125.4, 52.0, 34.6, 31.3.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₅H₂₅N₄⁺, 368.2121; Found: 368.2124.

1-benzyl-4-(4-methoxyphenyl)-5-phenyl-1*H*-1,2,3-triazole (4e)

white solid, 48.4 mg, 71% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.53 – 7.46 (m, 3H), 7.46 – 7.40 (m, 2H), 7.29 – 7.25 (m, 3H), 7.18 – 7.14 (m, 2H), 7.07 – 7.02 (m, 2H), 6.85 – 6.78 (m, 2H), 5.42 (s, 2H), 3.78 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 159.2, 144.4, 135.5, 133.1, 130.2, 129.6, 129.2, 128.8, 128.7, 128.1, 128.0, 127.5, 123.6, 113.9, 55.2, 52.0. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₂₀N₃O⁺, 342.1601; Found: 342.1604.

1-benzyl-4-(4-nitrophenyl)-5-phenyl-1*H*-1,2,3-triazole (4f)

yellow solid, 42.8 mg, 60% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.14 – 8.10 (m, 2H), 7.76 – 7.72 (m, 2H), 7.59 – 7.54 (m, 1H), 7.52 – 7.47 (m, 2H), 7.30 – 7.26 (m, 3H), 7.19 – 7.15 (m, 2H), 7.07 – 7.03 (m, 2H), 5.44 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 146.9, 142.4, 137.4, 135.5, 134.9, 130.4, 129.9, 129.6, 128.8, 128.4, 127.6, 127.0, 126.9, 123.9, 52.3. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₁₆N₄O₂⁺, 357.1346; Found: 357.1348.

4-(1-benzyl-5-phenyl-1*H*-1,2,3-triazol-4-yl)benzonitrile (4g)

white solid, 50.5 mg, 75% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.66 (m, 2H), 7.58 – 7.52 (m, 3H), 7.51 – 7.46 (m, 2H), 7.31 – 7.26 (m, 3H), 7.18 – 7.13 (m, 2H), 7.07 – 7.01 (m, 2H), 5.43 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 142.7, 135.5, 135.2, 134.9, 132.3, 130.3, 129.9, 129.5, 128.8, 128.4, 127.6, 127.1, 126.8, 118.8, 111.0, 52.2. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₁₇N₄⁺, 337.1448; Found: 337.1447.

1-benzyl-4-(4-fluorophenyl)-5-phenyl-1*H*-1,2,3-triazole (4h)

shallow yellow solid, 52.6 mg, 80% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.48 (m, 3H), 7.47 – 7.42 (m, 2H), 7.29 – 7.25 (m, 3H), 7.18 – 7.14 (m, 2H), 7.07 – 7.02 (m, 2H), 6.99 – 6.93 (m, 2H), 5.43 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 162.5 (d, *J* =b271.3 Hz), 143.8, 135.3, 133.7, 130.1, 129.8, 129.3, 128.7, 128.5 (d, *J* = 8.8 Hz), 128.2, 127.7, 127.5, 127.1 (d, *J* = 3.8 Hz), 115.4 (d, *J* = 22.5 Hz), 52.1. Known compound.¹ HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₁₇FN₃⁺, 330.1401; Found: 330.1404.

1-benzyl-4-(4-chlorophenyl)-5-phenyl-1*H*-1,2,3-triazole (4i)

yellow solid, 48.3 mg, 70% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.54 – 7.48 (m, 3H), 7.47 – 7.43 (m, 2H), 7.30 – 7.25 (m, 3H), 7.26 – 7.22 (m, 2H), 7.17 – 7.13 (m, 2H), 7.07 – 7.02 (m, 2H), 5.43 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 143.6, 135.2, 134.0, 133.6, 130.0, 129.9, 129.5, 129.3, 128.7, 128.7, 128.2, 127.9, 127.5, 52.1. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₁₇³⁵ClN₃⁺, 346.1106; Found: 346.1108.

