Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2018

## Asymmetric Diels-Alder Cycloadditions of Benzofulvene-Based 2,4-Dienal

## via Trienamine Activation

Jing-Fei Yue,<sup>a</sup> Guang-Yao Ran,<sup>a</sup> Xing-Xing Yang,<sup>a</sup> Wei Du,<sup>a\*</sup> and Ying-Chun Chen<sup>a,b\*</sup>

<sup>a</sup> Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

<sup>b</sup> College of Pharmacy, Third Military Medical University, Chongqing 400038, China.

Fax: (+86)-28-8550-2609; E-mail: duweiyb@scu.edu.cn; ycchen@scu.edu.cn.

## **Supplementary Information**

#### **Table of Content**

| 1. General method                                                                 | S2  |
|-----------------------------------------------------------------------------------|-----|
| 2. General procedure for the preparation of $\alpha$ -substituted 2,4-dienals     | S2  |
| 3. General procedure for the preparation of dienone 5                             | S5  |
| 4. More screening studies on diverse electrophiles                                | S6  |
| 5. General procedure for amine-catalysed asymmetric [4+2] cycloaddition reactions | S6  |
| 6. Transformation of cycloadduct 4b                                               | S24 |
| 7. Crystal data and structural refinement for enantiopure 4n                      | S26 |
| 8. NMR spectra and HPLC chromatograms                                             | S28 |

#### 1. General method

NMR data were obtained for <sup>1</sup>H at 400 MHz or 600 MHz, and for <sup>13</sup>C at 100 MHz or 150 MHz. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl<sub>3</sub> solution. ESI-HRMS was recorded on a Waters SYNAPT G2. In each case, diastereomeric ratio was determined by <sup>1</sup>H-NMR analysis and enantiomeric ratio was determined by HPLC analysis on a chiral stationary phase in comparison with authentic racemate, using a Daicel Chiralpak AD-H Column ( $250 \times 4.6 \text{ mm}$ ), Chiralcel OD-H Column ( $250 \times 4.6 \text{ mm}$ ), Chiralpak IC Column ( $250 \times 4.6 \text{ mm}$ ) or Chiralpak ID Column ( $250 \times 4.6 \text{ mm}$ ). UV detection was monitored at 254 nm. Optical rotation was measured in CHCl<sub>3</sub> solution at 25 °C. Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates. UV light, I<sub>2</sub>, 2,4-dinitrophenylhydrazine and solution of potassium permanganate were used to visualize products or starting materials. All chemicals were used without purification as commercially available unless otherwise noted. Petroleum ether and ethyl acetate (EtOAc) were distilled. Oxindoles derivatives **3** were prepared according to the literature procedures.<sup>1</sup> Catalysts **C1–C3** were synthesized according to the literature procedures.<sup>2</sup>

- S.-W. Duan, Y. Li, Y.-Y. Liu, Y.-Q. Zou, D.-Q. Shi and W.-J. Xiao, *Chem. Commun.*, 2012, 48, 5160.
- 2. (a) Y. Hayashi, H. Gotoh, T. Hayashi and M. Shoji, *Angew. Chem., Int. Ed.*, 2005, 44, 4212; (b) M Marigo, T. C. Wabnitz, D. Fielenbach and K. A. Jørgensen, *Angew. Chem., Int. Ed.*, 2005, 44, 794; (c) Y. Wang, P. Li, X. Liang and J. Ye, *Adv. Synth. Catal.*, 2008, 350, 1383.

#### 2. General procedure for the preparation of $\alpha$ -substituted 2,4-dienals



 $NaBH_4$  (1.2 equiv) was added in portions to the solution of the indanone in MeOH at 0 °C. Then the solution was stirred at room temperature for 1 h. The mixture was poured into the ice-water.

EtOAc ( $2 \times 30$  mL) were added to the mixture, and the organic layers were separated and dried over by anhydrous Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed under reduced pressure, yielding the crude product without further purification.

A solution of the indanol (1.0 equiv) and *p*-TsOH (0.1 equiv) in toluene was refluxed using a Dean-Stark water trap overnight. The solution was cooled to room temperature and washed with saturated aqueous NaHCO<sub>3</sub> solution, dried over by  $Na_2SO_4$  and filtered. The crude product was purified by flash chromatography (pure petroleum) to provide the substituted indene **I**.

