Electronic Supplementary Information (ESI)

One-pot Transition-metal Free Transamidation to Sterically

Hindered Amides

Weijie Guo^a, Jingjun Huang^{ac}, Hongxiang Wu^a, Tingting Liu^a, Zhongfeng Luo^a, Junsheng Jian^a, Zhuo Zeng^{*ab}

^a College of Chemistry and Environment, South China Normal University, Guangzhou 510006,
People's Republic of China
^b Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 354 Lingling Road, 200032
Shanghai, China
^c College of Arts and Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.

*E-mail: zhuoz@scnu.edu.cn

List of Contents

Experimental details and materials	2
Experimental Procedures	3
General transamidation procedure for An	nide from
Amides	3
Characterization Data	3
Reference	11
¹ H, ¹³ C, ¹⁹ F NMR Spectra	12
Acyl fluoride in the reaction mixture analyse	d by ¹⁹ F MR,
MS, GC-FID	42

Experimental details and materials

The transamidation reactions were conducted in sealed tube under the protection of a nitrogen atmosphere.

All carboxylic amides and amines were purchased from Energy Chemicals. All dry solvents were purchased from J&K Company. DMAP, Boc₂O, NaF, KF, CsF, and other bases were purchased from Energy Chemicals. Flash chromatography was performed using 200-300 mesh silica gel. All amides are known compounds. 1H and 13C and 19F NMR data were recorded with Varian (400 MHz) spectrometers in CDCl3 and DMSO with tetramethylsiliane as an internal standard. ¹H, ¹³C and ¹⁹F NMR spectra were recorded at 400 MHz, 101 MHz and 376 MHz at 25 °C in CDCl₃ and DMSO, respectively. Spectral data are reported as follows: chemical shift (δ, ppm); multiplicity (s-singlet, d-doublet, t-triplet, q-quadruplet, m-multiplet); coupling constants (J, Hz) and number of protons. MS were recorded using ESI and HRMS were recorded using EI at 70 eV. ¹H NMR, ¹³C NMR, MS and HRMS data are reported for all new compounds.

Experimental Procedures

General transamidation procedure for Amide from Amides

General procedure for the synthesis of 3: benzoic amide (121 mg, 1.0 mmol, 1.0 equiv) was dissolved in CH₃CN (1.5 mL), then DMAP (12.2 mg, 0.1 mmol, 0.1 equiv) and Boc₂O (436 mg, 2.0 mmol, 1.0 equiv) were added into the sealed vessel. After stirring at room temperature for 8 h, CsF (30.2 mg, 0.2 mmol, 0.2 equiv) and 2,6-dimethylaniline (121 mg, 1.0 mmol, 1.0 equiv) were added into the sealed vessel. After stirring at 100°C for 10 h, the reaction mixture was concentrated under reduced pressure. The resulting crude residue was purified by flash chromatography (10:1 Petroleum Ether : EtOAc) to yield amine 3aa.

Characterization Data

N-(2,6-dimethylphenyl) benzamide (3a).¹ Following general procedure, 3a was isolated as a white solid (193mg, 86%), m. p. 162-164 °C. FT-IR (cm⁻¹) 3273, 2920, 2856, 2418, 1930, 1643, 1579, 1520, 1473, 1301, 1212, 1155, 1076, 1032, 768, 709. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 7.2 Hz, 2H), 7.64 (s, 1H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.4 Hz, 2H), 7.16 – 7.07 (m, 3H), 2.24 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.00, 135.62, 134.38, 133.98, 131.70, 128.66, 128.20, 127.34, 127.27, 18.44.

N-(2,6-dimethylphenyl)-4-methylbenzamide (3b).² Following general procedure, 3b was isolated as a white solid (201mg, 84%), m. p. 162-164 °C. FT-IR (cm⁻¹) 3266, 3041, 2966, 2920, 2856, 1639, 1529, 1495, 1295, 1121, 837, 767. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 6.8 Hz, 1H), 7.05 (d, *J* = 7.2 Hz, 2H), 2.40 (s, 3H), 2.17 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.18, 141.95, 135.84, 134.48, 131.50, 129.20, 128.10, 127.51, 127.12, 21.54, 18.40.