1-benzyl-4-(4-bromophenyl)-5-phenyl-1*H*-1,2,3-triazole (4j)

white solid, 49.0 mg, 63% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.54 – 7.48 (m, 1H), 7.49 – 7.42 (m, 4H), 7.41 – 7.38 (m, 2H), 7.27 (m, 3H), 7.17 – 7.12 (m, 2H), 7.04 (m, 2H), 5.42 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 143.6, 135.2, 134.1, 131.6, 130.0, 129.9, 129.3, 128.7, 128.2, 127.5, 127.5, 121.8, 52.1. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₁₇⁷⁹BrN₃⁺, 390.0600; Found: 390.0604.

1-benzyl-5-phenyl-4-(thiophen-2-yl)-1H-1,2,3-triazole (4k)

shallow grey solid, 35.5 mg, 56% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.50 (m, 1H), 7.49 – 7.44 (m, 2H), 7.30 – 7.25 (m, 3H), 7.22 – 7.19 (m, 3H), 7.06 – 7.01 (m, 3H), 6.94 – 6.90 (m, 1H), 5.41 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 140.6, 135.2, 133.2, 132.9, 130.2, 130.0, 129.2, 128.7, 128.2, 127.5, 127.2, 127.1, 124.9, 124.2, 52.2. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₉H₁₆N₃S⁺, 318.1059; Found: 318.1068.

1-benzyl-4-(2-nitrophenyl)-5-phenyl-1*H*-1,2,3-triazole (4l)

brown yellow solid, 46.3 mg, 65% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.87 – 7.82 (m, 1H), 7.60 – 7.55 (m, 1H), 7.55 – 7.51 (m, 1H), 7.50 – 7.45 (m, 1H), 7.44 – 7.39 (m, 1H), 7.37 – 7.29 (m, 5H), 7.14 – 7.04 (m, 4H), 5.54 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 149.1, 141.6, 135.7, 135.3, 132.6, 132.5, 129.7, 129.6, 129.2, 129.1, 128.9, 128.2, 127.3, 126.1, 125.8, 124.5, 52.2. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₁₇N₄O₂⁺, 357.1346; Found: 357.1350.

2-(1-benzyl-5-phenyl-1*H*-1,2,3-triazol-4-yl)benzonitrile (4m)

white solid, 51.0 mg, 76% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.63 (m, 1H), 7.58 – 7.52 (m, 1H), 7.51 – 7.48 (m, 1H), 7.45 – 7.36 (m, 4H), 7.34 – 7.26 (m, 3H), 7.18 – 7.08 (m, 4H), 5.55 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 142.3, 136.2, 135.1, 134.4, 133.7, 132.6, 130.7, 129.9, 129.8, 129.1, 128.9, 128.5, 128.3, 127.4, 126.5, 117.9, 112.4, 52.3. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₁₇N₄⁺, 337.1448; Found: 337.1449.

1-benzyl-4-phenyl-5-(p-tolyl)-1H-1,2,3-triazole (4n)

shallow yeollow solid, 59.8 mg, 92% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.73 – 7.52 (m, 2H), 7.38 – 7.18 (m, 8H), 7.17 – 6.93 (m, 4H), 5.42 (s, 2H), 2.45 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 144.4, 139.8, 135.6, 134.0, 131.1, 129.9, 129.9, 128.7 128.4, 128.1, 127.6, 127.5, 126.7, 124.7, 51.9, 21.5. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₂₀N₃⁺, 326.1652; Found: 326.1656.

1-benzyl-4-phenyl-5-(o-tolyl)-1H-1,2,3-triazole (40)

yellow solid, 58.5 mg, 90% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.54 (m, 2H), 7.46 – 7.41 (m, 1H), 7.32 (s, 1H), 7.28 – 7.20 (m, 7H), 7.14 – 7.10 (m, 1H), 6.99 – 6.95 (m, 2H), 5.41 – 5.27 (m, 2H), 1.64 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 144.4, 138.5, 134.7, 132.9, 131.1, 130.8, 130.3, 130.1, 128.6, 128.5, 128.2, 128.1, 127.7, 127.4, 126.5, 125.7, 52.3, 19.1. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₂₀N₃⁺, 326.1652; Found: 326.1654.

