Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Supporting Information

For

Divergent Synthesis of a-Aryl Ketones/Esters via Rhodium-

Catalyzed Selective Deesterification and Decarbonylation of the

Diazo Compounds

Zhonghe Tang^a, Shaoyu Mai^a, Yao Zhou^a and Qiuling Song^{a,b*}

 ^a Institute of Next Generation Matter Transformation, College of Chemical Engineering, College of Materials Science & Engineering at Huaqiao University, Xiamen, Fujian, 361021, P. R. China
 ^b College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R.China, 310014

Fax: 86-592-6162990; email: qsong@hqu.edu.cn

Table of Contents

1. General information	3
2. General procedure for synthesis of benzimidazoles	4
3. Experimental Procedures	5
4. General process for preparation of diazo substrates	6
5. Optimization of experiment conditions	7
6. Crystal data of 6e	9
7. Characterization data for products	11
8. NMR spectroscopic data	32

1. General information

All chemicals were purchased from Adamas Reagent, energy chemical company, J&K Scientific Ltd, Bide Pharmatech Ltd and Tansoole. The reagents and solvents were purchased from commercial suppliers and used without further purification. Reactions were monitored by TLC or GC-MS analysis. Flash column chromatography was performed over silica gel (200-300 mesh).

¹H-NMR and ¹³C-NMR spectra were recorded in CDCl₃ on a Bruker Avance III 500MHz NMR spectrometer (500 MHz ¹H, 125 MHz ¹³C) at room temperature. Chemical shifts were reported in ppm on the scale relative to CDCl₃ (δ = 7.26 for ¹H-NMR, δ = 77.00 for ¹³C-NMR) as an internal reference. High resolution mass spectra were recorded using a Thermo Fisher Scientific LTQ FT Ultra or Waters Micromass GCT Premier instrument. Coupling constants (*J*) were reported in Hertz (Hz).

2. General procedure for synthesis of benzimidazoles

2.1. General reaction procedure for the preparation of 3

An aqueous solution of $Na_2S_2O_5$ (1.5 mmol), followed by the corresponding ophenylenediamine (1.0 mmol) was added to a solution of substituted benzaldehyde (1.0 mmol) in ethanol and the mixture was stirred at 70 °C. After completion of the reaction, the reaction mixture was cooled, water was added, and the mixture was left to stand for 1 h at 0 °C to obtain a precipitate. Then, the obtained crude solid was purified by column chromatography to afford benzimidazole compounds with the required purity.

2.2. General process for the synthesis of 5

Excess methyl iodine (0.25 mL) was added to a stirred THF solution of 2phenylbenzimidazole (0.7 g, 3.6 mmol) and KO^tBu (0.42 g, 3.7 mmol) at RT under air. The resulting solution was then further stirred for a few hours. After the removal of the solvent, compound **5** were obtained quantitatively.

2.3. General process for the synthesis of 7

The precursor 2- phenyl-1H-Benzo[d]imidazole (PhBI) was synthesized using a previously reported procedure. Under a nitrogen atmosphere, PhBI (1.12 g, 5.8 mmol) was dissolved in acetone. An equivalent amount of KOH was added and the mixture was stirred for 30 min, followed by addition of bromoethane. After cooling to room temperature, the reactant mixture was heated to relux overnight and quenched with

ice water. The mixture was then extracted by dichloromethane (3x30 mL). The organic layer was dried with Na₂SO₄, and the solvent was removed under vacuum. The product was then obtained by column chromatography on silica gel.

2.4. General process for the synthesis of 10

A mixture of 8 (1 mmol) and 9 (2.5 mmol) was stirred at 130 °C or 150 °C, for 24 h under an argon atmosphere. The cooled reaction mixture was diluted with methanol and treated with a saturated ammonia solution in methanol (0.5 mL). The resulting solution was concentrated in vacuo. The residue was purified by silica gel column chromatography (heptane: EtOAc 4:1 to EtOAc) to afford the fused benzimidazole 10.

3. Experimental Procedures

A sealed tube was charged with 2-Phenylbenzimidazole 1 (0.2 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (3.1 mg, 2.5 mol %), HOAc (24 mg, 2.0 equiv), diazo compounds 2 (0.25 mmol, 1.25 equiv) in TFE (1.5 mL). Under an argon atmosphere, the reaction mixture was stirred at 100 °C for 10 h. Then the mixture was cooled to room temperature and saturated ammonium chloride solution was added to the reaction mixture and extracted with EtOAc. The combined organic phase was washed with saturated brine and dried over Na₂SO₄. The solvent was evaporated, and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate) to afford the corresponding products **3** (Scheme 2).

A sealed tube was charged with 2-Phenylbenzimidazole 1 (0.2 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (3.1 mg, 2.5 mol %), NaOAc (20.5 mg, 1.25 equiv), diazo compounds 2 (0.25 mmol, 1.25 equiv) in MeOH (1.5 mL). Under an argon atmosphere, the reaction mixture was stirred at 100 °C for 12 h. Then the mixture was cooled to room temperature and saturated ammonium chloride solution was added to the reaction mixture and extracted with EtOAc. The combined organic phase was washed with saturated brine and dried over Na₂SO₄. The solvent was evaporated, and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate) to afford the corresponding products 4 (Scheme 3).

A sealed tube was charged with 2-Phenylbenzimidazole **5** (0.2 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (3.1 mg, 2.5 mol %), HOAc (48 mg, 4.0 equiv), diazo compounds **2** (0.25 mmol, 1.25 equiv) in TFE (1.5 mL). Under an argon atmosphere, the reaction mixture was stirred at 100 °C for 12 h. Then the mixture was cooled to room temperature and saturated ammonium chloride solution was added to the reaction mixture and extracted with EtOAc. The combined organic phase was washed with saturated brine and dried over Na₂SO₄. The solvent was evaporated, and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate) to afford the corresponding products **6** (Scheme 4).

4. General process for preparation of diazo substrates

To a solution of ketonic ester or 1,3 di-ketone (5.0 mmol, 1.0 equiv.) in CH3CN (10 mL), TsN_3 (6.0 mmol, 1.1 equiv.) was added. Then the reaction mixture was cooled to 0 oC and a solution of DBU (6.0 mmol, 1.1 equiv.) in 10 mL CH₃CN was added dropwise. Next, the reaction temperature was raised to room temperature. After

stirring for 3 hours, the residue was extracted with EA for three times. The combined organic layers were washed with water and brine sequentially, dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified by flash chromatography on silica gel to afford the corresponding product in 70-90% yields.

5. Optimization of experiment conditions

 Table S1. Optimization of the reaction for Rh-Catalyzed deesterification of diazo

 Compounds^a

	$ + \frac{0}{N_2} $	D ^I Bu Cp*RhCl additive solve T %	2 []] 2 (2.5 mol%) e (2 equiv) ent (1.5 mL) C, time		v v 3a
entry	additive	solvent	T (°C)	time (h)	yield (%) ^b
1	KOAc	TFE	100	12	58
2	HOAc	TFE	100	12	93 (86) ^c
3	НСООН	TFE	100	12	trace
4	TFA	TFE	100	12	trace
5	C(CH ₃) ₃ COOH	TFE	100	12	58
6	HOAc	DCM	100	12	N.D
7	HOAc	THF	100	12	N.D
8	HOAc	Toluene	100	12	N.D
9	HOAc	CH ₃ CN	100	12	N.D
10	HOAc	1,4-dioxane	100	12	N.D
11	HOAc	TFE	120	12	14
12	HOAc	TFE	80	12	86 (78) ^c
13	HOAc	TFE	60	12	79
14	HOAc	TFE	100	14	93 (84) ^c
15	HOAc	TFE	100	10	95 (89) ^c
16	HOAc	TFE	100	8	77

^a The reactions carried out with 1a (0.20 mmol) and 2a (0.25 mmol) in the presence of 2.5 mol % Rh(III) catalyst in 1.5 mL of solvent for the indicated times under a N_2 atmosphere. ^b GC yields. ^c isolated yields.

		OOO N2 2b	[[] Cp*RhCl ₂] ₂ (2 additive (1.25 solvent (1. T ^o C, tim	5 mol%) equiv) 5 mL) e	
entry	additive	solvent	T (°C)	time (h)	yield (%) ^b
1	KOAc	MeOH	100	12	80 (76) ^c
2	AgOAc	MeOH	100	12	90 (83) ^c
3	K ₂ CO ₃	MeOH	100	12	trace
4	Cs_2CO_3	MeOH	100	12	n.r
5	KO ^t Bu	MeOH	100	12	7
6	NaOAc	MeOH	100	12	88 (80) ^c
7	HOAc	MeOH	100	12	55
8	Cu(OAc) ₂	MeOH	100	12	31
9	NaOAc	H ₂ O	100	12	trace
10	NaOAc	THF	100	12	n.r
11	NaOAc	CH ₃ CN	100	12	n.r
12	NaOAc	Toluene	100	12	n.r
13	NaOAc	1,4-dioxane	100	12	trace
14	NaOAc	MeOH	80	12	52
15	NaOAc	MeOH	60	12	24
16	NaOAc	MeOH	100	10	60

Table S2. Optimization of the reaction for Rh-catalyzed decarbonylation of diazo compounds^a

^aThe reactions carried out with 1a (0.20 mmol) and 2b (0.25 mmol) in the presence of 2.5mol % Rh(III) catalyst in 1.5 mL of solvent for the indicated times Under a N₂ atmosphere. ^b GC yields. ^c isolated yield.