The mixture of **I** in dry THF was cooled to -78 °C and *n*-BuLi (2.4 M solution in THF, 1.0 equiv) was added dropwise over 20 min. The resulting mixture was stirred for 30 min at -40 °C and cooled to -78 °C, followed by dry CO<sub>2</sub> gas was placed directly into the mixture. The reaction mixture was allowed to warm to room temperature for 2 h. After quenching by 1 M HCl, water (30 mL) and EtOAc (2 × 30 mL) were added to the solution and the organic layers were separated. The combined organic phases were washed with brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. Purification by flash column chromatography on silica gel eluting with EtOAc/petroleum ether (25/100) yielded the compound **II** as a white solid.

To a solution of **II** in MeOH, catalytic amounts of concentrated  $H_2SO_4$  was added and the mixture was stirred overnight under reflux. The solution was cooled to room temperature and washed with saturated NaHCO<sub>3</sub> solution and extracted with DCM (3 × 30 mL). After removal of the solvent under reduced pressure, the residue was subjected to column chromatography on silica gel eluted with EtOAc/petroleum ether (10/100) to give the product **III**.

In a 50 mL Schlenk flask, the corresponding ketone (1.2 equiv) and **III** (1.0 equiv) were dissolved in MeOH (25 mL). Pyrrolidine (0.05 equiv) was added slowly. The mixture was stirred at room temperature, and the yellow solution was formed. Then water (30 mL) and EtOAc ( $2 \times 30$  mL) were added and the organic layer was separated. The combined organic phases were washed with brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. Removal of the solvent under reduced pressure and purification by flash column chromatography on silica gel [EtOAc/petroleum ether (1/100)] yielded the title compound **IV** as a yellow solid.

To a solution of **IV** (1.0 equiv) in DCM, DIBAL-H (2.4 M solution in THF, 2.0 equiv)) was added dropwise under an argon atmosphere at -20 °C and the mixture was stirred for 5 h at room temperature. After completion, the reaction was quenched with HCl (1M) solution at 0 °C and the

mixture was extracted with DCM ( $3 \times 30$  mL). The combined organic phases were washed with brine (20 mL) before being dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated in vacuo. Under an argon atmosphere, a mixture of the intermediate and  $MnO_2$  (5.0 equiv) was stirred at room temperature for 8 h. Then the mixture was filtered through a thin plug of celite and the residue was eluted with DCM. The filtrate was concentrated and purified by flash column chromatography on silica gel eluting with EtOAc/petroleum ether (1/30) yielded substrate 2 as a yellow solid.



**Synthesis of 2a**: yellow solid; 46% yield for 7 steps; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 10.11 (s, 1H), 8.17 (d, J = 5.2 Hz, 1H), 7.82-7.72 (m, 1H), 7.60 (s, 1H), 7.34-7.32 (m, 2H), 2.53 (s, 3H), 2.43 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ (ppm) 188.9, 153.9, 141.7, 138.6, 138.1, 136.2, 136.0, 126.7, 126.2, 123.5, 122.7, 25.7, 23.9. ESI-HRMS: calcd. for C<sub>13</sub>H<sub>12</sub>O+Na<sup>+</sup> 207.0780, found 207.0785.



**Synthesis of 2b:** yellow solid; 39% yield for 7 steps. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 10.06 (s, 1H), 8.28 (s, 1H), 7.83 (s, 1H), 7.65 (s, 1H), 2.53 (s, 3H), 2.45 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ (ppm) 188.2, 156.7, 142.4, 138.0, 136.5, 135.3, 134.7, 130.6, 129.9, 125.0, 124.0, 26.0, 24.0



Synthesis of 2c: yellow solid; 42% yield for 7 steps. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): сно δ (ppm) 10.05 (s, 1H), 7.77 (s, 1H), 7.51 (s, 1H), 7.30 (s, 1H), 3.98 (s, 3H), 3.94 (s, 3H), 2.50 (s, 3H), 2.42 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ (ppm) 189.0, 152.2, 2c 148.4, 147.7, 140.9, 138.0, 136.3, 132.3, 128.7, 108.1, 105.8, 56.4, 56.1, 25.6, 23.6.

СНО **Synthesis of 2d:** yellow solid; 38% yield for 7 steps. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 10.11 (s, 1H), 8.19 (d, J = 6.8 Hz, 1H), 7.61 (d, J = 7.2 Hz, 1H), 7.48 (s, 1H), 7.34-7.30 (m, 2H), 3.08-2.99 (m, 4H), 2.03-1.96 (m, 2H), 1.94-1.82 (m, 2H); <sup>13</sup>C NMR 2d (100 MHz, CDCl<sub>3</sub>): δ (ppm) 188.9, 165.7, 142.3, 138.5, 138.1, 136.2, 132.7, 126.7, 126.2, 122.8, 35.3, 34.2, 26.6, 25.8.