1-benzyl-5-(4-isopropylphenyl)-4-phenyl-1*H*-1,2,3-triazole (4p)

white solid, 42.4 mg, 60% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.62 – 7.59 (m, 2H), 7.31 – 7.26 (m, 8H), 7.10 – 7.07 (m, 2H), 7.07 – 7.03 (m, 2H), 5.43 (s, 2H), 1.32 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 150.7, 144.3, 135.4, 134.1, 130.9, 130.0, 128.7, 128.4, 128.1, 127.7, 127.5, 127.2, 126.8, 124.9, 52.0, 34.0, 23.9. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₄H₂₄N₄⁺, 354.1965; Found: 354.1967.

1-benzyl-5-(4-ethylphenyl)-4-phenyl-1*H*-1,2,3-triazole (4q)

white solid, 40.7 mg, 60% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.63 – 7.58 (m, 2H), 7.32 – 7.24 (m, 8H), 7.11 – 7.05 (m, 4H), 5.42 (s, 2H), 2.75 (q, *J* = 7.6 Hz, 2H), 1.32 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 145.0, 144.4, 135.5, 134.1, 131.1, 130.0, 128.7, 128.7, 128.4, 128.1, 127.6, 127.5, 126.7, 124.9, 51.9, 28.7, 15.3. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₃H₂₂N₄⁺, 340.1808; Found: 340.1812.

1-benzyl-4-phenyl-5-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazole (4x)

white solid, 47.0 mg, 62% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.72 – 7.66 (m, 2H), 7.56 – 7.50 (m, 2H), 7.33 – 7.25 (m, 8H), 7.08 – 6.98 (m, 2H), 5.45 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 145.1, 135.0, 132.4, 131.8 (d, *J* = 32.5 Hz), 131.8, 130.6, 130.3, 128.9, 128.6, 128.4, 128.1, 127.3, 126.9, 126.1 (q, *J* = 3.8 Hz), 123.7 (d, *J* = 270.0 Hz), 52.4. Known compound.³

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₁₇F₃N₃⁺ 380.1369; Found: 380.1367.

methyl 4-(1-benzyl-4-phenyl-1H-1,2,3-triazol-5-yl)benzoate (4s)

shallow yellow solid, 45.0 mg, 61% yield. ¹H NMR (500 MHz, CDCl₃) δ 8.04 – 7.98 (m, 2H), 7.55 – 7.50 (m, 2H), 7.30 – 7.27 (m, 8H), 7.07 – 7.02 (m, 2H), 5.46 (s, 2H), 2.67 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 197.3, 145.1, 137.8, 135.0, 132.9, 132.6, 130.4, 129.0, 128.8, 128.6, 128.4, 128.1, 127.4, 126.9, 115.5, 52.3, 26.7. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₃H₂₀N₃O₂⁺,

370.1550; Found: 370.1553.

1-benzyl-5-(4-fluorophenyl)-4-phenyl-1*H*-1,2,3-triazole (4t)

yellow solid, 57.9 mg, 88% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.54 (m, 2H), 7.31 – 7.26 (m, 6H), 7.15 – 7.11 (m, 4H), 7.06 – 7.02 (m, 2H), 5.43 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 163.4 (d, *J* = 248.8 Hz), 144.8, 135.2, 132.1 (d, *J* = 8.8 Hz), 130.7, 128.8, 128.5, 128.3, 127.9, 127.4, 126.7, 125.8, 123.8 (d, *J* = 3.8 Hz), 116.5 (d, *J* = 21.3 Hz), 52.2. ¹⁹F NMR (470 MHz, CDCl₃) δ -110.4 (d, *J* = 2.7 Hz).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₇FN₃⁺, 330.1401; Found: 330.1400.