 Table S3. Optimization of the reaction for Rh-catalyzed dual C-H

 activation^a

N N H 5a		+ N_2	Cp*R Bu so	hCl ₂] ₂ (2.5 mo HOAc Divent (1.5 mL T °C, time	bl%) →	
entry	2a (equiv)	HOAc (equiv)	solvent	T (°C)	time (h)	yield (%) ^b
1	2.5	4	TFE	100	16	90 (86) ^c
2	2.3	4	TFE	100	16	73
3	2.5	3	TFE	100	16	83
4	2.5	4	TFE	80	16	88
5	2.5	4	TFE	60	16	12
6	2.5	4	TFE	100	12	98 (95) ^c
7	2.5	4	TFE	100	8	75
8	2.5	4	CH ₃ CN	100	12	4
9	2.5	4	1,4-dioxan	e 100	12	N.D

^aThe reactions carried out with 5a (0.20 mmol) and 2a (0.25 mmol) in the presence of 2.5 mol% Rh(III) catalyst in 1.5 mL of solvent for the indicated times Under a N₂ atmosphere. ^b GC yields.^c isolated yield in parentheses.

6. Crystal data of 6e

Crystallographic data for compound **6e** (CCDC-1846859) has been deposited with the Cambridge Crystallographic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email:deposit@ccdc.cam.ac.uk).

Displacement ellipsoids are drawn at 30% probability level

Bond precisio	on:	C-C = 0	0.0027	А		Wavelength=0.71073
Cell:	a=10.8905	5(12)	b=13.8	510(13)	c=10.454	48(12)
	alpha=90		beta=9	9.114(10)	gamma=	90
Temperature:	0 K					
		Calculate	ed			Reported
Volume		1557.1(3)			1557.1(3)
Space group		P 21/c				P 1 21/c 1
Hall group		-P 2ybc				-P 2ybc
Moiety formu	ıla	C20 H18	N2 O			C20 H18 N2 O
Sum formula		C20 H18	N2 O			C20 H18 N2 O
Mr		302.36				302.38
Dx,g cm-3		1.290				1.290
Ζ		4				4
Mu (mm-1)		0.080				0.080
F000		640.0				640.3
F000'		640.24				
h,k,lmax		12,16,12				12,16,12
Nref		2740				2733
Tmin,Tmax						0.226,1.000
Tmin'						
Correction method= # Reported T Limits: Tmin=0.226 Tmax=1.000						
AbsCorr = M	ULTI-SCA	AN				
Data completeness= 0.997		97	Т	Theta(max)= 24.990		
R(reflections))= 0.0517(1993)		wR2(ref	lections)=	= 0.1519(2733)
S = 1.027		Npar	= 210			

7. Characterization data for products

1-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3a)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a brown solid (40.1 mg, 76%). mp. 100 °C (lit. 100-102 °C). ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, *J* = 7.0 Hz, 1H), 7.48 – 7.44 (m, 1H), 7.42 – 7.37 (m, 3H), 7.33 – 7.28 (m, 3H), 3.99 (s, 2H), 3.67 (s, 3H),

1.95 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 205.8, 152.9,142.3, 135.4, 135.2, 131.2, 130.1, 129.8, 126.8, 122.6, 122.2, 119.4, 109.7, 48.0, 30.8, 29.7. HRMS (EI, m/z) calcd for C₁₇H₁₆N₂O [M+H]⁺: 265.1335; found: 265.1337.

1-(2-(1-methyl-1H-benzo[d]imidazol-2-yl) phenyl)-4-phenylbutan-2-one (3b)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a brown liquid (46.0 mg, 65%).¹H NMR (500 MHz, CDCl₃) δ 7.79 (dd, J = 6.6, 1.8 Hz, 1H), 7.48 – 7.45 (m, 1H), 7.44 – 7.39 (m, 3H), 7.34 (ddd, J = 7.1, 6.1, 3.6 Hz, 2H), 7.27 (d, J = 7.6 Hz, 1H), 7.18 – 7.11 (m, 3H), 6.94 – 6.90 (m, 2H), 3.97 (s, 2H), 3.64 (s, 3H), 2.55 (s, 4H).¹³C NMR (126 MHz, CDCl₃) δ 207.2, 153.0, 142.5, 140.7, 135.5, 135.4, 131.4, 130.1, 129.9, 128.3, 128.1, 126.9,

125.9, 122.8, 122.4, 119.6, 109.7, 47.5, 44.1, 30.9, 29.5. HRMS (EI, m/z) calcd for $C_{24}H_{22}N_2O\,[M\!+\!H]^+\!\!:355.1805;$ found: 355.1807.

2-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)-1-phenylethan-1-one (3c)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 6:1, v/v) to give the product as a yellow liquid (53.5mg, 82%).¹H NMR (500 MHz, CDCl₃) δ 7.70 – 7.65 (m, 3H), 7.39 (ddd, *J* = 10.3, 8.6, 5.1 Hz, 5H), 7.27 (ddd, *J* = 12.3, 6.3, 4.2 Hz, 5H), 4.46 (s, 2H), 3.60 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.7, 152.9, 142.5, 136.4, 135.7, 135.4, 132.9, 131.5, 130.1,130.0, 128.3,

128.1, 126.8, 122.6, 122.2, 119.6, 109.6, 42.8, 30.8. HRMS (EI, m/z) calcd for $C_{17}H_{16}N_2O [M+H]^+$: 327.1492; found: 327.1493.

1-(2-(1-methyl-1H-benzo[d]imidazol-2-yl) phenyl) butan-2-one (3d)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 4:1, v/v) to give the product as a brown liquid (40.6 mg, 73%).¹H NMR (500 MHz, CDCl₃) δ 7.78 (dd, J = 6.8, 1.7 Hz, 1H), 7.47 (ddd, J = 7.6, 6.5, 2.5 Hz, 1H), 7.43 – 7.37 (m, 3H), 7.35 – 7.28 (m, 3H), 3.96 (s, 2H), 3.68 (s, 3H), 2.26 (d, J = 7.3 Hz, 2H), 0.77

(t, J = 7.3 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 208.6, 153.0, 142.5, 135.6, 135.5, 131.3, 130.2, 130.1, 129.9, 126.8, 122.7, 122.3, 119.5, 109.6, 46.9, 35.8, 30.9, 7.6. HRMS (EI, m/z) calcd for C₁₈H₁₈N₂O [M+H]⁺: 279.1492; found: 279.1495.

1-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)thiophen-3-yl)propan-2-one (3e)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a yellow liquid (42.1 mg, 78%).¹H NMR (500 MHz, CDCl₃) δ 7.82 – 7.77 (m, 1H), 7.51 (d, *J* = 5.1 Hz, 1H), 7.40 – 7.29 (m, 3H), 7.07 (d, *J* = 5.1 Hz, 1H),

4.01 (s, 2H), 3.84 (s, 3H), 2.16 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 205.5, 147.2, 142.86 (s), 137.0, 135.9, 130.1, 127.3, 126.7, 123.1, 122.5, 119.9, 109.7, 43.9, 31.3, 29.8. HRMS (EI, m/z) calcd for C₁₇H₁₆N₂O [M+H]⁺: 271.0900; found: 271.0903.

1-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)furan-3-yl)propan-2-one (3f)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a brown liquid (41.1 mg, 81%).¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.72 (m, 1H), 7.57 (d, *J* = 1.7 Hz, 1H), 7.38 – 7.36 (m, 1H), 7.32 – 7.27 (m, 2H), 6.57

(d, J = 1.7 Hz, 1H), 4.25 (s, 2H), 4.03 (s, 3H), 2.29 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 206.1, 144.4, 143.1, 142.8, 142.3, 135.7, 122.9, 122.4, 121.6, 119.6, 114.4, 109.3, 40.7, 31.6, 30.0. HRMS (EI, m/z) calcd for C₁₇H₁₆N₂O [M+H]⁺: 255.1128; found: 255.1129.

1-(5-methyl-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3g)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a brown liquid (53.4 mg, 96%).¹H NMR (500 MHz, CDCl₃) δ 7.81 – 7.76 (m, 1H), 7.37 (dt, *J* = 4.7, 3.1 Hz, 1H), 7.32 – 7.26 (m, 3H), 7.20 (dd, *J* = 7.8, 0.8 Hz, 1H), 7.12 (s, 1H), 3.95 (s, 2H), 3.66

(s, 3H), 2.40 (s, 3H), 1.94 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 206.0, 153.0, 142.4,

139.8, 135.4, 135.0, 131.9, 130.0, 127.6, 127.1, 122.5, 122.1, 119.3, 109.6, 47.9, 30.8, 29.7, 21.2. HRMS (EI, m/z) calcd for C₁₈H₁₈N₂O [M+H]⁺: 279.1492; found: 279.1494.

1-(5-ethyl-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3h)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 4:1, v/v) to give the product as a yellow liquid (45.6 mg, 78%).¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, *J* = 6.7 Hz, 1H), 7.39 (d, *J* = 7.0 Hz, 1H), 7.34 – 7.29 (m, 3H), 7.24 (dd, *J* = 7.7, 1.0 Hz, 1H), 7.14 (s, 1H), 3.99 (s, 2H), 3.69

(s, 3H), 2.71 (t, J = 7.6 Hz, 2H), 1.96 (s, 3H), 1.29 (t, J = 7.6 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 206.1, 153.2, 146.2, 142.3, 135.5, 135.1, 130.9, 130.2, 127.3, 126.4, 122.6, 122.2, 119.4, 109.7, 48.2, 31.0, 30.0, 28.7, 15.6. HRMS (EI, m/z) calcd for C₁₉H₂₀N₂O [M+H]⁺: 293.1648; found: 293.1649.

1-(5-isopropyl-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3i)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 4:1, v/v) to give the product as a brown liquid (39.2 mg, 64%).¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 6.6 Hz, 1H), 7.39 (d, *J* = 7.0 Hz, 1H), 7.35 – 7.28 (m, 3H), 7.26 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.15 (s, 1H), 4.00 (s, 2H), 3.70

(s, 3H), 2.96 (dt, J = 13.8, 6.9 Hz, 1H), 1.96 (s, 3H), 1.29 (d, J = 6.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 206.1,153.3, 150.7, 142.5, 135.5, 135.1, 130.2, 129.5, 127.5, 124.9, 122.6, 122.2, 119.4, 109.7, 48.3, 33.9, 31.0, 29.8, 23.8. HRMS (EI, m/z) calcd for C₂₀H₂₂N₂O [M+H]⁺: 307.1805; found: 307.1807.