**Synthesis of 2e:** yellow solid; 40% yield for 7 steps. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 10.11 (s, 1H), 8.20 (d, J = 6.8 Hz, 1H), 7.90 (d, J = 7.2 Hz, 1H), 7.68 (s, 1H), 7.32-7.28 (m, 2H), 3.14-3.03 (m, 2H), 2.88-2.74 (m, 2H), 1.86 (d, J = 2.4 Hz, 4H), 1.80-1.70 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ (ppm) 188.9, 163.3, 141.8, 139.2, 137.9, 136.2, 133.2, 126.7, 126.2, 123.7, 122.7, 35.3, 33.2, 29.1, 28.2, 26.1. ESI-HRMS: calcd. for

C<sub>16</sub>H<sub>16</sub>O+Na<sup>+</sup> 247.1093, found 247.1094.

#### 3. General procedure for the preparation of dienone 5



The dienone **5** was prepared using a straightforward two-step procedure. The first step is a base-catalyzed cross-aldol condensation reaction using benzaldehyde and cyclopentanone. Cyclopentanone (0.81 mL, 3 equiv) was added to a solution of NaOH (180 mg, 1.5 equiv) in water (50 mL) and stirred at room temperature for 5 min, followed by the addition of benzaldehyde (0.3 mL, 3 mmol). After 3 days of stirring, the product was extracted with EtOAc ( $3 \times 20$  mL) and purified by flash column chromatography on silica gel eluting with EtOAc/petroleum ether (1/100) yielded (*E*)-2-benzylidenecyclopentan-1-one as a yellow solid (465 mg, 90% yield).

Then the enone (465 mg, 2.7 mmol) was dissolved in THF, followed by the addition of obtained salt (TFA was added to the solution of diisopropylamine in Diethyl ether to give a white salt (580 mg, 1.0 equiv), (HCHO)<sub>n</sub> (324 mg, 4.0 equiv), and catalytic amounts of TFA (30 mg, 0.1 equiv). The mixture was heated under reflux overnight. The solution was cooled to room temperature and washed with saturated aqueous NaHCO<sub>3</sub> solution. The product was extracted with EtOAc ( $3 \times 20$  mL) and purified by flash chromatography to provide dienone **5** as a yellow solid (298 mg, 62% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.60-7.54 (m, 3H), 7.42-7.32 (m, 3H), 6.19 (s, 1H), 5.48 (s, 1H), 3.08-2.91 (m, 2H), 2.89-2.70 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 195.7, 145.5, 137.4, 135.6, 134.4, 130.7, 129.5, 128.7, 118.5, 26.4, 26.1.

#### 4. More screening studies on diverse electrophiles



An array of dienophiles outlined above were screened under the optimized conditions but failed to give the desired cycloadducts.

# 5. General procedure for amine-catalysed asymmetric Diels–Alder cycloaddition reactions



1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde **2** (0.12 mmol), catalyst **C2** (7.2 mg, 0.02 mmol), acid **A2** (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of 3-olefinic oxindoles **3** (0.1 mmol). Then the mixture was stirred at room temperature for the indicated time. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give aldehyde cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **4**.



Synthesis of 4a: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CDCl<sub>3</sub> (1.0 mL), followed by the addition of *tert*-butyl (*E*)-2-oxo-3-(2-oxo-2-phenylethylidene)indoline-1-carboxylate (0.1 mmol).

Then the mixture was stirred at room temperature for 30 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product 4a (isolated as a pure diastereomer): 37.4 mg as a light yellow solid, 57% yield;  $[\alpha]_{D}^{20} = -10.0$  (c = 0.25 in CHCl<sub>3</sub>); 99% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min,  $\lambda$  = 254 nm, t (minor) = 13.59 min, t (major) = 27.27 min];<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 8.01 (d, J = 8.2 Hz, 1H), 7.85-7.78 (m, 2H), 7.59 (d, J = 7.6 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 7.35-7.31 (m, 1H), 7.30-7.25 (m, 1H), 7.16 (t, J = 7.2 Hz, 1H), 7.06-7.02 (m, 1H), 6.93 (dd, J = 12.0, 4.2 Hz, 2H), 6.78 (dd, J = 15.6, 10.0 Hz, 1H), 5.60 (d, J = 15.6 Hz, 1H), 4.44 (dd, J = 12.4, 6.0 Hz, 1H), 4.21-4.06 (m, 2H), 3.61-3.52 (m, 1H), 3.59-3.53 (m, 1H), 3.03 (t, J = 9.6 Hz, 1H), 2.90 (dd, J = 18.8, 5.6 Hz, 1H), 2.67-2.63 (m, 1H), 2.17 (s, 3H), 1.54 (s, 9H), 1.27 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ (ppm) 199.7, 177.0, 165.6, 148.8, 148.0, 144.9, 140.3, 138.9, 136.5, 133.2, 133.1, 128.6, 128.5, 128.2, 128.2, 127.6, 127.5, 127.0, 124.8, 124.8, 124.3, 124.2, 123.8, 114.9, 83.8, 60.3, 56.8, 50.8, 50.3, 46.9, 34.9, 27.9, 19.0, 14.1. ESI-HRMS: calcd. for C<sub>38</sub>H<sub>27</sub>NO<sub>4</sub>+Na<sup>+</sup> 626.2513, found 626.2494.