1-benzyl-5-(4-chlorophenyl)-4-phenyl-1*H*-1,2,3-triazole (4u)

yellow solid, 58.7 mg, 85% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.52 (m, 2H), 7.44 – 7.40 (m, 2H), 7.32 – 7.27 (m, 6H), 7.12 – 7.07 (m, 2H), 7.07 – 7.03 (m, 2H), 5.43 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 144.9, 136.0, 135.2, 131.5, 130.6, 129.6, 128.8, 128.6, 128.3, 128.0, 127.4, 126.8, 126.3, 117.0, 52.2. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₁₇³⁵ClN₃⁺, 346.1106; Found: 341.1111.

1-benzyl-5-(4-bromophenyl)-4-phenyl-1*H*-1,2,3-triazole (4v)

yellow liquid, 58.3 mg, 75% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.51 (m, 4H), 7.33 – 7.27 (m, 6H), 7.09 – 7.04 (m, 2H), 7.04 – 6.99 (m, 2H), 5.43 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 144.8, 135.2, 132.7, 132.5, 131.7, 130.6, 128.8, 128.6, 128.3, 128.0, 127.4, 126.8, 124.3, 117.5, 52.2. HRMS (ESI) *m*/*z*: [M+H]⁺ Calcd for C₂₁H₁₇⁷⁹BrN₃⁺, 390.0600; Found: 390.0601.

4-(1-benzyl-4-phenyl-1*H*-1,2,3-triazol-5-yl)benzonitrile (4w)

white solid, 60.5 mg, 90% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.68 (m, 2H), 7.50 – 7.48 (m, 1H), 7.45 – 7.42 (m, 2H), 7.29 – 7.27 (m, 6H), 7.01 – 6.98 (m, 3H), 5.46 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 145.4, 134.1, 132.9, 132.4, 132.3, 130.9, 129.6, 129.0, 128.8, 128.7, 128.6, 127.3, 127.1, 117.9, 113.8, 52.7. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₁₇N₄⁺, 337.1448; Found: 337.1449.

1-benzyl-4-phenyl-5-(4-vinylphenyl)-1*H*-1,2,3-triazole (4r)

shallow yellow solid, 44.5 mg, 66% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.62 – 7.58 (m, 2H), 7.50 – 7.46 (m, 2H), 7.31 – 7.26 (m, 6H), 7.16 – 7.12 (m, 2H), 7.11 – 7.06 (m, 2H), 6.84 – 6.73 (m, 1H), 5.87 (d, *J* = 17.6 Hz, 1H), 5.44 (s, 2H), 5.40 (d, *J* = 11.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 144.6, 138.8, 135.9, 135.4, 133.7, 130.9, 130.3, 128.7, 128.5, 128.2, 127.8, 127.5, 127.0,

126.9, 126.8, 115.7, 52.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₀N₄⁺, 338.1652; Found: 338.1657.

1-benzyl-4-phenyl-5-(thiophen-2-yl)-1*H*-1,2,3-triazole (4y)

white solid, 33.6 mg, 53% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.67 – 7.62 (m, 2H), 7.57 – 7.53 (m, 1H), 7.35 – 7.29 (m, 6H), 7.17 – 7.13 (m, 1H), 7.13 – 7.09 (m, 2H), 7.04 – 6.86 (m, 1H), 5.51 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 146.1, 135.3, 130.7, 130.5, 129.4, 128.8, 128.5, 128.2, 128.1, 127.9, 127.4, 127.1, 126.9, 126.7, 52.2. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₁₉H₁₆N₃S⁺, 318.1059; Found: 318.1065.

1-(4-methylbenzyl)-4,5-diphenyl-1*H*-1,2,3-triazole (4aa)

white solid, 52.1 mg, 80% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.61 – 7.55 (m, 2H), 7.54 – 7.48 (m, 1H), 7.47 – 7.43 (m, 2H), 7.31 – 7.25 (m, 3H), 7.21 – 7.16 (m, 2H), 7.11 – 7.05 (m, 2H), 6.97 – 6.92 (m, 2H), 5.39 (s, 2H), 2.33 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 144.5, 137.9, 133.8, 132.4, 131.0, 130.2, 129.6, 129.4, 129.2, 128.4, 128.0, 127.7, 127.5, 126.7, 51.8, 21.1. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₂H₂₀N₃⁺, 326.1652; Found: 326.1656.