N-(2,6-dimethylphenyl)-4-methoxybenzamide(3c).² Following general procedure, 3c was isolated as a white solid (222mg, 87%), m. p. 168-170 °C. FT-IR (cm⁻¹) 3255, 3012, 2956, 2838, 1639, 1607, 1530, 1499, 1306, 1259, 1178, 1032, 845, 771. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.4 Hz, 2H), 7.58 (s, 1H), 7.17 – 6.98 (m, 3H), 6.91 (d, *J* = 8.8 Hz, 2H), 3.85 (s, 3H), 2.22 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.51, 162.39, 135.68, 134.23, 129.16, 128.21, 127.24, 126.63, 113.86, 55.48, 18.48.

N-(2,6-dimethylphenyl)-4-(trifluoromethyl) benzamide (3d).² Following general procedure, 3d was isolated as a white solid (237mg, 81%), m. p. 205-207 °C. FT-IR (cm⁻¹) 3281, 2994, 2956, 2928, 2858, 2428, 1937, 1651, 1581, 1529, 1500, 1324, 1132, 1066, 858, 775. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.0 Hz, 2H), 7.81 (s, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.17 – 7.12 (m, 1H), 7.09 (d, J = 8.0 Hz, 2H), 2.21 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.52. ¹³C NMR (101 MHz, CDCl₃) δ 165.11, 137.27, 135.58, 133.74, 133.115 (q, $J_{C-F} = 32.3$ Hz), 128.17, 127.84, 127.73, 127.57, 125.44 (q, $J^{C-F} = 3.5$ Hz), 119.59 (q, $J_{C-F} = 274.3$ Hz), 18.21.

N-(2,6-dimethylphenyl)-4-nitrobenzamide(3e).³ Following general procedure, 3e was isolated as a white solid (221mg, 82%), m. p. 194-196 °C. FT-IR (cm⁻¹) 3237, 3046, 2092, 2858, 2449, 1929, 1648, 1601, 1527, 1349, 1308, 1111, 858, 767, 709. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 8.8 Hz, 2H), 8.01 (d, *J* = 8.8 Hz, 2H), 7.73 (s, 1H), 7.17 (dd, *J* = 8.8, 6.2. Hz, 1H), 7.12 (d, *J* = 7.2 Hz, 2H), 2.24 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 164.12, 149.65, 139.74, 135.46, 133.24, 128.39, 127.91, 123.85, 77.33, 77.01, 76.69, 18.37.

N-(2,6-dimethylphenyl)-2-methylbenzamide(3f).² Following general procedure, 3f was isolated as a white solid (179mg, 75%), m. p. 138-140 °C. FT-IR (cm⁻¹) 3279, 3024, 2963, 2922, 2855, 1937, 1648, 1593, 1510, 1380, 1305, 1101, 775, 742, 673 · ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.4 Hz, 1H), 7.36 (d, *J* = 7.2 Hz, 1H), 7.28 (dd, *J* = 7.4, 3.2 Hz, 2H), 7.17 – 7.10 (m, 3H), 7.07 (s, 1H), 2.54 (s, 3H), 2.33 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.56, 136.46, 136.32, 135.57, 133.74, 131.12, 130.03, 128.23, 127.40, 126.74, 125.74, 19.86, 18.60.

N-(2,6-dimethylphenyl)-2-methoxybenzamide(3g).³ Following general procedure, 3g was isolated as a colorless liquid (191mg, 75%). FT-IR (cm⁻¹) 3361, 3018, 2946, 2848, 2029, 1931, 1664, 1598, 1512, 1480, 1297, 1240, 1164, 1019, 760. ¹H NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 8.30 (dd, *J* = 7.8, 2.2 Hz, 1H), 7.55 – 7.49 (m, 1H), 7.16 – 7.10 (m, 4H), 7.06 (d, *J* = 8.4 Hz, 1H), 4.02 (s, 3H), 2.32 (s, 6H).