Synthesis of 4b: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of (E)-1-(methoxymethyl)-3-(2-oxo-2-phenylethylidene)indolin-2-one (0.1

mmol). Then the mixture was stirred at room temperature for 24 h. After completion, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give

the desired product **4b**: 45.4 mg as a light yellow solid, 83% yield;  $[\alpha]_D^{20} = -157.5$  (c = 0.24 in CHCl<sub>3</sub>); >99% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 14.99 min, t (major) = 23.42 min]; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.71 (d, J = 7.8 Hz, 2H), 7.61 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 7.2 Hz, 1H), 7.36 (t, J = 7.2 Hz, 2H), 7.23 (d, J = 7.2 Hz, 1H), 7.15-7.07 (m, 3H), 6.94 (t, J = 8.4 Hz, 2H), 6.79 (t, J = 7.8 Hz, 1H), 6.38 (dd, J = 15.6, 9.6 Hz, 1H), 5.21 (d, J = 15.6 Hz, 1H), 5.15 (d, J = 10.8 Hz, 1H), 5.08 (d, J = 10.8 Hz, 1H), 4.15 (d, J = 7.8 Hz, 1H), 4.06-3.97 (m, 3H), 3.46-3.37 (m, 4H), 3.19 (dd, J = 18.6, 7.8 Hz, 1H), 2.40 (d, J = 18.6 Hz, 1H), 2.14 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 200.5, 177.3, 165.5, 148.3, 143.7, 141.7, 140.4, 137.2, 133.1, 131.3, 129.8, 128.6, 128.5, 128.4, 127.4, 126.7, 125.9, 125.3, 124.4, 124.3, 123.0, 121.4, 109.0, 71.4, 59.8, 56.8, 51.9, 50.3, 49.1, 44.2, 33.3, 19.4, 14.2. ESI-HRMS: calcd. for C<sub>35</sub>H<sub>33</sub>NO<sub>5</sub>+Na<sup>+</sup> 570.2251, found 570.2250.



Synthesis of 4c: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of (E)-3-(2-(3-fluorophenyl)-2-oxoethylidene)-1-(methoxymethyl)indolin-2-

one (0.1 mmol). Then the mixture was stirred at room temperature for 20 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give aldehyde of **4c**. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **4c**: 46.2 mg as a light yellow solid, 81% yield;  $[\alpha]_D^{30} = -203.1$  (*c* = 0.72 in CHCl<sub>3</sub>); >99% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 10.93 min, t (major) = 15.59 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.74 (dd, *J* = 8.6, 5.4 Hz, 2H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.23-7.27 (m, 1H), 7.12 (dd, *J* = 14.0, 7.2 Hz, 2H), 7.03 (dd, *J* = 16.1, 7.8 Hz, 3H), 6.94 (t, *J* = 8.8Hz, 2H), 6.78 (t, *J* = 7.6 Hz, 1H), 6.37 (dd, *J* = 15.6, 10.0 Hz, 1H), 5.21 (d, *J* = 15.6 Hz, 1H), 5.11(dd, *J* = 26.8, 10.8 Hz, 2H), 4.10 (d, *J* = 9.0 Hz, 1H), 4.02 (dd, *J* = 14.0, 6.8 Hz, 2H), 3.94 (d, *J* = 7.5 Hz, 1H), 3.48-3.34 (m, 4H), 3.17 (dd, *J* = 18.5, 7.5 Hz, 1H), 2.38 (d, *J* = 18.5 Hz, 1H), 2.14 (s, 3H), 1.19 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 198.8, 177.1, 165.5 (*J*CF<sup>1</sup> = 254.2 Hz), 165.4, 148.1, 143.6, 141.6, 140.3, 131.2, 131.1 (*J*CF<sup>3</sup>)

= 9.1 Hz), 129.5, 128.6, 127.3, 126.7, 125.8, 125.2, 124.4, 124.3, 122.9, 121.4, 115.6 ( $J_{CF}^2$  = 21.7 Hz), 109.1, 71.4, 59.8, 56.8, 56.8, 51.8, 50.3, 49.1, 44.1, 33.3, 19.3, 14.2. ESI-HRMS: calcd. for C<sub>35</sub>H<sub>32</sub>FNO<sub>5</sub>+Na<sup>+</sup> 588.2157, found 588.2164.