1-(5-(tert-butyl)-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3j)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 3:1, v/v) to give the product as a brown solid (53.1 mg, 83%). mp. 86 °C (lit. 86-87 °C).¹H NMR (500 MHz, CDCl₃) δ 7.77 (dd, *J* = 6.7, 1.8 Hz, 1H), 7.42 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.40 – 7.37 (m, 1H), 7.34 – 7.29 (m,

4H), 4.02 (s, 2H), 3.70 (s, 3H), 1.96 (s, 3H), 1.36 (s, 9H).¹³C NMR (126 MHz, CDCl₃) δ 206.2, 153.3, 152.9, 142.6, 135.5, 134.8, 129.9, 128.3, 127.3, 123.9, 122.5, 122.1, 119.5, 109.6, 48.5, 34.7, 31.2, 31.0, 29.8. HRMS (EI, m/z) calcd for C₂₁H₂₄N₂O [M+H]⁺: 321.1961; found: 321.1964.

1-(4-(1-methyl-1H-benzo[d]imidazol-2-yl)-[1,1'-biphenyl]-3-yl)propan-2-one (3k)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a yellow solid (64.6 mg, 95%). mp. 120 °C (lit. 120-122 °C).¹H NMR (500 MHz, CDCl₃) δ 7.82 (dd, J = 6.5, 2.1 Hz, 1H),

7.67 – 7.63 (m, 3H), 7.55 (d, J = 1.8 Hz, 1H), 7.50 – 7.46 (m, 3H), 7.41 (ddd, J = 8.1, 6.2, 3.0 Hz, 2H), 7.37 – 7.32 (m, 2H), 4.11 (s, 2H), 3.75 (s, 3H), 2.00 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 205.8, 152.9, 142.6, 142.6, 140.0, 135.8, 135.6, 130.6, 130.0, 129.1, 128.8, 128.8, 127.8, 127.1, 127.1, 125.5, 122.7, 122.2, 119.6, 109.7, 48.3, 31.0, 29.8. HRMS (EI, m/z) calcd for C₂₃H₂₀N₂O [M+H]⁺: 341.1648; found: 341.1650.

1-(4-methyl-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl) propan-2-one (3l)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 6:1, v/v) to give the product as a yellow liquid (47.3 mg, 85%).¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, *J* = 7.3 Hz, 1H), 7.39 (d, *J* = 7.1 Hz, 1H), 7.34 – 7.27 (m, 3H), 7.23 – 7.17 (m, 2H), 3.93 (s, 2H), 3.68 (s, 3H), 2.40 (s, 3H), 1.95 (s, 3H).¹³C

NMR (126 MHz, CDCl₃) δ 206.1, 153.1, 142.3, 136.7, 135.4, 132.1, 131.1, 130.8, 130.7, 129.9, 122.7, 122.3, 119.5, 109.7, 47.7, 30.9, 29.8, 21.0. HRMS (EI, m/z) calcd for C₁₈H₁₈N₂O [M+H]⁺: 279.1492; found: 279.1493.

1-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)-5-nitrophenyl)propan-2-one (3m)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 2:1, v/v) to give the product as a yellow solid (31.5 mg, 51%). mp. 136 °C (lit. 136-138 °C).¹H NMR (500 MHz, CDCl₃) δ 8.27 (dd, *J* = 8.4, 2.3 Hz, 1H), 8.18 (d, *J* = 2.2 Hz, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.59 (d, *J* =

8.4 Hz, 1H), 7.43 (d, J = 7.5 Hz, 1H), 7.35 (dtd, J = 16.3, 7.3, 1.2 Hz, 2H), 4.22 (s, 2H), 3.74 (s, 3H), 2.00 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 204.3,150.7, 148.2, 142.5, 137.7, 136.8, 135.6, 131.0, 126.4, 123.4, 122.8, 121.9, 119.9, 110.0, 48.0, 31.6, 29.9. HRMS (EI, m/z) calcd for C₁₇H₁₅N₃O₃ [M+H]⁺: 310.1186; found: 310.1187.

1-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)-5-(trifluoromethyl)phenyl)propan-2one (3n)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 6:1, v/v) to give the product as a yellow solid (29.9 mg, 45%). mp. 111 °C (lit. 111-114 °C).¹H NMR (500 MHz, CDCl₃) δ 7.79 (dd, J = 7.0, 1.4 Hz, 1H), 7.68 (dd, J = 8.0, 1.1 Hz, 1H), 7.57 (s, 1H), 7.52 (d, J = 8.0 Hz, 1H),

7.43 – 7.40 (m, 1H), 7.37 – 7.30 (m, 2H), 4.13 (s, 2H), 3.71 (s, 3H), 1.97 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 204.8, 151.6, 142.4, 136.5, 135.5, 134.0, 131.8, 130.6, 128.3 (q, *J* = 3.7 Hz), 124.8, 123.8 (q, *J* = 3.8 Hz), 123.1, 122.5, 119.7, 109.9, 47.9, 31.0, 29.9. HRMS (EI, m/z) calcd for C₁₈H₁₅N₃OF₃ [M+H]⁺: 333.1209; found: 333.1210.

1-(5-fluoro-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (30)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a brown liquid (53.0 mg, 94%).¹H NMR (500 MHz, CDCl₃) δ 7.81 – 7.73 (m, 1H), 7.40 – 7.28 (m, 4H), 7.10 (td, *J* = 8.3, 2.6 Hz, 1H), 7.03 (dd, *J* = 9.3, 2.6 Hz, 1H), 3.99 (s, 2H), 3.67 (s, 3H), 1.96

(s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 205.0, 152.0, 142.4, 138.0, 135.5, 131.6(d, J = 8.8 Hz), 122.8, 122.3, 119.5, 118.5, 118.3, 114.1, 113.9, 109.7, 47.9, 30.9, 29.8. HRMS (EI, m/z) calcd for C₁₇H₁₅N₃OF [M+H]⁺: 283.1241; found: 283.1243.

1-(4-bromo-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3p)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 6:1, v/v) to give the product as a yellow liquid (50.6 mg, 74%).¹H NMR (500 MHz, CDCl₃) δ 7.77 (dd, J = 7.0, 1.3 Hz, 1H), 7.59 (dd, J = 8.2, 2.1 Hz, 1H), 7.55 (d, J = 2.1 Hz, 1H), 7.40 (dd, J = 7.1, 1.4 Hz, 1H), 7.35 – 7.29 (m, 2H), 7.18 (d, J = 8.2 Hz, 1H), 3.97 (s, 2H), 3.71 (s, 3H), 1.96 (s, 3H).¹³C

NMR (126 MHz, CDCl₃) δ 205.1, 151.4, 142.5, 135.5, 134.4, 132.9, 123.9, 132.8, 132.3, 123.0, 122.4, 120.6, 119.7, 109.8, 47.5, 31.0, 29.8. HRMS (EI, m/z) calcd for C₁₇H₁₅N₂OBr [M+H]⁺: 343.0441; found: 343.0442.

1-(5-iodo-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3q)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 6:1, v/v) to give the product as a yellow liquid (49.9 mg, 64%).¹H NMR (500 MHz, CDCl₃) δ 7.75 (dd, *J* = 11.1, 4.8 Hz, 2H), 7.67 (d, *J* = 1.5 Hz, 1H), 7.40 – 7.36 (m, 1H), 7.35 – 7.28 (m, 2H), 7.11 (d, *J* = 8.0 Hz, 1H), 3.98 (s, 2H),

3.68 (s, 3H), 1.95 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 205.0, 152.0, 142.5, 140.2, 137.4, 136.0, 135.5, 131.5, 129.8, 122.9, 122.3, 119.6, 109.7, 96.0, 47.5, 31.0, 29.9. HRMS (EI, m/z) calcd for C₁₇H₁₅N₂OI [M+H]⁺: 391.0302; found: 391.0305.

1-(5-chloro-3-fluoro-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3r)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 4:1, v/v) to give the product as a yellow liquid (35.4 mg, 56%).¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, *J* = 7.5 Hz, 1H), 7.41 (d, *J* = 7.5 Hz, 1H), 7.33 (dtd, *J* = 16.2, 7.2, 1.0 Hz, 2H), 7.16 (dd, *J* = 9.1, 1.9 Hz, 1H), 7.06 (s, 1H), 3.66

(d, J = 1.2 Hz, 3H), 1.86 (s, 3H), 0.07 (s, 2H).¹³C NMR (126 MHz, CDCl₃) δ 204.3, 161.4, 159.5, 146.8, 142.6, 139.2 (d, J = 3.2 Hz), 136.7, 135.4, 127.3 (d, J = 3.1 Hz), 123.1, 122.4, 119.6 (, 115.3, 115.1, 109.8, 47.4 (d, J = 2.2 Hz), 29.8, 1.0. HRMS (EI, m/z) calcd for C₁₇H₁₄ClFN₂O [M+H]⁺: 317.0851; found: 317.0855.

1-(2-(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3s)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 8:1, v/v) to give the product as a yellow solid (44.4 mg, 76%). mp. 96 °C (lit. 96-98 °C).¹H NMR (500 MHz, CDCl₃) δ 7.55 (s, 1H), 7.45 (ddd, *J* = 7.6, 6.4, 2.7 Hz, 1H), 7.41 –

7.37 (m, 2H), 7.30 (d, J = 7.6 Hz, 1H), 7.16 (s, 1H), 3.97 (s, 2H), 3.63 (s, 3H), 2.42 (s, 3H), 2.40 (s, 3H), 1.96 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 205.9, 152.1, 141.0, 135.3, 134.0, 131.8, 131.2, 131.1, 130.4, 130.2, 129.7, 126.8, 119.5, 109.9, 48.0, 30.8, 29.8, 20.5, 20.2. HRMS (EI, m/z) calcd for C₁₉H₂₀N₂O [M+H]⁺: 293.1648; found: 293.1650.