N-(2,6-dimethylphenyl)-4-fluorobenzamide (3h). ⁴Following general procedure, 3h was isolated as a white solid (194mg, 80%), m. p. 179-181 °C. FT-IR (cm⁻¹) 3310, 3069, 2919, 2855, 2420, 1922, 1528, 1494, 1283, 1236, 1158, 849, 766, 627, 532. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.78 (dd, J = 8.4, 5.6 Hz, 2H), 7.14 – 7.09 (m, 1H), 7.04 (d, J = 7.2 Hz, 2H), 6.98 (t, J = 8.6 Hz, 2H), 2.14 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -108.05 – -108.16 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.10, 164.84 (d, $J_{C-F} = 168$ Hz), 135.66, 133.98, 130.43, 130.41, 129.69 (d, $J_{C-F} = 6.1$ Hz), 129.66, 128.24, 127.46, 115.62 (d, $J_{C-F} = 14.1$ Hz), 18.38.

4-bromo-N-(2,6-dimethylphenyl) benzamide (3i).⁵ Following general procedure, 3i was isolated as a white solid (237mg, 78%), m. p. 190-192 °C. FT-IR (cm⁻¹) 3265, 3037, 2972, 2918, 2424, 1643, 1591, 1523, 1480, 1311, 1120, 843, 770, 533. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 2H), 7.17 – 7.03 (m, 3H), 2.18 (s, 6H).

N-(2,6-dimethylphenyl)-3-phenylpropanamide (3j).⁶ Following general procedure, 3j was isolated as a white solid (192mg, 76%), m. p. 143-145 °C. FT-IR (cm⁻¹) 3433, 3227, 3026, 2923, 1649, 1535, 1427, 1139, 702, 526. ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 2H), 7.22 (d, *J* = 7.2 Hz, 3H), 7.07 – 7.02 (m, 2H), 6.98 (d, *J* = 7.6 Hz, 2H), 3.02 (t, *J* = 7.4 Hz, 2H), 2.66 (t, *J* = 7.4 Hz, 2H), 2.03 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.06, 140.78, 135.41, 134.04, 128.47, 128.46, 127.94, 127.05, 126.19, 37.67, 31.71, 18.21.

N-(2,6-dimethylphenyl)decanamide(3k).² Following general procedure, 3k was isolated as a white solid (156mg, 57%), m. p. 84-86 °C. FT-IR (cm⁻¹) 3277, 2958, 2921, 2852, 1643, 1596, 1519, 1468, 1223, 964, 765, 714, 530. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 1H), 7.04– 6.90 (m, 3H), 2.26 (t, *J* = 7.6 Hz, 2H), 2.09 (s, 6H), 1.66 – 1.58 (m, 2H), 1.26 (s, 12H), 0.89 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.07, 135.36, 134.14, 127.91, 126.93, 36.44, 31.89, 29.52, 29.41, 29.40, 29.30, 26.08, 22.69, 18.34, 14.12.

N-(2,6-dimethylphenyl) isobutyramide(31).⁷ Following general procedure, 31 was isolated as a white solid (97mg, 51%), m. p. 128-130 °C. FT-IR (cm⁻¹) 3269, 2036, 2966, 2926, 2872, 2739, 1655, 1526, 1464, 1378, 1226, 1143, 1100, 763, 700, 534. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 6.98 (dd, *J* = 8.8, 6.4 Hz, 1H), 6.93 (d, *J* = 6.8 Hz, 2H), 2.57 – 2.44 (m, 1H), 2.05 (s, 6H), 1.24 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ = 175.66, 135.43, 134.03, 127.86, 126.82, 77.43, 77.11, 76.79, 35.40, 19.74, 18.16.

N-(2,6-dimethylphenyl) pivalamide (3m). ⁷ Following general procedure, 3m was isolated as a white solid (88mg, 43%), m. p. 141-143 °C. FT-IR (cm⁻¹) 3272, 3023, 2962, 2927, 2871, 2400, 1648, 1514, 1476, 1369, 1294, 1225, 1142, 765, 640, 533. ¹H NMR (400 MHz, CDCl₃) δ 7.14 (s, 1H), 7.05 – 6.95 (m, 3H), 2.09 (s, 6H), 1.25 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 176.59, 135.46, 134.13, 127.99, 126.92, 39.16, 27.69, 18.18.