Synthesis of 4d: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CDCl<sub>3</sub> (1.0 mL), followed by the addition of (E)-3-(2-(2-chlorophenyl)-2-oxoethylidene)-1-(methoxymethyl)indolin-2-

one (0.1 mmol). Then the mixture was stirred at room temperature for 22h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **4d** [a mixture (10:1 dr) of diastereomers]: 43.5 mg as a light yellow solid, 75% yield;  $\left[\alpha\right]_{D}^{20}$ = -68.2 (c = 0.54 in CHCl<sub>3</sub>); 96% ee, determined by HPLC analysis [Chiralpak IB, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 10.56 min, t (major) = 11.67 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.61 (d, J = 7.6 Hz, 1H), 7.40-7.30 (m, 2H), 7.31-7.22 (m, 3H), 7.22-7.15 (m, 2H), 7.16-7.09 (m, 2H), 6.98 (d, J = 7.8 Hz, 1H), 6.93 (t, J = 7.2 Hz, 1H), 6.41 (dd, J = 15.6, 10.0 Hz, 1H), 5.25 (d, J = 15.6 Hz, 1H), 5.16-5.06 (m, J = 13.2Hz, 10.8 Hz, 2H), 4.19 (d, J = 7.6 Hz, 1H), 4.09-3.98 (m, 2H), 3.85 (d, J = 7.6 Hz, 1H), 3.46-3.33 (m, 4H), 3.12 (dd, J =18.8, 7.8 Hz, 1H), 2.45 (d, J = 18.8 Hz, 1H), 2.15 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>): δ (ppm) 201.9, 176.9, 165.5, 148.2, 143.7, 141.7, 140.3, 139.1, 131.8, 131.5, 131.4, 130.7, 130.1, 129.5, 128.7, 127.3, 126.7, 126.6, 126.0, 124.6, 124.3, 123.1, 121.6, 121.5, 109.1, 71.3, 59.8, 56.6, 51.8, 50.4, 49.1, 48.8, 32.1, 19.3, 14.2. ESI-HRMS: calcd. for C<sub>35</sub>H<sub>32</sub><sup>35</sup>ClNO<sub>5</sub>+Na<sup>+</sup> 604.1861, found 604.1865.



Synthesis of 4e: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of (E)-3-(2-(3-chlorophenyl)-2-oxoethylidene)-1-(methoxymethyl)indolin-2-

one (0.1 mmol). Then the mixture was stirred at room temperature for 21 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct.

Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **4e**: 41.0 mg as a light yellow solid, 71% yield;  $[\alpha]_{D}^{20} = -127.3$  (c = 0.22 in CHCl<sub>3</sub>); >99% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 10.55 min, t (major) = 17.78 min]; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.70 (s, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.46 (d, J = 7.8 Hz, 1H), 7.29 (t, J = 7.4 Hz, 1H), 7.25 (t, J = 7.4 Hz, 1H), 7.12 (dd, J = 13.8, 7.2 Hz, 2H), 7.07 (d, J = 7.2Hz, 1H), 6.94 (dd, J = 11.4, 7.8 Hz, 2H), 6.81 (t, J = 7.2 Hz, 1H), 6.38 (dd, J = 15.6, 9.6 Hz, 1H), 5.22 (d, J = 15.6 Hz, 1H), 5.13 (dd, J = 16.8Hz, 10.8 Hz, 2H), 4.10 (d, J = 7.8 Hz, 1H), 4.02 (dd, J = 13.9, 7.2 Hz, 2H), 3.91 (d, J = 7.2 Hz, 1H), 3.48-3.36 (m, 4H), 3.19 (dd, J = 18.6, 7.2 Hz, 1H), 2.38 (d, J = 18.6 Hz, 1H), 2.14 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 199.0, 177.0, 165.4, 148.1, 143.6, 141.7, 140.3, 138.6, 134.9, 132.9, 131.3, 129.8, 129.5, 128.7, 128.4, 127.4, 126.7, 126.4, 125.7, 125.0, 124.4, 124.3, 123.0, 121.5, 109.1, 71.4, 59.8, 56.8, 51.8, 50.3, 49.1, 44.5, 33.1, 19.3, 14.2. ESI-HRMS: calcd. for C<sub>35</sub>H<sub>32</sub><sup>35</sup>ClNO<sub>5</sub>+Na<sup>+</sup> 604.1861, found 604.1865.