1-(2-(5,6-difluoro-1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3t)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 6:1, v/v) to give the product as a yellow solid (42.6 mg, 71%). mp. 90 °C (lit. 90-91 °C).¹H NMR (500 MHz, CDCl₃) δ

7.54 – 7.46 (m, 2H), 7.40 (dtd, J = 9.0, 7.5, 1.4 Hz, 2H), 7.32 – 7.29 (m, 1H), 7.16 (dd, J = 9.7, 6.9 Hz, 1H), 4.01 (s, 2H), 3.65 (s, 3H), 1.97 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 205.7, 154.6, 149.2 (d, J = 15.7 Hz), 148.8 (d, J = 15.0 Hz), 147.2 (d, J = 15.7 Hz), 146.9 (d, J = 15.0 Hz), 137.8 – 137.5 (m), 135.3, 131.5, 130.9 (d, J = 10.6 Hz), 130.1(d, J = 12.4 Hz), 129.8, 127.0, 106.8 (d, J = 19.5 Hz), 97.8, 97.6, 48.2, 31.3, 29.8. HRMS (EI, m/z) calcd for C₁₇H₁₄N₂OF₂ [M+H]⁺: 301.1147; found: 301.1148.

1-(2-(1-ethyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3u)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a yellow liquid (34.5 mg, 62%).¹H NMR (500 MHz, CDCl₃) δ 7.83 – 7.77 (m, 1H), 7.48 (ddd, *J* = 7.7, 5.8, 3.2 Hz, 1H), 7.45 – 7.39 (m, 3H), 7.34 – 7.29 (m, 3H), 4.10 (q, *J* = 7.3 Hz, 2H), 3.91 (s, 2H), 1.99 (s, 3H), 1.38

(t, J = 7.3 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 205.8, 152.4, 142.8, 135.2, 134.3, 131.3, 130.4, 129.9, 126.9, 122.6, 122.2, 119.8, 110.1, 47.9, 39.3, 29.9, 15.0. HRMS (EI, m/z) calcd for C₁₈H₁₈N₂O [M+H]⁺: 279.1492; found: 279.1494.

1-(5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (3v)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 3:1, v/v) to give the product as a yellow solid (52.4 mg, 95%). mp. 95 °C (lit. 95-97 °C).¹H NMR (500 MHz, CDCl₃) δ 7.75 (dd, *J* = 6.6, 1.8 Hz, 1H), 7.34 (ddd, *J* = 7.5, 4.2, 3.0 Hz, 2H), 7.30 –

7.23 (m, 3H), 7.18 (d, J = 7.5 Hz, 1H), 4.55 (s, 2H), 4.28 (t, J = 6.8 Hz, 2H), 3.25 (t, J = 6.8 Hz, 2H), 2.46 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 207.1, 148.5, 143.6, 135.7, 134.6, 133.8, 131.5, 129.4, 127.2, 125.3, 122.6, 122.0, 119.7, 108.9, 49.9, 40.0, 30.1, 29.3. HRMS (EI, m/z) calcd for C₁₈H₁₆N₂O [M+H]⁺: 277.1335; found: 277.1337.

1-(10-bromo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (3w)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 4:1, v/v) to give the product as a yellow solid (58.8 mg, 83%). mp. 96 °C (lit. 96-98 °C).¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 1.6 Hz, 1H), 7.36 – 7.32 (m, 2H), 7.24 (d, *J* = 7.0 Hz, 1H), 7.19 – 7.15 (m, 2H), 4.48 (s, 2H), 4.23 (t, *J* =

6.8 Hz, 2H), 3.23 (t, J = 6.8 Hz, 2H), 2.44 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 206.8, 149.5, 144.8, 135.6, 134.8, 132.7, 131.7, 129.8, 127.2, 125.5, 124.9, 122.4, 114.8, 110.1, 49.9, 40.2, 30.1, 29.1. HRMS (EI, m/z) calcd for C₁₈H₁₅N₂OBr [M+H]⁺: 355.0441; found: 355.0442.

1-(10-methoxy-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)butan-2-one (3x)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a yellow solid (60.8 mg, 95%). mp. 103 °C (lit. 103-104 °C).¹H NMR (500 MHz, CDCl₃) δ 7.31 (t, *J* = 7.5 Hz, 1H), 7.21 (dd, *J* = 12.1, 6.0 Hz, 3H), 7.16 (d, *J* = 7.5 Hz, 1H), 6.92 (dd, *J* = 8.7, 2.3 Hz, 1H), 4.53 (s, 2H), 4.23 (t, *J* = 6.8 Hz, 2H), 3.88 (s, 3H), 3.22 (t,

J = 6.8 Hz, 2H), 2.81 (q, J = 7.3 Hz, 2H), 1.14 (t, J = 7.3 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 209.6, 156.0, 148.8, 144.2, 135.3, 134.5, 131.5, 129.2, 128.5, 127.0, 125.4, 112.7, 109.2, 101.8, 55.8, 48.8, 40.1, 35.8, 29.3, 8.0. HRMS (EI, m/z) calcd for C₂₀H₂₀N₂O₂ [M+H]⁺: 321.1598; found: 321.1599.

1-(10-fluoro-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)butan-2-one (3y)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a yellow solid (41.3 mg, 67%). mp. 111 °C (lit. 111-113 °C).¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.30 (m, 2H), 7.24 – 7.20 (m, 2H), 7.16 (d, *J* = 7.4 Hz, 1H), 7.01 (td, *J* = 9.1, 2.4 Hz, 1H), 4.49 (s, 2H), 4.23 (t,

J = 6.8 Hz, 2H), 3.22 (t, J = 6.8 Hz, 2H), 2.81 (q, J = 7.4 Hz, 2H), 1.15 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 209.5, 160.2, 158.3, 149.9, 135.4, 134.8, 131.7, 130.3, 129.6, 127.1, 125.0, 110.9, 110.7, 109.1 (d, J = 10.3 Hz), 105.3, 105.1, 48.9 40.2, 35.8, 29.1, 8.0. HRMS (EI, m/z) calcd for C₁₉H₁₇N₂OF [M+H]⁺: 309.1398; found: 309.1399.

1-(10-chloro-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)butan-2-one (3z)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a yellow solid (42.0 mg, 65%). mp. 112 °C (lit. 112-114 °C).¹H NMR (500 MHz, CDCl₃) δ 7.74 – 7.62 (m, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.26 – 7.20 (m, 3H), 7.16 (d, *J* = 7.4 Hz, 1H), 4.47 (s, 2H), 4.24

(t, J = 6.8 Hz, 2H), 3.24 (t, J = 6.8 Hz, 2H), 2.81 (q, J = 7.4 Hz, 2H), 1.15 (t, J = 7.4 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 209.4, 149.7, 144.3, 135.6, 134.9, 132.4, 131.7, 129.8, 127.4, 127.1, 124.9, 123.0, 119.3, 109.6, 48.9, 40.2, 35.9, 29.2, 8.0. HRMS (EI, m/z) calcd for C₁₉H₁₇N₂OCl [M+H]⁺: 325.1102; found: 325.1105.

1-(8-chloro-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)butan-2-one (3aa)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a yellow liquid (60.3 mg, 93%).¹H NMR (500 MHz, CDCl₃) δ 7.59 (dd, *J* = 7.9, 1.0 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.24 – 7.20 (m, 1H), 7.19 – 7.10 (m, 3H), 4.78 (t, *J* = 6.7 Hz, 2H), 4.45 (s, 2H), 3.21 (t, *J* = 6.7 Hz, 2H), 2.81 (q,

J = 7.4 Hz, 2H), 1.15 (t, J = 7.4 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 209.3, 149.5, 145.3, 135.8, 134.9, 131.6, 129.7, 126.8, 125.8, 124.8, 123.9, 122.3, 118.3, 115.7, 48.9, 42.0, 35.7, 29.4, 7.9. HRMS (EI, m/z) calcd for C₁₉H₁₇N₂OCl[M+H]⁺: 325.1102; found: 325.1103.

1-(10-(trifluoromethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-1yl)butan-2-one (3ab)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 6:1, v/v) to give the product as a yellow solid (56.6 mg, 79%). mp. 165 °C (lit. 165-167 °C).¹H NMR (500 MHz, CDCl₃) δ 7.97 (s, 1H), 7.50 (dd, *J* = 8.4, 1.1 Hz, 1H), 7.37 (dd, *J* = 17.1, 8.1 Hz, 2H), 7.24 (d, *J* = 6.0 Hz, 1H), 7.18 (d, *J* =

7.5 Hz, 1H), 4.49 (s, 2H), 4.29 (t, J = 6.8 Hz, 2H), 3.25 (t, J = 6.7 Hz, 2H), 2.83 (q, J = 7.4 Hz, 2H), 1.16 (t, J = 7.4 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 209.4, 150.4, 142.9, 135.8, 135.7, 135.1, 131.8, 130.0, 129.5, 127.2, 126.3, 124.8, 119.5 (dd, J = 7.1, 3.6 Hz), 117.2 (q, J = 4.1 Hz), 109.2, 48.9, 40.3, 35.9, 29.1, 8.0. HRMS (EI, m/z) calcd for C₂₀H₁₇N₂OF₃ [M+H]⁺: 359.1366; found: 359.1368.

1-(2-(1-methyl-1H-imidazol-2-yl)phenyl)propan-2-one (3ac)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a yellow liquid (41.0 mg, 96%).¹H NMR (500 MHz, CDCl₃) δ 7.39 (td, J = 7.4, 1.7 Hz, 1H), 7.33 (dtd, J = 8.9, 7.5, 1.4 Hz, 2H), 7.25 (dd, J = 7.5, 0.7 Hz, 1H), 7.12 (s, 1H), 6.95 (s, 1H), 3.89 (s, 2H),

3.53 (s, 3H), 1.97 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 201.8, 146.2, 135.6, 131.1, 129.9, 129.5, 128.5, 126.9, 121.2, 47.8, 33.8, 29.5.