N-(2,6-dimethylphenyl) cinnamamide. (3n)⁸ Following general procedure, 3n was isolated as a white solid (173mg, 69%), m. p. 176-178 °C. FT-IR (cm⁻¹) 3244, 3022, 2960, 2920, 2854, 2424, 1938, 1655, 1623, 1525, 1469, 1336, 1222, 1179, 1143, 973, 760, 536. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, *J* = 38.4, 15.6 Hz, 1H), 7.53 – 7.35 (m, 4H), 7.33 – 7.27 (m, 2H), 7.23 – 7.03 (m, 3H), 6.43 (m, 1H), 2.25 (d, *J* = 13.6 Hz, 6H) (cis/trans isomer mixture, cis : trans = 1 : 3.6).

N-(2,6-dimethylphenyl)-2-naphthamide (30).⁹ Following general procedure, 30 was isolated as a white solid (225mg, 82%), m. p. 160-162 °C. FT-IR (cm⁻¹) 3268, 3054, 3017, 2921, 2855, 1913, 1854, 1641, 1510, 1467, 1298, 1131, 764, 534, 479. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 7.95 (d, *J* = 8.4 Hz, 1H), 7.90 (dd, *J* = 8.0, 4.0 Hz, 3H), 7.74 (s, 1H), 7.61 – 7.52 (m, 2H), 7.17 – 7.09 (m, 3H), 2.29 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.15, 135.66, 134.89, 134.08, 132.68, 131.68, 129.04, 128.62, 128.29, 127.83, 127.80, 127.42, 126.84, 123.86, 18.54.

N-(2,6-dimethylphenyl) furan-2-carboxamide(3p).²Following general procedure, 3p was isolated as a white solid (175mg, 81%), m. p. 125-127 °C. FT-IR (cm⁻¹) 3251, 3121, 3019, 2976,

2948, 2920, 2856, 2813, 1930, 1853, 1647, 1587, 1513, 1471, 1304, 765. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 7.52 (s, 1H), 7.20 (d, *J* = 2.4 Hz, 1H), 7.17 – 7.09 (m, 3H), 6.55 (s, 1H), 2.28 (s, 6H).

N-(2,6-diisopropylphenyl)-2-naphthamide(4a).⁹ Following general procedure, 4a was isolated as a white solid (261mg, 79%). FT-IR (cm⁻¹) 3344, 2055, 2964, 2931, 2870, 2446, 1943, 1648, 1505, 1468, 1291, 1139, 775, 760, 540. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 8.00 – 7.86 (m, 4H), 7.64 (s, 1H), 7.61 – 7.52 (m, 2H), 7.38 – 7.33 (t, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 7.6 Hz, 2H), 3.26 – 3.12 (m, 2H), 1.46 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 167.13, 146.51, 134.89, 132.72, 131.67, 131.44, 129.08, 128.68, 128.55, 127.85, 127.80, 126.86, 123.78, 123.61, 28.99, 23.71. [HRMS] calcd for C₂₃H₂₅NO [M]=332.20089, found [M+] =322.20041

N-(2,6-diisopropylphenyl)- 4-methoxybenzamide (4b). Following general procedure, 4a was isolated as a white solid (248mg, 80%). FT-IR (cm⁻¹) 3329, 3062, 2962, 2869, 1640, 1606, 1488, 1256, 1177, 1142, 1033, 844, 532. ¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, *J* = 8.8 Hz, 2H), 7.45 (s, 1H), 7.36 (t, *J* = 7.7 Hz, 1H), 7.24 (d, *J* = 7.8 Hz, 2H), 6.96 (d, *J* = 8.8 Hz, 2H), 3.90 (s, 3H), 3.16 (hept, *J* = 6.9 Hz, 2H), 1.22 (d, *J* = 6.9 Hz, 12H). ¹³C NMR (151 MHz, CDCl₃) δ 166.43, 162.41, 146.49, 131.49, 129.09, 128.35, 126.73, 123.51, 113.94, 77.27, 77.06, 76.85, 55.50, 28.89, 23.66. [HRMS] calcd for C₂₀H₂₅NO₂ [M]=312.19580, found [M+] =312.19543.