Synthesis of 4f: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of (E)-3-(2-(2-bromophenyl)-2-oxoethylidene)-1-(methoxymethyl)indolin-2

-one (0.1 mmol). Then the mixture was stirred at room temperature for 22 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **4f** [a mixture (10:1 dr) of diastereomers]: 49.1 mg as a light yellow solid, 78% yield;  $[\alpha]_D^{20}$  = -72.2 (*c* = 0.54 in CHCl<sub>3</sub>); >99% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min,  $\lambda$  = 254 nm, t (minor) = 26.23 min, t (major) = 31.56 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.61 (d, *J* = 7.6 Hz, 1H), 7.58-7.53 (m, 1H), 7.32 (d, *J* = 7.6 Hz, 1H), 7.28-7.20 (m, 3H), 7.18 (d, *J* = 8.0 Hz, 1H), 7.13 (t, *J* = 7.6 Hz, 1H), 7.04-6.97 (m, 2H), 6.93 (m, 2H), 6.42 (dd, *J* = 15.6, 10.0 Hz, 1H), 5.27 (d, *J* = 15.6 Hz, 1H), 5.11 (d, *J* = 6.0 Hz, 2H),

4.22 (m, 1H), 4.04 (dt, J = 6.9, 5.4 Hz, 2H), 3.82 (d, J = 7.6 Hz, 1H), 3.47-3.35 (m, 4H), 3.12 (dd, J = 18.8, 8.0 Hz, 1H), 2.46 (d, J = 18.8 Hz, 1H), 2.15 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl3):  $\delta$  (ppm) 201.9, 176.8, 165.4, 148.2, 143.7, 141.7, 140.9, 140.2, 133.9, 131.8, 131.5, 130.1, 129.1, 128.7, 127.2, 127.1, 126.7, 126.1, 124.4, 124.3, 123.1, 121.6, 121.5, 119.6, 109.0, 71.2, 59.8, 56.6, 51.7, 50.4, 49.1, 48.8, 31.8, 19.2, 14.1. ESI-HRMS: calcd. for C<sub>35</sub>H<sub>32</sub><sup>79</sup>BrNO<sub>5</sub>+Na<sup>+</sup> 648.1356, found 648.1354.



Synthesis of 4g: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of (E)-1-(methoxymethyl)-3-(2-oxo-2-(p-tolyl)ethylidene)indolin-2-one

(0.1 mmol). Then the mixture was stirred at room temperature for 24h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **4g**: 43.4 mg as a light yellow solid, 77% yield;  $[\alpha]_D^{20} = -362.1$  (*c* = 0.28 in CHCl<sub>3</sub>); >99% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda = 254$ nm, t (minor) = 14.33 min, t (major) = 19.52 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.61 (t, J = 8.2 Hz, 3H), 7.24(t, J = 7.6 Hz, 1H), 7.15 (d, J = 8.0 Hz, 2H), 7.12-7.06 (m, 3H), 6.93 (t, J = 8.0Hz, 2H), 6.78 (t, J = 7.6 Hz, 1H), 6.38 (dd, J = 15.6, 10.0 Hz, 1H), 5.21 (d, J = 15.6 Hz, 1H), 5.13 (dd, J = 25.6, 10.8 Hz, 2H), 4.17 (d, J = 8.8 Hz, 1H), 4.02 (dd, J = 14.0, 6.8 Hz, 2H), 3.96 (d, J = 14.0, 6.8 Hz, 2H), 3.967.6 Hz, 1H), 3.45-3.34 (m, 4H), 3.18 (dd, J = 18.8, 7.6 Hz, 1H), 2.40 (d, J = 18.8 Hz, 1H), 2.35 (s, 3H), 2.13 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 200.0, 177.3, 165.5, 148.3, 143.9, 143.6, 141.6, 140.5, 134.7, 131.1, 129.8, 129.2, 128.5, 127.3, 126.6, 126.0, 125.3, 124.3, 123.0, 121.4, 121.3, 109.0, 71.4, 59.8, 56.8, 51.9, 50.3, 49.1, 43.9, 43.8, 33.4, 21.5, 19.3, 14.2. ESI-HRMS: calcd. for C<sub>36</sub>H<sub>35</sub>NO<sub>5</sub>+Na<sup>+</sup> 584.2407, found 584.2410.



