The mechanism of Excited-State Multiple Protons Transfer Reaction for 3-Me-2,6-diazaindole in Aqueous Solution

Jin-Dou Huang^{2, 3}, and Huipeng Ma^{1*}

¹ College of Medical Laboratory Science, Dalian Medical University, Dalian 116044, P. R .China

² Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials and Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, P. R. China

³ State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China

Table S1. The theoretical emission bands (nm) of (2,6-aza)Ind, $(2,6-aza)Ind +H_2O$, $(2,6-aza)Ind +2H_2O$, and $(2,6-aza)Ind +3H_2O$ and their photo-tautomers predicted at different functionals (B3LYP, M06-2x, and PBE0) and experimental data of (2,6-aza)Ind monitored in aqueous solution (reference 14).

Complexes	B3LYP	M06-2x	PBE0	experimental
(2,6-aza)Ind	358	432	339	
(2,6-aza)Ind +H ₂ O	331	443	323	340
(2,6-aza)Ind +2H ₂ O	341	309	328	
(2,6-aza)Ind +3H ₂ O	333	307	324	
T-(2,6-aza)Ind	584	546	490	480
T-(2,6-aza)Ind +H ₂ O	465	415	445	
T-(2,6-aza)Ind +2H ₂ O	452	406	434	
T-(2,6-aza)Ind +3H ₂ O	445	401	429	

Computational Method

All electronic structure calculations were carried out with the Gaussian 09 program suite.¹ Geometry optimizations of the S_0 state and the S_1 state of (2,6-aza)Ind, (2,6-aza)Ind + 2H₂O, (2,6-aza)Ind + 3H₂O were implemented using DFT method and TDDFT method. For the accuracy of the theoretical method, we test the functionals B3LYP, PBE0 and M06-2X for the TDDFT computations, which is achieved by means of the absorption and fluorescence spectra of (2,6-aza)Ind + nH₂O that can be compared with the data reported earlier. The self-consistent field (SCF) convergence thresholds of the energy for both the ground state and excited state optimization were used the default setting (10⁻⁶). The excited state Hessian was obtained by numerical differentiation of analytical gradients using central differences and default displacements of 0.02 Bohr. The infrared intensities were determined from the gradients of the dipole moment.² The geometry optimizations were performed without constraints on bond lengths, angles, or dihedral angles except constructing PES and PECs. The PES at S_0 state and the PECs at S_1 state of (2,6-aza)Ind + L3H₂O were constructed with the fixing of N₁-H₁ and/or O₂-H₂ distances at a series of values. All the local minima were confirmed by the absence of an imaginary mode in vibrational analysis calculations. To evaluate the solvent effect, H₂O was selected as the solvent in the calculations using the conductor-like screening model (COSMO) method. ³

(1) G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT, 2009.

(2) F. Furche and R. Ahlrichs, Journal of Chemical Physics, 2002, 117, 7433-7447.

(3) A. Klamt and G. Schuurmann, Journal of the Chemical Society-Perkin Transactions 2, 1993, 799-805.

First Exited State

Figure S1. The shapes of HOMOs of $(2,6-aza)Ind + L3H_2O$ at S_0 and S_1 states; and natural bond orbital charge population on $(2,6-aza)Ind + L3H_2O$ at S_0 and S_1 states.

Figure S2. The calculated IR spectra of $(2,6-aza)Ind + L3H_2O$ for the ground state (S_0) and first excited-state (S_1) in the spectral region of the N₁-H₁ and O₂-H₂ strengthening bands.