N-(2,6-diisopropylphenyl)- 4-nitrobenzamide (4c). Following general procedure, 4a was isolated as a white solid (267mg, 82%). FT-IR (cm⁻¹) 3305, 3105, 3078, 2964, 2929, 2870, 1650, 1600, 1522, 1482, 1342, 1286, 1140, 925, 854, 829, 718, 533. ¹H NMR (600 MHz, CDCl₃) δ 8.22 (d, *J* = 8.6 Hz, 2H), 7.99 (d, *J* = 8.6 Hz, 2H), 7.85 (s, 1H), 7.44 (t, *J* = 7.8 Hz, 1H), 7.28 (d, *J* = 10.3 Hz, 2H), 3.18 – 2.99 (m, 2H), 1.21 (d, *J* = 6.8 Hz, 12H). ¹³C NMR (151 MHz, CDCl₃) δ 165.10, 149.72, 146.31, 139.70, 130.60, 129.04, 128.43, 123.96, 123.79, 29.01, 23.62. [HRMS] calcd for C₁₉H₂₂N₂O₃ [M]=327.17031, found [M] =327.16977.

N-(*tert*-butyl)-2-naphthamide(4d). ¹¹Following general procedure, 4c was isolated as a white solid (136mg, 60%), m. p. 156-158 °C. FT-IR (cm⁻¹) 3334, 3054, 2980, 2963, 2932, 1637, 1542, 1454, 1400, 1320, 1222, 901, 834, 780, 632. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.83 (d, *J* = 6.8 Hz, 1H), 7.79 (d, *J* = 9.2 Hz, 3H), 7.52 – 7.42 (m, 2H), 6.26 (s, 1H), 1.50 (s, 9H).

N-(*tert*-butyl)- 4-methoxybenzamide (4e). Following general procedure, 4c was isolated as a white solid (130mg, 62%), m. p. 113-115 °C. FT-IR (cm⁻¹) 3329, 3062, 2962, 2869, 1640, 1606, 1488, 1256, 1177, 1142, 1033, 844, 532. ¹H NMR (600 MHz, CDCl₃) δ 7.69 (d, *J* = 8.8 Hz, 2H), 6.89 (d, *J* = 8.8 Hz, 2H), 5.94 (s, 1H), 3.83 (s, 1H), 1.47 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 166.47, 161.84, 128.46, 128.19, 113.59, 55.37, 51.45, 28.93. [HRMS] calcd for C₁₂H₁₇NO₂ [M]= 208.13320, found [M+]=208.13301

N-(*tert*-butyl)- 4-nitrobenzamide (4f). Following general procedure, 4c was isolated as a white solid (142mg, 64%), m. p. 161-163 °C. FT-IR (cm⁻¹) 3305, 3105, 3078, 2964, 2929, 2870, 1650, 1600, 1522, 1482, 1342, 1286, 1140, 925, 854, 829, 718, 533. ¹H NMR (600 MHz, CDCl₃) δ 8.25 (d, *J* = 8.8 Hz, 2H), 7.88 (d, *J* = 8.8 Hz, 2H), 6.08 (s, 1H), 1.50 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 164.90, 149.31, 141.54, 127.96, 123.72, 52.30, 28.74. [HRMS] calcd for C₁₉H₂₂N₂O₃ [M]=223.10771, found [M+] =223.10756

N-([1,1'-biphenyl]-2-yl) benzamide (4g). ¹²Following general procedure, 4d was isolated as a white solid (177mg, 65%), m. p. 87-89 °C. FT-IR (cm⁻¹) 3423,3262, 3055, 1951, 1811, 1683, 1644, 1579, 1524, 1487, 1305, 1151, 918, 747, 697. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.85 (d, *J* = 7.6 Hz, 2H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.14 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 165.01, 138.09,

134.95, 134.80, 132.40, 131.76, 130.03, 129.39, 129.26, 128.77, 128.63, 128.22, 126.84, 124.41, 121.20.