**Synthesis of 4h**: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst **C2** (7.2 mg, 0.02 mmol), acid **A2** (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of

(E)-1-(methoxymethyl)-3-(2-(4-methoxyphenyl)-2-oxoethylidene) indolin-2-one (0.1 mmol). Then the mixture was stirred at room temperature for 26 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product 4h: 41.2 mg as a light yellow solid, 70% yield;  $\left[\alpha\right]_{D}^{20} = -264.4$  (c = 0.50 in CHCl<sub>3</sub>); >99% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda$  = 254 nm, t (minor) = 17.16 min, t (major) = 21.78 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.71 (d, J = 8.8 Hz, 2H), 7.60 (d, J = 7.6 Hz, 1H), 7.23 (t, J = 7.6 Hz, 1H), 7.12 (d, J = 7.6 Hz, 1H), 7.08 (d, J = 7.6 Hz, 2H), 6.97-6.89 (m, 2H), 6.83 (d, J = 8.8 Hz, 2H), 6.77 (t, J = 7.6 Hz, 1H), 6.37 (dd, J = 15.6, 10.0 Hz, 1H), 5.20 (d, *J* = 15.6 Hz, 1H), 5.12 (dd, *J* = 23.2, 10.8 Hz, 2H), 4.16 (d, *J* = 8.8 Hz, 1H), 4.04-4.02 (m, 2H), 3.94 (d, J = 7.6 Hz, 1H), 3.81 (s, 3H), 3.45-3.34 (m, 4H), 3.17 (dd, J = 18.4, 7.6 Hz, 1H), 2.38 (d, J = 18.4), 3.81 (s, 3.4), 3.45-3.34 (m, 4.4), 3.17 (dd, J = 18.4), 3.81 (s, 3.4), 3.45-3.34 (m, 4.4), 3.17 (dd, J = 18.4), 3.81 (s, 3.4), 3.45-3.34 (m, 4.4), 3.17 (dd, J = 18.4), 3.81 (s, 3.4), 3.81 (s, 3.4), 3.45-3.34 (m, 4.4), 3.17 (dd, J = 18.4), 3.81 (s, 3.4), 3.81 (s, 3.4), 3.45-3.34 (m, 4.4), 3.17 (dd, J = 18.4), 3.81 (s, 3.4), 3.18.8 Hz, 1H), 2.14 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 198.9, 177.3, 165.4, 163.4, 148.3, 143.6, 141.6, 140.5, 131.0, 130.7, 130.1, 129.7, 128.5, 127.3, 126.6, 126.0, 125.5, 124.3, 122.9, 121.3, 113.7, 108.9, 71.4, 59.8, 56.8, 55.4, 51.8, 50.4, 49.1, 43.5, 33.5, 19.3, 14.2. ESI-HRMS: calcd. for C<sub>36</sub>H<sub>35</sub>NO<sub>6</sub>+Na<sup>+</sup> 600.2357, found 600.2358.



Synthesis of 4i: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of (E)-1-(methoxymethyl)-3-(2-oxo-2-(thiophen-2-yl)ethylidene)indolin-2-

one (0.1 mmol). Then the mixture was stirred at room temperature for 24 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **4i**: 48.0 mg as a light yellow solid, 87% yield;  $[\alpha]_D^{20} = -222.0$  (c = 0.50 in CHCl<sub>3</sub>); >99% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 10.31 min, t (major) = 18.59 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.64-7.57 (m, 2H), 7.42 (d, J = 3.6 Hz, 1H), 7.23 (m, J = 7.6 Hz, 1H), 7.16-7.05 (m, 3H), 7.02-6.88 (m, 3H), 6.79

(t, J = 7.6 Hz, 1H), 6.35 (dd, J = 15.6, 10.0 Hz, 1H), 5.16-5.14 (m, 3H), 4.08 (d, J = 8.8 Hz, 1H), 4.05-3.95 (m, 2H), 3.75 (d, J = 7.6 Hz, 1H), 3.45-3.32 (m, 4H), 3.21 (dd, J = 18.6, 7.4 Hz, 1H), 2.47 (d, J = 18.6 Hz, 1H), 2.15 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 193.0, 176.9, 165.4, 148.1, 144.8, 143.5, 141.5, 140.4, 134.7, 132.2, 130.9, 129.4, 128.7, 128.2, 127.3, 126.6, 125.7, 125.4, 124.3, 122.9, 121.4, 109.0, 71.4, 59.8, 56.8, 56.7, 51.7, 50.2, 49.1, 45.9, 33.6, 19.2, 14.2. ESI-HRMS: calcd. for C<sub>33</sub>H<sub>31</sub>SNO<sub>5</sub>+Na<sup>+</sup> 576.1815, found 576.1830.