HRMS (EI, m/z) calcd for $C_{13}H_{14}N_2O [M+H]^+$: 215.1179; found: 215.1181.

methyl 2-(2-(1-methyl-1H-imidazol-2-yl)phenyl)acetate (4a)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 4:1, v/v) to give the product as a yellow liquid (28.1 mg, 61%).¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.38 (m, 1H), 7.35 (dd, J = 7.3, 6.1 Hz, 2H), 7.30 (dd, J = 6.7, 2.5 Hz, 1H), 7.10 (d, J = 1.1 Hz, 1H), 6.95 (d, J = 1.1 Hz, 1H), 3.79 (s, 2H), 3.55 (s, 3H), 3.52 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ

172.0, 146.6, 135.0, 130.9, 130.8, 130.3, 129.3, 128.0, 127.0, 120.9, 51.8, 38.6, 33.5. HRMS (EI, m/z) calcd for $C_{13}H_{14}N_2O_2$ [M+H]⁺: 231.1128; found: 231.1130.

ethyl 2-(2-(1-methyl-1H-imidazol-2-yl)phenyl)acetate (4b)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 4:1, v/v) to give the product as a yellow liquid (27.8 mg, 57%).¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.38 (m, 1H), 7.35 (ddd, *J* = 8.8, 5.3, 1.7 Hz, 2H), 7.31 – 7.29 (m, 1H), 7.10 (d, *J* = 1.2 Hz, 1H), 6.95 (d, *J* = 1.2 Hz, 1H), 3.99 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 2H), 3.52 (s, 3H), 1.15 (t, *J* = 7.1 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 171.5, 146.7, 135.2, 130.9, 130.3,

129.3, 128.0, 126.9, 120.8, 60.6, 38.8, 33.6, 14.1. HRMS (EI, m/z) calcd for $C_{14}H_{16}N_2O_2$ [M+H]⁺: 245.1285; found: 245.1287.

isopropyl 2-(2-(1-methyl-1H-imidazol-2-yl)phenyl)acetate (4c)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 4:1, v/v) to give the product as a yellow liquid (29.9 mg, 58%).¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.36 (m, 1H), 7.35 – 7.31 (m, 2H), 7.29 – 7.26 (m, 1H), 7.08 (d, *J* = 1.3 Hz, 1H), 6.93 (d, *J* = 1.2 Hz, 1H), 4.82 (dt, *J* = 12.5, 6.3 Hz, 1H), 3.72 (s, 2H), 3.51 (s, 3H), 1.11 (d, *J* = 6.3 Hz, 6H).¹³C NMR (126 MHz, CDCl₃) δ 171.0, 146.7, 135.3, 130.8, 130.3, 129.2,

127.9, 126.8, 126.3, 120.8, 67.9, 39.1, 33.5, 21.7. HRMS (EI, m/z) calcd for $C_{15}H_{18}N_2O_2$ [M+H]⁺: 259.1441; found: 259.1442.

tert-butyl 2-(2-(1-methyl-1H-imidazol-2-yl)phenyl)acetate (4d)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 4:1, v/v) to give the product as a yellow liquid (23.4 mg, 43%).¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.37 (m, 1H), 7.34 (dd, *J* = 8.6, 1.0 Hz, 2H), 7.28 (t, *J* = 3.9 Hz, 1H), 7.10 (d, *J* = 1.2 Hz, 1H), 6.93 (d, *J* = 1.2 Hz, 1H), 3.68 (s, 2H), 3.51 (s, 3H), 1.32 (s, 9H).¹³C NMR (126 MHz, CDCl₃) δ 170.9, 146.8, 135.6, 130.8, 130.3, 129.2, 128.0, 126.7, 120.7,

80.4, 40.0, 33.5, 27.9, 27.6. HRMS (EI, m/z) calcd for $C_{16}H_{20}N_2O_2$ [M+H]⁺: 273.1598; found: 273.1600.

Methyl2-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)acetate (4e)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a yellow solid (44.8 mg, 80%). mp. 85 °C (lit. 85-86 °C).¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, *J* = 7.0 Hz, 1H), 7.50 – 7.45 (m, 1H), 7.44 – 7.38 (m, 4H), 7.35 – 7.29 (m, 2H), 3.86 (s, 2H), 3.67 (s, 3H), 3.44 (s, 3H).¹³C NMR

(126 MHz, CDCl₃) δ 171.7, 152.8, 142.7, 135.5, 134.7, 130.9, 130.4, 130.2, 129.9, 127.0, 122.6, 122.1, 119.7, 109.6, 51.7, 38.4, 30.8. HRMS (EI, m/z) calcd for $C_{17}H_{16}N_2O_2$ [M+H]⁺: 281.1285; found: 281.1286.

methyl 2-(5-methyl-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)acetate (4f)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a yellow liquid (48.2 mg, 82%).¹H NMR (500 MHz, CDCl₃) δ 7.81 – 7.77 (m, 1H), 7.41 – 7.37 (m, 1H), 7.34 – 7.27 (m, 3H), 7.24 – 7.20 (m, 2H), 3.82 (s, 2H), 3.66 (s, 3H), 3.44 (s, 3H), 2.42 (s,

3H).¹³C NMR (126 MHz, CDCl₃) δ 171.8, 152.9, 142.7, 139.9, 135.5, 134.5, 131.6, 130.1, 127.8, 127.4, 122.5, 122.1, 119.6, 109.5, 51.7, 38.4, 30.8, 21.3. HRMS (EI, m/z) calcd for C₁₈H₁₈N₂O₂ [M+H]⁺: 295.1441; found: 295.1442.

methyl 2-(5-ethyl-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)acetate (4g)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 4:1, v/v) to give the product as a yellow solid (47.4 mg, 77%). mp. 85 °C (lit. 85-87 °C).¹H NMR (500 MHz, CDCl₃) δ 7.82 – 7.77 (m, 1H), 7.41 – 7.38 (m, 1H), 7.34 – 7.29 (m, 3H), 7.24 (d, *J* = 6.2 Hz, 2H), 3.84 (s, 2H), 3.68 (s, 3H),

3.45 (s, 3H), 2.73 (q, J = 7.6 Hz, 2H), 1.28 (d, J = 7.6 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 171.9, 153.1, 146.1, 142.8, 135.6, 134.6, 130.5, 130.2, 127.7, 126.6, 122.5, 122.1, 119.7, 109.5, 51.7, 38.5, 30.9 28.6, 15.2. HRMS (EI, m/z) calcd for C₁₉H₂₀N₂O₂ [M+H]⁺: 309.1598; found: 309.1599.

Methyl 2-(5-isopropyl-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)acetate(4h)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 4:1, v/v) to give the product as a yellow solid (39.3 mg, 61%). mp. 103 °C (lit. 103-104 °C).¹H NMR (500 MHz, CDCl₃) δ 7.81 – 7.77 (m, 1H), 7.41 – 7.38 (m, 1H), 7.32 (qd, *J* = 6.8, 1.5 Hz, 3H), 7.28 (dd, *J* = 4.5, 1.5 Hz,

2H), 3.85 (s, 2H), 3.69 (s, 3H), 3.44 (s, 3H), 2.97 (dt, J = 13.8, 6.9 Hz, 1H), 1.30 (d, J = 6.9 Hz, 6H).¹³C NMR (126 MHz, CDCl₃) δ 171.9, 153.1, 150.7, 142.8, 135.5, 134.5, 130.2, 129.2, 127.8, 125.1, 122.4, 122.0, 119.7, 109.5, 51.7, 38.6, 33.9, 30.9, 23.8. HRMS (EI, m/z) calcd for C₂₀H₂₂N₂O₂ [M+H]⁺: 323.1754; found: 323.11756.

methyl 2-(5-fluoro-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)acetate (4i)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 4:1, v/v) to give the product as a yellow solid (41.1 mg, 69%). mp. 109 °C (lit. 109-110 °C).¹H NMR (500 MHz, CDCl₃) δ 7.79 (dd, J = 6.8, 1.6 Hz, 1H), 7.39 (td, J = 8.2, 3.5 Hz, 2H), 7.35 – 7.30 (m, 2H), 7.18 – 7.10 (m, 2H),

3.83 (s, 2H), 3.66 (s, 3H), 3.47 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 171.1, 164.2, 162.2, 151.8, 142.6, 137.49 (d, *J* = 8.3 Hz), 135.5, 132.1 (d, *J* = 8.8 Hz), 122.8, 122.3, 119.8, 118.1, 118.0, 114.4, 114.2, 109.6, 51.9, 38.4, 30.8. HRMS (EI, m/z) calcd for C₁₇H₁₅N₂O₂F [M+H]⁺: 299.1190; found: 299.1192.

methyl 2-(5-iodo-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)acetate (4j)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc =3:1, v/v) to give the product as a yellow solid (37.4 mg, 46%). mp. 110 °C (lit. 110-112 °C).¹H NMR (500 MHz, CDCl₃) δ 7.77 (ddd, J = 9.7, 7.3, 1.5 Hz, 3H), 7.41 – 7.38 (m, 1H), 7.33 (ddd, J = 8.8, 7.0, 1.3 Hz, 2H), 7.12 (d, J = 8.0 Hz, 1H), 3.82 (s, 2H), 3.67 (s, 3H), 3.44 (s, 3H).¹³C NMR (126

MHz, CDCl₃) δ 171.1, 151.8, 142.7, 139.9, 136.9, 136.2, 135.5, 131.6, 130.1, 122.9, 122.3, 119.8, 109.6, 96.1, 51.9, 38.0, 30.9. HRMS (EI, m/z) calcd for C₁₇H₁₅N₂O₂ I [M+H]⁺: 407.0251; found: 407.0252.

ethyl 2-(5-iodo-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)acetate (4k)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a white solid (51.2 mg, 61%).