N-methyl-N-phenyl-2-naphthamide(4h).¹⁰ Following general procedure, 4b was isolated as a white solid (180mg, 69%), m. p. 108-110 °C. FT-IR (cm⁻¹) 3055, 2924, 2855, 1944, 1726, 1635, 1592, 1493, 1471, 1372, 1297, 1129, 827, 762, 696. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.71 (t, *J* = 5.8 Hz, 2H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.44 (p, *J* = 7.0 Hz, 2H), 7.31 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.19 (t, *J* = 7.6 Hz, 2H), 7.12 – 7.05 (m, 3H), 3.55 (s, 3H).

N-benzylbenzamide(4i). ¹³Following general procedure, 4e was isolated as a white solid (158mg, 75%), m. p. 103-105 °C. FT-IR (cm⁻¹) 3290, 3062, 1639, 1604, 1551, 1490, 1415, 1324, 1316, 1058, 1030, 728, 694. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.6 Hz,2H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.41 (t, *J* = 7.8 Hz, 2H), 7.37 – 7.25 (m, 5H), 6.65 (s, 1H), 7.37 – 7.25 (m, 5H), 6.65 (s, 1H), 4.62 (d, *J* = 5.2 Hz,2H). ¹³C NMR (101 MHz, DMSO) δ 167.50, 138.29, 134.33, 131.49, 128.70, 128.52, 127.81, 127.48, 127.04, 44.01.

N-phenylbenzamide(4j). ¹⁴Following general procedure, 4f was isolated as a white solid (171mg, 87%), m. p. 160-162 °C. FT-IR (cm⁻¹) 3345, 3055, 3038, 3027, 1657, 1601, 1579, 1538, 1449, 1440, 1323, 1262, 760, 716, 692. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.85 (d, *J* = 7.6 Hz, 2H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.14 (t, *J* = 7.4 Hz, 1H).

N-(4-hydroxyphenyl) benzamide(4k). ¹⁵Following general procedure, 4g was isolated as a white solid (mg, 65%). FT-IR (cm⁻¹) 3382, 3324, 3025, 1647, 1542, 1200, 1154, 707, 528. ¹H NMR (400 MHz, DMSO) δ 10.07 (s, 1H), 9.86 (s, 1H), 8.10 (d, *J* = 7.2 Hz, 2H), 7.72 (t, *J* = 7.4 Hz, 1H), 7.61 – 7.52 (m, 4H), 7.21 (d, *J* = 8.8 Hz, 2H).

N-(4-bromophenyl) benzamide. (41) ¹⁶Following general procedure, 4h was isolated as a white solid (234mg, 85%), m. p. 204-206 °C. FT-IR (cm⁻¹) 3331, 3092, 2979, 1900, 1772, 1647, 1592, 1519, 1492, 1390, 1310, 1143, 820, 716, 652, 507. ¹H NMR (400 MHz, DMSO) δ 10.34 (s, 1H), 7.92 (d, *J* = 7.2 Hz, 2H), 7.75 (d, *J* = 8.8 Hz, 2H), 7.60 – 7.43 (m, 5H). ¹³C NMR (101 MHz, DMSO) δ 166.14, 139.07, 135.20, 132.17, 131.90, 128.88, 128.17, 122.68, 115.81.

phenyl(1H-pyrrol-1-yl) methanone (4m). ¹⁷Following general procedure, 4i was isolated as colorless liquid (128mg, 75%). FT-IR (cm⁻¹) 147, 3062, 1697, 1600,. 1467, 1401, 1332, 1086, 879, 744, 721. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.85 (d, *J* = 7.6 Hz, 2H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.14 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 167.72, 133.26, 132.30, 129.52, 128.51, 121.32, 113.19.

2,6-dimethylphenyl benzoate (5a). ¹⁸ Following general procedure, 5a was isolated as colorless liquid (171mg, 76%). FT-IR (cm⁻¹) 3062, 3035, 2926, 2858, 1734, 1599, 1475, 1450, 1264, 1175, 1088, 1064, 1024, 863, 771, 708. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 7.2 Hz, 2H), 7.68 (t, *J* = 7.4 Hz, 1H), 7.56 (t, *J* = 7.6 Hz, 2H), 7.21 – 7.10 (m, 3H), 2.25 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 164.46, 148.51, 133.71, 130.46, 130.28, 129.43, 128.78, 128.75, 126.04, 16.50.