1-(4-bromobenzyl)-4,5-diphenyl-1*H*-1,2,3-triazole (4ab)

white solid, 66.1 mg, 85% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.55 (m, 2H), 7.54 – 7.49 (m, 1H), 7.48 – 7.44 (m, 2H), 7.42 – 7.38 (m, 2H), 7.33 – 7.23 (m, 3H), 7.21 – 7.13 (m, 2H), 7.00 – 6.83 (m, 2H), 5.38 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 144.6, 134.3, 133.8, 131.9, 130.7, 130.0, 129.8, 129.3, 129.3, 128.5, 127.8, 127.7, 126.7, 122.3, 51.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₇⁷⁹BrN₃⁺, 390.0600; Found: 390.0607.

1-([1,1'-biphenyl]-4-ylmethyl)-4,5-diphenyl-1*H*-1,2,3-triazole (4ac)

white solid, 50.3 mg, 65% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.64 – 7.56 (m, 4H), 7.55 – 7.50 (m, 3H), 7.49 – 7.43 (m, 4H), 7.40 – 7.34 (m, 1H), 7.32 – 7.25 (m, 3H), 7.24 – 7.20 (m, 2H), 7.17 – 7.11 (m, 2H), 5.48 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 144.6, 141.1, 140.4, 134.3, 133.9, 130.9, 130.2, 129.7, 129.2, 128.8, 128.5, 128.0, 127.9, 127.7, 127.5, 127.4, 127.1, 126.7, 51.8. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₇H₂₂N₃⁺ 388.1808; Found: 388.1809.

1-phenethyl-4,5-diphenyl-1*H*-1,2,3-triazole (4ad)

white solid, 39.0 mg, 60% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.53 (m, 2H), 7.52 – 7.48 (m, 1H), 7.47 – 7.42 (m, 2H), 7.30 – 7.22 (m, 6H), 7.03 – 6.99 (m, 2H), 6.98 – 6.94 (m, 2H), 4.41 (t, *J* = 7.4 Hz, 2H), 3.19 (t, *J* = 7.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 144.0, 137.2, 134.2, 131.0, 130.0, 129.6, 129.2, 128.8, 128.7, 128.4, 127.9, 127.6,

126.9, 126.7, 49.4, 36.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₀N₃⁺, 326.1652; Found: 326.1658.

2-(4-(4,5-diphenyl-1*H*-1,2,3-triazol-1-yl)butyl)isoindoline-1,3-dione (4ae)

white solid, 49.8 mg, 59% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.92 – 7.80 (m, 2H), 7.80 – 7.67 (m, 2H), 7.59 – 7.52 (m, 2H), 7.51 – 7.46 (m, 3H), 7.36 – 7.31 (m, 2H), 7.30 – 7.23 (m, 3H), 4.28 (t, *J* = 7.1 Hz, 2H), 3.64 (t, *J* = 6.9 Hz, 2H), 1.91 – 1.78 (m, 2H), 1.75 – 1.57 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 168.3, 144.3, 134.0, 133.7, 132.0,

131.0, 129.9, 129.7, 129.4, 128.4, 128.0, 127.6, 126.8, 123.3, 47.6, 37.0, 27.2, 25.5.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₃N₄O₂⁺, 423.1816; Found: 423.1821.

Ethyl-1-((4-(1-(4-methylbenzyl)-5-phenyl-1*H*-1,2,3-triazol-4-yl)phenyl)sulfonyl)piperidine-2-carboxylate

brown yellow solid, 60.0 mg, 55% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.68 (s, 4H), 7.60 – 7.51 (m, 1H), 7.50 – 7.44 (m, 2H), 7.21 – 7.13 (m, 2H), 7.11 – 7.04 (m, 2H), 6.97 – 6.87 (m, 2H), 5.38 (s, 2H), 4.80 – 4.54 (m, 1H), 4.09 – 3.98 (m, 1H), 3.97 – 3.88 (m, 1H), 3.81 – 3.68 (m, 1H), 3.28 – 3.09 (m, 1H), 2.33 (s, 3H), 2.20 – 1.93 (m, 1H), 1.77 – 1.69 (m, 1H), 1.67 – 1.59 (m, 2H), 1.53 – 1.41 (m, 1H), 1.32 – 1.26 (m, 1H), 1.13 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 170.6, 143.0, 138.8, 138.1, 135.1,