mp. 115 °C (lit. 115-117 °C).¹H NMR (500 MHz, CDCl₃) δ 7.80 – 7.75 (m, 3H), 7.40 (dd, J = 7.0, 1.5 Hz, 1H), 7.32 (tt, J = 8.5, 3.6 Hz, 2H), 7.13 (d, J = 8.0 Hz, 1H), 3.87 (q, J = 7.1 Hz, 2H), 3.81 (s, 2H), 3.67 (s, 3H), 0.98 (t, J = 7.1 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 170.7, 151.8, 142.7, 140.0, 137.1, 136.2, 135.5, 131.6, 130.1, 122.9, 122.3, 119.8, 109.6, 96.1, 60.8, 38.4, 30.9, 13.8. HRMS (EI, m/z) calcd for C₁₈H₁₇N₂O₂I [M+H]⁺: 421.0407; found: 421.0409.

ethyl 2-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)thiophen-3-yl)acetate (41)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a yellow liquid (41.1 mg, 75%).¹H NMR (500 MHz, CDCl₃) δ 7.83 – 7.78 (m, 1H), 7.49 (d, *J* = 5.2 Hz, 1H), 7.41 – 7.36 (m, 1H), 7.32 (tt, *J* = 8.5, 3.6 Hz, 2H), 7.18 (d, *J* = 5.2 Hz, 1H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.84 (s, 2H), 3.80 (s, 3H), 1.17 (t, *J* = 7.1 Hz, 3H).¹³C NMR (126

MHz, CDCl₃) δ 170.8, 147.0, 142.9, 136.4, 135.9, 129.7, 127.3, 126.8, 123.0, 122.5, 119.9, 109.6, 60.9, 34.6, 31.2, 14.0. HRMS (EI, m/z) calcd for C₁₇H₁₆N₂O [M+H]⁺: 301.1005; found: 301.1008.

tert-butyl 2-(2-(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)phenyl)acetate (4m)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 4:1, v/v) to give the product as a brown liquid (43.4 mg, 62%).¹H NMR (500 MHz, CDCl₃) δ 7.55 (s, 1H), 7.45 (ddd, *J* = 7.9, 6.0, 2.7 Hz, 1H), 7.41 – 7.36 (m, 3H), 7.15 (s, 1H), 3.69 (s, 2H), 3.60 (s, 3H), 2.42 (s, 3H), 2.40 (s, 3H), 1.21 (s, 9H).¹³C NMR (126 MHz, CDCl₃) δ 170.7, 152.0,

141.4, 135.4, 134.2, 131.7, 130.8, 130.6, 130.2, 129.7, 126.8, 119.7, 109.7, 80.6, 39.9, 30.8, 27.8, 27.8, 20.6, 20.3. HRMS (EI, m/z) calcd for $C_{22}H_{26}N_2O_2$ [M+H]⁺: 351.2067; found: 351.2069.

tert-butyl 2-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)furan-3-yl)acetate (4n)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 4:1, v/v) to give the product as a brown liquid (44.9 mg, 72%).¹H NMR (500 MHz, CDCl₃) δ 7.76 (dd, J = 6.8, 1.7 Hz, 1H), 7.55 (d, J = 1.8 Hz, 1H), 7.37 (dd, J = 6.9, 1.8 Hz, 1H), 7.32 – 7.27 (m, 2H), 6.66 (d, J = 1.8 Hz, 1H), 4.04 (s, 2H), 4.00 (s, 3H), 1.45 (s, 9H).¹³C NMR (126 MHz, CDCl₃) δ 170.5,

144.5, 143.1, 142.7, 142.1, 135.7, 122.8, 122.3, 121.8, 119.7, 114.1, 109.3, 80.8, 32.6,

31.5, 28.1. HRMS (EI, m/z) calcd for $C_{17}H_{16}N_2O$ [M+H]⁺: 313.1547; found: 313.1548.

tert-butyl 2-(2-(1-ethyl-1H-benzo[d]imidazol-2-yl)phenyl)acetate(4o)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 5:1, v/v) to give the product as a yellow solid (43.0 mg, 64%). mp. 100 °C (lit. 100-102 °C).¹H NMR (500 MHz, CDCl₃) δ 7.84 – 7.77 (m, 1H), 7.50 – 7.46 (m, 1H), 7.44 – 7.37 (m, 4H), 7.34 – 7.28 (m, 2H), 4.09 (q, *J* = 7.3 Hz, 2H), 3.68 (s, 2H), 1.38 (t, *J* = 7.3 Hz, 3H), 1.22 (s, 9H).¹³C NMR (126 MHz, CDCl₃) δ 170.6, 152.4, 143.1, 135.3, 134.4, 130.9, 130.6,

129.9, 129.8, 126.8, 122.5, 122.0, 119.9, 109.9, 80.6, 39.9, 39.3, 27.7, 15.0. HRMS (EI, m/z) calcd for $C_{21}H_{24}N_2O_2$ [M+H]⁺: 337.1911; found: 337.1914.

1-(6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6a)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 8:1, v/v) to give the product as a yellow solid (54.7 mg, 95%).mp. 168 °C (lit. 168-170 °C).¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 8.4 Hz, 1H), 7.93 (d, *J* = 8.1 Hz, 1H), 7.58 – 7.53 (m, 2H), 7.46 (t, *J* = 7.5 Hz, 1H), 7.36 – 7.30 (m, 2H), 6.72 (s, 1H),

4.76 (s, 2H), 2.94 (d, J = 0.5 Hz, 3H), 2.59 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 207.1, 147.8, 143.9, 134.6, 134.4, 133.0, 130.7, 130.3, 129.1, 125.1, 123.7, 121.6, 120.9, 119.9, 113.8, 111.3, 51.1, 30.2, 21.1.HRMS (EI, m/z) calcd for C₁₉H₁₆N₂O [M+H]⁺: 289.1335; found: 289.1336.

1-(3-methoxy-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6b)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 8:1, v/v) to give the product as a yellow solid (46.4 mg, 73%). mp. 205 °C (lit. 205-206 °C). 1H NMR (500 MHz, CDCl3) δ 7.95 (d, J = 8.0 Hz, 1H), 7.60 – 7.55 (m, 2H), 7.35 (dd, J = 6.4, 1.7 Hz, 1H), 7.29 – 7.24 (m, 3H), 6.79

(s, 1H), 4.86 (s, 2H), 3.01 (s, 3H), 2.81 (s, 3H), 2.51 (s, 3H).13C NMR (126 MHz, CDCl3) δ 156.7, 147.0, 134.7, 134.2, 133.1, 130.7, 130.0, 129.7, 129.1, 125.2, 124.2, 121.7, 111.6, 111.4, 51.2, 30.3, 21.3, 17.8. HRMS (EI, m/z) calcd for C₂₀H₁₈N₂O₂ [M+H]⁺: 319.1441; found: 319.1443.

1-(3-(benzyloxy)-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 8:1, v/v) to give the product as a yellow solid (71.0 mg, 90%). mp. 151 °C (lit. 151-153 °C).¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, *J* = 8.3 Hz, 1H), 7.88 (d, *J* =

7.3 Hz, 1H), 7.42 (ddd, J = 28.3, 18.5, 7.2 Hz, 6H), 7.27 (t, J = 7.3 Hz, 1H), 7.04 (s, 1H), 6.96 (d, J = 1.6 Hz, 1H), 6.58 (s, 1H), 5.12 (s, 2H), 4.70 (s, 2H), 2.85 (s, 3H), 2.59 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 206.8, 159.0, 148.0, 144.0, 136.4, 135.0, 134.9, 130.3, 128.6, 128.1, 127.5, 123.6, 121.1, 120.5, 119.4, 115.0, 113.7, 111.1, 107.3, 70.0, 51.1, 30.2, 21.0. HRMS (EI, m/z) calcd for C₂₆H₂₂N₂O₂ [M+H]⁺: 395.1754; found: 395.1756.

1-(6-methylbenzo[4,5]imidazo[2,1-a][2,6]naphthyridin-1-yl)propan-2-one (6d)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 1:2, v/v) to give the product as a yellow solid (43.9 mg, 76%). mp. 210 °C (lit. 210-211 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.94 (s, 1H), 8.49 (s, 1H), 8.10 (d, *J* = 8.5 Hz, 1H), 7.97 (d, *J* = 8.2 Hz, 1H), 7.53 – 7.49 (m, 1H), 7.40 (ddd, *J* = 8.3, 7.2, 1.1 Hz, 1H),

6.82 (s, 1H), 4.67 (s, 2H), 3.02 (s, 3H), 2.60 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 205.9, 148.6, 147.8, 145.7, 144.0, 136.8, 130.4, 127.0, 125.8, 124.5, 122.9, 120.6, 114.1, 47.4, 30.3, 21.4. HRMS (EI, m/z) calcd for C₁₇H₁₆N₂O [M+H]⁺: 290.1288; found: 290.1290.

1-(3-(dimethylamino)-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6e)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 3:1, v/v) to give the product as a yellow solid (49.7 mg, 75%). mp. 193 °C (lit. 193-194 °C).¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.3 Hz, 1H), 7.84 (s, 1H), 7.40 (t, *J* = 7.3 Hz, 1H), 7.23 (d, *J* = 7.5 Hz, 1H), 6.77 (d, *J* =

1.8 Hz, 1H), 6.63 (d, J = 21.6 Hz, 2H), 4.72 (s, 2H), 3.07 (s, 6H), 2.91 (s, 3H), 2.55 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 207.5, 150.4, 148.7, 135.5, 134.9, 134.5, 130.5, 123.3, 120.5, 119.0, 116.8, 113.4, 111.4, 105.2, 51.4, 40.1, 30.1, 21.1. HRMS (EI, m/z) calcd for C₂₁H₂₁N₃O [M+H]⁺: 332.11757; found: 332.1758.