S-(2,6-dimethylphenyl) benzothioate(5b).¹⁹ Following general procedure, 5b was isolated as colorless liquid (169mg, 70%). FT-IR (cm⁻¹) 3055, 3030, 2920, 2840, 1720, 1620, 1455, 1430, 1262, 1200, 1024, 863. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 7.6 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 2H), 7.29 (dd, *J* = 8.0, 6.8 Hz, 1H), 7.22 (d, *J* = 7.6 Hz, 2H), 2.43 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 189.10, 143.32, 137.09, 133.58, 130.02, 128.81, 128.44, 127.66, 126.75, 21.89.

Reference

- 1. F. C. Falk, R. Frohlich and J. Paradies, *Chemical Communications*, 2011, 47, 11095-11097.
- 2. G. Meng, P. Lei and M. Szostak, Organic Letters, 2017, 19, 2158-2161.
- L. Zhang, M. Xin, H. Shen, J. Wen, F. Tang, C. Tu, X. Zhao and P. Wei, *Bioorganic & Medicinal Chemistry Letters*, 2014, 24, 3486-3492.
- 4. P.-Q. Huang, Y.-H. Huang, H. Geng and J.-L. Ye, *Scientific Reports*, 2016, 6, 28801.
- C. Shen, Z. Wei, H. Jiao and X. F. Wu, *Chemistry A European Journal*, 2017, 23, 13369-13378.
- 6. B. Mátravölgyi, T. Hergert, E. Bálint, P. Bagi and F. Faigl, *The Journal of Organic Chemistry*, 2018, **83**, 2282-2292.
- 7. B. T. Gowda, K. M. Usha and K. Jyothi, *Journal*, 2004, **59**, 69.
- 8. S. Aruna, R. Kalyanakumar and V. Ramakrishnan, *Synthetic Communications*, 2001, **31**, 3125.
- 9. G. Jørgensen Charlotte, B. Frølund, J. Kehler and A. Jensen Anders, *ChemMedChem*, 2011, 6, 725-736.
- A. Baroudi, J. Alicea, P. Flack, J. Kirincich and I. V. Alabugin, *The Journal of Organic Chemistry*, 2011, 76, 1521-1537.
- 11. H. Jiang, B. Liu, Y. Li, A. Wang and H. Huang, Organic Letters, 2011, 13, 1028-1031.
- 12. S. Yang, B. Li, X. Wan and Z. Shi, *Journal of the American Chemical Society*, 2007, **129**, 6066-6067.
- L. U. Nordstrøm, H. Vogt and R. Madsen, *Journal of the American Chemical Society*, 2008, 130, 17672-17673.
- K.-J. Han, B. S. Tae and M. Kim, Organic Preparations and Procedures International, 2005, 37, 198-203.
- J. P. Rosengren-Holmberg, J. G. Karlsson, J. Svenson, H. S. Andersson and I. A. Nicholls, Organic & Biomolecular Chemistry, 2009, 7, 3148-3155.
- 16. K. Sasaki and D. Crich, Organic Letters, 2011, 13, 2256-2259.
- 17. W. Ren and M. Yamane, *The Journal of Organic Chemistry*, 2010, **75**, 8410-8415.
- N. Iranpoor, H. Firouzabadi and D. Khalili, Organic & Biomolecular Chemistry, 2010, 8, 4436-4443.
- G. Rong, J. Mao, D. Liu, H. Yan, Y. Zheng and J. Chen, *RSC Advances*, 2015, 5, 26461-26464.