134.9, 132.0, 130.1, 130.0, 129.4, 129.4, 127.6, 127.4, 127.3, 126.7, 61.1, 55.1, 52.0, 42.6, 27.8, 24.7, 21.1, 20.0, 14.1.

HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₉H₃₁N₄O₄S⁺, 545.2217; Found: 545.2220.

4. Crystal Structure of 4k

Bond precision: C-C = 0.0033 A Wavelength=0.71073 Cell: a=11.8069(10) b=9.7467(7) c=15.4870(11) alpha=90 beta=102.555(7) gamma=90 Temperature: 298 K

	Calculated	Reported
Volume	1739.6(2)	1739.6(2)

Space group	P 21/c	P 1 21/c 1	
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C22 H16 N4	C22 H16 N4	
Sum formula	C22 H16 N4	C22 H16 N4	
Mr	336.39	336.40	
Dx,g cm-3	1.284	1.284	
Ζ	4	4	
Mu (mm-1)	0.078	0.078	
F000	704.0	704.2	
F000'	704.23		
h,k,lmax	14,11,18	14,11,18	
Nref	3065	3058	
Tmin,Tmax	0.447,1.000		
Tmin'			
Correction method=	= # Reported T Limits: T	min=0.447 Tmax=1.000 AbsCorn	= MULTI-SCAN
Data completeness	= 0.998	Theta(max)= 24.990	

Data completeness= 0.998	$1 \ln c t a (\ln a x) = 24.990$	
R(reflections)= 0.0569(2070)	wR2(reflections)= 0.1572(3058)	
S = 0.926	Npar= 235	

5. References

1. F. Wei, H. Li, C. Song, Y. Ma, L. Zhou, C.-H. Tung and Z. Xu, Org. Lett., 2015, 17, 2860.

2. C. Juli, M. Sippel, J. Jäger, A. Thiele, M. Weiwad, K. Schweimer, P.

Rösch, M. Steinert, C. A. Sotriffer and U. Holzgrabe, J. Med. Chem. 2011,

54, 277.

3. L. Ackermann, H. K. Potukuchi, D. Landsberg and R. Vicente, *Org. Lett.*, 2008, **10**, 3081.

6. NMR Spectra of Products

5.0 4.5 f1 (ppm) 9.5 9.0 8.5 6.0 4.0 2.0 1.5 1.0 0.5 0.0 8.0 6.5 3.5 3.0 2.5

5.0 4.5 f1 (ppm) 9.0 7.5 7.0 4.0 0.5 0.0 8.5 8.0 6.5 6.0 3.5 3.0 2.5 2.0 1.5 1.0

fl (ppm)

7.57 7.55 7.55 7.55 7.42 7.42 7.129 7.129 7.129 7.129 7.129 7.129 7.129 7.129 7.129 7.129 7.129 7.129 7.1200 7.120 7.1200 7.1200 7.1200 7.1200 7.12000

5.0 4.5 4.0 f1 (ppm) 9.5 7.5 7.0 6.5 3.5 3.0 0.5 0.0 9.0 8.5 8.0 6.0 2.0 1.5 1.0 2.5

132.89 130.92 129.02 129.02 129.02 127.32 177.32 113.78 -145.39

-52.74

100 90 80 70 f1 (ppm) 130 120

100 90 f1 (ppm)

f1 (ppm)

7.53

7.53

7.53

7.53

7.53

7.53

7.53

7.53

7.53

7.53

7.53

7.53

7.53

7.53

7.53

7.53

7.53

7.53

7.53

7.53

7.53

7.54

7.53

7.54

7.54

7.55

7.54

7.55

7.55

7.54

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55

7.55