1-(3,6-dimethylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6f)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 6:1, v/v) to give the product as a yellow solid (58.0 mg, 96%). mp. 154 °C (lit. 154-155 °C).¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 8.4 Hz, 1H), 7.90 (d, *J* = 7.8 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.33 - 7.27 (m, 2H), 7.17 (s, 1H), 6.63 (s,

1H), 4.71 (s, 2H), 2.91 (s, 3H), 2.59 (s, 3H), 2.49 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 207.2, 148.0, 144.0, 139.2, 134.5, 134.2, 133.2, 132.3, 130.4, 125.0, 123.6, 121.3, 119.6, 118.6, 113.7, 111.1, 51.0, 30.2, 21.5, 21.1. HRMS (EI, m/z) calcd for C₂₀H₁₈N₂O [M+H]⁺: 303.1492; found: 303.1493.

1-(3-ethyl-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6g)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 10:1, v/v) to give the product as a white solid (51.8 mg, 82%). mp. 128 °C (lit. 128-129 °C).¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 8.4 Hz, 1H), 7.91 (d, *J* = 8.1 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.34 (s, 1H), 7.29 (t, *J* = 7.7 Hz, 1H),

7.20 (s, 1H), 6.65 (s, 1H), 4.73 (s, 2H), 2.90 (s, 3H), 2.81 (q, J = 7.6 Hz, 2H), 1.36 (t, J = 7.6 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 207.2, 148.0, 145.3, 143.9, 134.4, 134.2, 133.3, 131.2, 130.3, 123.7, 123.6, 121.3, 119.6, 118.8, 113.7, 111.2, 51.1, 30.2, 28.7, 21.2, 15.0. HRMS (EI, m/z) calcd for C₂₁H₂₀N₂O [M+H]⁺: 317.1648; found: 317.1647.

1-(3-isopropyl-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6h)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 8:1, v/v) to give the product as a white solid (57.4 mg, 87%). mp. 114 °C (lit. 114-116 °C).¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 8.3 Hz, 1H), 7.91 (d, *J* = 7.1 Hz, 1H), 7.44 (dd, *J* = 17.4, 9.9 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.24

(s, 1H), 6.71 (s, 1H), 4.74 (s, 2H), 3.07 (dt, J = 13.5, 6.7 Hz, 1H), 2.94 (s, 3H), 2.58 (s, 3H), 1.37 (d, J = 6.8 Hz, 6H).¹³C NMR (126 MHz, CDCl₃) δ 207.2, 149.9, 148.0, 144.0, 134.4, 134.3, 133.3, 130.3, 130.0, 123.6, 122.3, 121.3, 119.7, 119.0, 113.7, 111.4, 51.2, 34.0, 30.1, 23.8, 21.1. HRMS (EI, m/z) calcd for C₂₂H₂₂N₂O [M+H]⁺: 331.1805; found: 331.1807.

1-(3-(tert-butyl)-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 6:1, v/v) to give the product as a yellow solid (64.7 mg, 94%). mp. 147 °C (lit. 147-149 °C).¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.56 (d, *J* = 1.1 Hz, 1H), 7.44 (dd, *J* = 19.7, 12.1 Hz, 2H),

7.31 (t, J = 7.7 Hz, 1H), 6.76 (s, 1H), 4.77 (s, 2H), 2.98 (s, 3H), 2.57 (s, 3H), 1.44 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 207.1, 152.2, 148.0, 144.0, 134.4, 134.0, 133.0, 130.4, 128.8, 123.6, 121.4, 121.3, 119.8, 118.7, 113.8, 111.7, 51.4, 34.9, 31.2, 30.1, 21.2. HRMS (EI, m/z) calcd for C₂₃H₂₄N₂O [M+H]⁺: 345.1961; found: 345.1963.

1-(3-fluoro-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6j)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 6:1, v/v) to give the product as a white solid (47.7 mg, 78%). mp. 163 °C (lit. 163-165 °C).¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.4 Hz, 1H), 7.90 (d, *J* = 7.2 Hz, 1H), 7.46 (t, *J* = 7.4 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.17 (dd, *J* = 8.8,

2.2 Hz, 1H), 7.08 (d, J = 8.7 Hz, 1H), 6.63 (s, 1H), 4.71 (s, 2H), 2.90 (s, 3H), 2.59 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 206.2, 143.8, 137.8 (d, J = 9.0 Hz), 135.8, 134.8, 130.2, 124.0, 121.7, 119.8, 119.1, 118.9, 117.5, 113.8, 110.6, 110.0, 109.8, 51.0, 30.2, 21.1. HRMS (EI, m/z) calcd for C₁₉H₁₅N₂OF [M+H]⁺: 307.1241; found: 307.1242.

1-(3-chloro-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6k)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 6:1, v/v) to give the product as a yellow solid (57.3 mg, 89%). mp. 182 °C (lit. 182-183 °C).¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, *J* = 8.4 Hz, 1H), 7.90 (d, *J* = 6.2 Hz, 1H), 7.46 (dd, *J* = 14.1, 4.7 Hz, 2H), 7.31 (dd, *J* = 15.3, 7.5 Hz, 2H),

6.58 (s, 1H), 4.67 (s, 2H), 2.88 (s, 3H), 2.58 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 206.2, 147.1, 143.8, 136.4, 135.8, 134.7, 134.0, 130.7, 130.2, 124.2, 124.2, 124.0, 121.9, 119.8, 119.2, 113.8, 110.2, 50.8, 30.1, 21.1. HRMS (EI, m/z) calcd for C₁₉H₁₅N₂OC1[M+H]⁺: 323.0946; found: 323.0948.

1-(3-bromo-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6l)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 6:1, v/v) to give the product as a yellow solid (70.3 mg, 96%).mp. 183 °C (lit. 183-184 °C).¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 8.4 Hz, 1H), 7.91 (d, *J* = 5.9 Hz, 1H), 7.69 (s, 1H), 7.51 – 7.42 (m, 2H), 7.34 (t, *J* = 7.6 Hz, 1H),

6.63 (s, 1H), 4.68 (s, 2H), 2.95 (s, 3H), 2.58 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 206.2, 147.2, 143.8, 136.4, 135.9, 134.3, 133.4, 130.2, 127.4, 124.1, 122.0, 119.9, 113.9, 110.2, 50.8, 30.1, 21.2. HRMS (EI, m/z) calcd for C₁₉H₁₅N₂OBr [M+H]⁺: 367.0441; found: 367.0442.

1-(3-iodo-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6m)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 6:1, v/v) to give the product as a white solid (79.5 mg, 96%).mp. 195 °C (lit. 195-196 °C).¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 8.4 Hz, 1H), 7.90 (d, *J* = 8.7 Hz, 2H), 7.62 (s, 1H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.32 (t, *J* = 7.7 Hz,

1H), 6.56 (s, 1H), 4.64 (s, 2H), 2.90 (s, 3H), 2.58 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 206.2, 147.3, 143.9, 138.9, 136.2, 135.7, 134.3, 133.7, 130.3, 124.1, 122.0, 120.2, 120.0, 113.9, 109.9, 95.6, 50.6, 30.2, 21.2. HRMS (EI, m/z) calcd for C₁₉H₁₅N₂OI [M+H]⁺: 415.0302; found: 415.0305.

6-methyl-1-(2-oxopropyl)benzo[4,5]imidazo[2,1-a]isoquinoline-3-carbonitrile (6n)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 1:1, v/v) to give the product as a yellow solid (58.2 mg, 93%). mp. 255 °C (lit. 255-256 °C). ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 8.4 Hz, 1H), 7.95 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 1.2 Hz, 1H), 7.52 (t, *J* = 7.4 Hz, 2H),

7.41 (dd, J = 11.5, 4.1 Hz, 1H), 6.75 (s, 1H), 4.76 (s, 2H), 3.00 (s, 3H), 2.62 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 205.7, 146.3, 143.9, 136.7, 135.9, 132.7, 132.0, 130.2, 129.4, 124.6, 123.6, 122.9, 120.4, 118.4, 114.0, 112.3, 110.1, 50.9, 30.2, 21.2. HRMS (EI, m/z) calcd for C₁₇H₁₆N₂O [M+H]⁺: 314.1288; found: 314.1290.

1-(6-methyl-3-phenylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (60)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 10:1, v/v) to give the product as a white solid (64.1 mg, 88%). mp. 199 °C (lit. 199-200 °C).¹H NMR

(500 MHz, CDCl₃) δ 8.08 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.77 (s, 1H), 7.72 (d, J = 7.4 Hz, 2H), 7.59 (s, 1H), 7.51 – 7.45 (m, 3H), 7.41 (t, J = 7.3 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 6.81 (s, 1H), 4.82 (s, 2H), 3.00 (s, 3H), 2.61 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 207.0, 147.8, 144.1, 141.7, 140.1, 135.0, 134.9, 133.5, 130.5, 129.9, 128.9, 127.8, 127.4, 123.8, 123.3, 121.7, 119.9, 113.8, 111.5, 51.3, 30.2, 21.3. HRMS (EI, m/z) calcd for C₂₅H₂₀N₂O [M+H]⁺: 365.1648; found: 365.1650.

1-(6-methyl-3-(trifluoromethyl)benzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6p)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 2:1, v/v) to give the product as a yellow solid (48.4 mg, 68%). mp. 155 °C (lit. 155-157 °C).¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 8.4 Hz, 1H), 7.93 (d, *J* = 8.1 Hz, 1H), 7.79 (s, 1H), 7.53 (s, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.34 (t, *J* =

7.7 Hz, 1H), 6.72 (s, 1H), 4.75 (s, 2H), 2.91 (s, 3H), 2.61 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 206.0, 146.7, 143.8, 136.1, 135.6, 132.7, 130.6, 130.2 (d, *J* = 16.7 Hz), 126.4 (d, *J* = 3.0 Hz), 125.0, 124.2, 123.0, 122.4, 122.2 (dd, *J* = 8.0, 4.0 Hz), 120.2, 114.0, 110.8, 51.1, 30.2, 21.1. HRMS (EI, m/z) calcd for C₂₀H₁₅N₂OF₃ [M+H]⁺: 357.1209; found: 357.1210.