¹H, ¹³C, ¹⁹F ^{NMR} Spectra

N-(2,6-dimethylphenyl) benzamide (3a). ¹H NMR (400 MHz, CDCl₃)

N-(2,6-dimethylphenyl)-4-methoxybenzamide(3c). ¹H NMR (400 MHz, CDCl₃)

N-(2,6-dimethylphenyl)-4-(trifluoromethyl) benzamide (3d). ¹³C NMR (101 MHz, CDCl₃)

N-(2,6-dimethylphenyl)-4-(trifluoromethyl) benzamide (3da). ¹⁹F NMR (376 MHz, CDCl₃)

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

N-(2,6-dimethylphenyl)-4-nitrobenzamide(3e). ¹³C NMR (101 MHz, CDCl₃)

N-(2,6-dimethylphenyl)-2-methylbenzamide(3f). ¹H NMR (400 MHz, CDCl₃)

N-(2,6-dimethylphenyl)-4-fluorobenzamide (3h). ¹³C NMR (101 MHz, CDCl₃)

N-(2,6-dimethylphenyl)-4-fluorobenzamide (3h). ¹⁹F NMR (376 MHz, CDCl₃)

4-bromo-N-(2,6-dimethylphenyl) benzamide (3i). ¹H NMR (400 MHz, CDCl₃)

N-(2,6-dimethylphenyl)-3-phenylpropanamide (3j). ¹H NMR (400 MHz, CDCl₃)

N-(2,6-dimethylphenyl) isobutyramide(3l). ¹H NMR (400 MHz, CDCl₃)

N-(2,6-dimethylphenyl) isobutyramide(3l). ¹³C NMR (101 MHz, CDCl₃)

N-(2,6-dimethylphenyl) cinnamamide. (3n) ¹H NMR (400 MHz, CDCl₃)

N-(2,6-dimethylphenyl)-2-naphthamide (30). ¹H NMR (400 MHz, CDCl₃)

N-(2,6-dimethylphenyl)-2-naphthamide (30). ¹³C NMR (400 MHz, CDCl₃)

^{210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10} fl (ppm)

N-(2,6-dimethylphenyl) furan-2-carboxamide(3p). ¹H NMR (400 MHz, CDCl₃)

N-(2,6-diisopropylphenyl)-2-naphthamide(4a). ¹H NMR (400 MHz, CDCl₃)

N-(2,6-diisopropylphenyl)-4-methoxybenzamide(4b). ¹H NMR (400 MHz, CDCl₃)

N-(2,6-diisopropylphenyl)-4-nitrobenzamide (4c). ¹H NMR (400 MHz, CDCl₃)

N-(tert-butyl)-2-naphthamide(4d). ¹H NMR (400 MHz, CDCl₃)

N-([1,1'-biphenyl]-2-yl) benzamide (4g). ¹H NMR (400 MHz, CDCl₃)

N-methyl-N-phenyl-2-naphthamide (4h). ¹H NMR (400 MHz, CDCl₃)

N-benzylbenzamide(4i). ¹H NMR (400 MHz, CDCl₃)

N-benzylbenzamide(4i). ¹³C NMR (400 MHz, CDCl₃)

N-phenylbenzamide(4j). ¹H NMR (400 MHz, CDCl₃)

N-(4-hydroxyphenyl) benzamide(4k). ¹H NMR (400 MHz, DMSO)

Phenyl (1H-pyrrol-1-yl) methanone (4m). ¹³C NMR (400 MHz, CDCl₃)

2,6-dimethylphenyl benzoate (5a). ¹³C NMR (400 MHz, CDCl₃)

S-(2,6-dimethylphenyl) benzothioate(5b). ¹³C NMR (400 MHz, CDCl₃)

Acyl fluoride in the reaction mixture analysed by ¹⁹F MR, MS, GC-

FID

Acyl fluoride ¹⁹F NMR spectrum of the reaction mixture

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

Acyl fluoride MS spectrum of the reaction mixture

GC-FID analysis for Acyl fluoride standard sample in MeCN (black line) and reaction mixture (N-di(t-butoxycarbonyl)-benzamide combined with 5 equivalent cesium fluoride in MeCN at 100 °C for 4 hours)

The gas chromatographic analyses were accomplished using an KeJie Instrument GC5890 (Nangjing, JiangShu, China). The capillary chromatographic column used was a SE-30 column. . The GC analysis was performed in the GC injector maintained at 200 °C. The oven temperature was set at 150 °C. The flame ionization detector temperature was maintained at 250 °C.