1-(6,11-dimethylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6q)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 8:1, v/v) to give the product as a white solid (38.7 mg, 64%). mp. 112 °C (lit. 112-114 °C).¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 8.2 Hz, 1H), 7.55 (d, *J* = 4.6 Hz, 2H), 7.33 (t, *J* = 4.2 Hz, 1H), 7.27 (d, *J* = 7.1 Hz, 1H), 7.25 – 7.20 (m, 1H), 6.71 (s,

1H), 4.82 (s, 2H), 2.93 (s, 3H), 2.81 (s, 3H), 2.51 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 206.7, 147.0, 143.2, 134.6, 134.1, 132.9, 130.6, 129.9, 129.6, 128.9, 125.1, 123.9, 121.5, 121.1, 111.3, 51.1, 30.2, 21.1, 17.6. HRMS (EI, m/z) calcd for C₂₀H₁₈N₂O [M+H]⁺: 303.1492; found: 303.1493.

1-(6,9,10-trimethylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6r)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 2:1, v/v) to give the product as a white solid (60.7 mg, 96%). mp. 162 °C (lit. 162-163 °C).¹H NMR (500 MHz, CDCl₃) δ 7.72 (s, 1H), 7.66 (s, 1H), 7.54 – 7.48 (m, 2H), 7.32 (dd, *J* = 6.3, 1.9 Hz, 1H), 6.62 (s, 1H), 4.74 (s, 2H), 2.86 (d, *J* =

0.4 Hz, 3H), 2.58 (s, 3H), 2.42 (s, 3H), 2.39 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ

207.2, 147.2, 142.6, 134.6, 134.1, 132.8, 130.7, 130.5, 128.8, 128.6, 125.0, 120.9, 119.6, 113.8, 110.7, 51.1, 30.2, 21.0, 20.8, 20.3. HRMS (EI, m/z) calcd for $C_{21}H_{20}N_2O [M+H]^+$: 317.1648; found: 317.1649.

1-(9,10-difluoro-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6s)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 8:1, v/v) to give the product as a yellow solid (54.4 mg, 84%). mp. 181 °C (lit. 181-182 °C).¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, *J* = 10.9, 7.1 Hz, 1H), 7.64 – 7.55 (m, 3H), 7.35 (d, *J* =

6.3 Hz, 1H), 6.75 (s, 1H), 4.70 (s, 2H), 2.88 (s, 3H), 2.54 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 206.8, 134.3, 133.7, 132.8, 131.0, 129.5, 125.3, 125.3, 125.1, 125.1, 112.0, 106.5, 106.3, 102.3 – 102.1 (m), 102.1, 101.9, 51.0, 30.1, 20.7. HRMS (EI, m/z) calcd for C₁₉H₁₄N₂OF₂ [M+H]⁺: 325.1147; found: 325.1147.

1-(9,10-dichloro-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6t)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 8:1, v/v) to give the product as a yellow solid (69.8 mg, 98%). mp. 184 °C (lit. 184-185 °C).¹H NMR (500 MHz, CDCl₃) δ 8.05 (s, 1H), 7.92 (s, 1H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.35 (d, *J* = 7.0 Hz, 1H), 6.72 (s, 1H),

4.66 (s, 2H), 2.83 (s, 3H), 2.54 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 206.6, 149.3, 143.1, 134.6, 133.9, 133.1, 131.2, 129.8, 129.1, 127.9, 125.3, 125.1, 120.5, 120.5, 114.9, 112.2, 51.1, 30.1, 20.8. HRMS (EI, m/z) calcd for C₁₉H₁₄N₂OCl₂ [M+H]⁺: 357.0556; found: 357.0557.

1-(6-ethylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)butan-2-one (6u)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 6:1, v/v) to give the product as a white solid (50.6 mg, 80%). mp. 91 °C (lit. 91-92 °C).¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 8.4 Hz, 1H), 7.91 (d, *J* = 8.1 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.34 (ddd, *J* = 9.4, 6.9, 1.7 Hz, 2H), 6.78 (s, 1H), 4.74 (s, 2H), 3.34 (q, *J* = 7.3 Hz, 2H), 2.99 (q, *J* = 7.3 Hz, 2H), 1.52 (t, *J* = 7.3 Hz, 3H),

1.20 (t, J = 7.4 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 209.6, 148.0, 144.0, 140.1, 134.6, 133.0, 130.9, 129.8, 129.1, 125.3, 123.7, 121.7, 121.0, 119.8, 114.3, 109.1, 50.2, 35.9, 26.4, 12.0, 8.1. HRMS (EI, m/z) calcd for C₂₁H₂₀N₂O [M+H]⁺: 317.1648; found: 317.1649.

1-(5-methylimidazo[2,1-a]isoquinolin-10-yl)propan-2-one (6v)

The reaction was performed by following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 2:1, v/v) to give the product as a yellow solid (27.6 mg, 58%). mp. 125 °C (lit. 125-127 °C).¹H NMR (500 MHz, DMSO) δ 7.89 (d, J = 1.2 Hz, 1H), 7.70 (d, J = 7.4 Hz, 1H), 7.60 (d, J = 1.1 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.36 (d, J = 7.1 Hz, 1H), 7.13 (s, 1H), 4.65 (s, 2H), 2.62 (s, 3H), 2.31 (s, 3H).¹³C

NMR (126 MHz, DMSO) δ 205.9, 142.3, 132.4, 132.3, 130.9, 130.6, 127.3, 125.4, 120.9, 112.4, 111.5, 49.9, 30.0, 18.2. HRMS (EI, m/z) calcd for C₁₅H₁₄N₂O [M+H]⁺: 239.1179; found: 239.1180.

8. NMR spectroscopic data

1-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3a)

1-(2-(1-methyl-1H-benzo[d]imidazol-2-yl) phenyl)-4-phenylbutan-2-one (3b)

2-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)-1-phenylethan-1-one (3c)

-3.60

1-(2-(1-methyl-1H-benzo[d]imidazol-2-yl) phenyl) butan-2-one (3d)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

1-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)thiophen-3-yl)propan-2-one (3e)

1-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)furan-3-yl)propan-2-one (3f)

1-(5-methyl-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3g)

1-(5-ethyl-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3h)

1-(5-isopropyl-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3i)

1-(5-(tert-butyl)-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3j)

1-(4-(1-methyl-1H-benzo[d]imidazol-2-yl)-[1,1'-biphenyl]-3-yl)propan-2-one (3k)

1-(4-methyl-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl) propan-2-one (3l)

1-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)-5-nitrophenyl)propan-2-one (3m)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

1-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)-5-(trifluoromethyl)phenyl)propan-2one (3n)

1-(5-fluoro-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (30)

1-(4-bromo-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3p)

-397

-196

1-(5-iodo-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3q)

1-(5-chloro-3-fluoro-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3r)

1-(2-(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3s)

1-(2-(5,6-difluoro-1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3t)

-4.01

-1.97

-205.66 -205.66 -205.66 -149.09 -148.57 -148.57 -146.35 -147.28 -147.28 -146.35 -147.28 -147.28 -146.35 -146.35 -146.35 -146.35 -146.35 -146.35 -147.28 -147.2

1-(2-(1-ethyl-1H-benzo[d]imidazol-2-yl)phenyl)propan-2-one (3u)

1-(5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (3v)

1-(10-bromo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (3w)

1-(10-methoxy-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)butan-2-one (3x)

1-(10-fluoro-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)butan-2-one (3y)

1-(10-chloro-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)butan-2-one (3z)

1-(8-chloro-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)butan-2-one (3aa)

1-(10-(trifluoromethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)butan-2-one (3ab)

1-(2-(1-methyl-1H-imidazol-2-yl)phenyl)propan-2-one (3ac)

ethyl 2-(2-(1-methyl-1H-imidazol-2-yl)phenyl)acetate (4b)

isopropyl 2-(2-(1-methyl-1H-imidazol-2-yl)phenyl)acetate (4c)

tert-butyl 2-(2-(1-methyl-1H-imidazol-2-yl)phenyl)acetate (4d)

Methyl2-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)acetate (4e)

Methyl2-(5-methyl-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)acetate (4f)

methyl 2-(5-ethyl-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)acetate (4g)

Methyl2-(5-isopropyl-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)acetate(4h)

methyl2-(5-fluoro-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)acetate (4i)

methyl 2-(5-iodo-2-(1-methyl-1H-benzo[d]imidazol-2-yl)phenyl)acetate (4j)

3.82 3.44

ethyl 2-(2-(1-methyl-1H-benzo[d]imidazol-2-yl)thiophen-3-yl)acetate (4l)
tert-butyl 2-(2-(1,5,6-trimethyl-1H-benzo[d]imidazol-2-yl)phenyl)acetate (4m)

1-(6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6a)

1-(3-methoxy-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6b)

1-(3-(benzyloxy)-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6c)

1-(6-methylbenzo[4,5]imidazo[2,1-a][2,6]naphthyridin-1-yl)propan-2-one (6d)

1-(3-(dimethylamino)-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6e)

1-(3,6-dimethylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6f)

1-(3-ethyl-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6g)

82

1-(3-isopropyl-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6h)

1-(3-(tert-butyl)-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6i)

1-(3-fluoro-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6j)

1-(3-chloro-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6k)

86

1-(3-bromo-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6l)

1-(3-iodo-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6m)

1-(6-methyl-3-phenylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (60)

1-(6-methyl-3-(trifluoromethyl)benzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6p)

1-(6,11-dimethylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6q)

1-(6,9,10-trimethylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6r)

1-(9,10-difluoro-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6s)

1-(9,10-dichloro-6-methylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)propan-2-one (6t)

1-(6-ethylbenzo[4,5]imidazo[2,1-a]isoquinolin-1-yl)butan-2-one (6u)

1-(5-methylimidazo[2,1-a]isoquinolin-10-yl)propan-2-one (6v)

77 88 77 78 77 75 75

-31.60