Synthesis of 4j: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of ethyl (E)-2-(1-(methoxymethyl)-2-oxoindolin-3-ylidene)acetate (0.1 mmol). Then

the mixture was stirred at room temperature for 24 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product 4j: 37.0 mg as a light yellow solid, 72% yield;  $[\alpha]_{D}^{20} = -69.7$  (c = 0.80 in CHCl<sub>3</sub>); 99% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda$  = 254 nm, t (minor) = 8.52 min, t (major) = 12.89 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.60 (d, J = 7.6 Hz, 1H), 7.21 (m, 2H), 7.18-7.07 (m, 2H), 7.01 (d, J = 7.6 Hz, 1H), 7.00-6.94 (m, 1H), 6.91 (d, J = 7.6 Hz, 1H), 6.35 (dd, J = 15.6, 10.0 Hz, 1H), 5.20 (d, J = 15.6 Hz, 1H), 5.11 (s, 2H), 4.11 (q, J = 7.2Hz, 2H), 4.04 (q, J = 7.2 Hz, 2H), 3.88-3.79 (m, 1H), 3.43-3.34 (m, 4H), 3.06 (dd, J = 18.4, 6.8 Hz, 1H), 2.93 (dd, J = 7.6, 2.0 Hz, 1H), 2.47 (d, J = 18.4 Hz, 1H), 2.16 (d, J = 2.0 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H), 1.15 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ (ppm) 176.9, 172.9, 165.5, 148.2, 143.6, 141.7, 140.3, 130.7, 129.9, 128.8, 127.4, 126.7, 125.9, 124.5, 124.4, 124.3, 122.9, 121.5, 109.3, 71.3, 60.6, 59.9, 56.7, 51.5, 49.8, 49.0, 44.7, 33.4, 19.3, 14.2, 14.0. ESI-HRMS: calcd. for C<sub>31</sub>H<sub>33</sub>NO<sub>6</sub>+Na<sup>+</sup> 538.2200, found 538.2203



Synthesis of 4k: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of ethyl (*E*)-2-(1-methyl-2-oxoindolin-3-ylidene) acetate (0.1 mmol). Then the

mixture was stirred at room temperature for 26 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product 4k: 32.5 mg as a light yellow solid, 67% yield;  $[\alpha]_{D}^{20} = -66.5$  (c = 0.49 in CHCl<sub>3</sub>); 99% ee, determined by HPLC analysis [Chiralpak IB, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda = 254$  nm, t (major) = 6.83 min, t (minor) = 8.01 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.59 (d, J = 7.6 Hz, 1H), 7.22 (dd, J = 15.6, 8.0 Hz, 2H), 7.11 (dd, J = 16.8, 7.6 Hz, 2H), 6.97-6.87 (m, 2H), 6.81 (d, J = 8.0 Hz, 1H), 6.32 (dd, J = 15.6, 10.0 Hz, 1H), 5.16 (d, J = 15.6 Hz, 1H), 4.10 (q, J = 7.2 Hz, 2H), 4.04 (q, J = 7.2 Hz)2H), 3.80 (d, J = 8.0 Hz, 1H), 3.34 (t, J = 10.0 Hz, 1H), 3.22 (s, 3H), 3.09 (dd, J = 18.4, 6.8 Hz, 1H), 2.91 (d, J = 6.0 Hz, 1H), 2.45 (d, J = 18.4 Hz, 1H), 2.16 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H), 1.15 (t, J = 7.2 Hz, J =7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ (ppm) 176.2, 173.0, 165.4, 148.2, 143.6, 143.4, 140.2, 130.6, 130.4, 128.7, 127.2, 126.6, 125.9, 124.3, 124.2, 122.4, 121.4, 107.8, 60.4, 59.8, 51.5, 49.3, 49.1, 44.3, 33.2, 25.9, 19.3, 14.2, 14.0. ESI-HRMS: calcd. for C<sub>30</sub>H<sub>31</sub>NO<sub>5</sub>+Na<sup>+</sup> 508.2094, found 508.2096.



Synthesis of 41: 1-(propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of (E)-2-(1-(methoxymethyl)-2-oxoindolin-3-ylidene) acetonitrile (0.1 mmol).

Then the mixture was stirred at room temperature for 28 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **4l**: 19 mg as a light yellow solid, 44% yield;  $[\alpha]_D^{20} = -241.6$  (c = 0.12 in CHCl<sub>3</sub>); >99% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda = 254$  nm, t (major) = 18.07 min, t (minor) = 20.50 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.72 (d, J = 7.6 Hz, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.33-7.21 (m, 2H), 7.15 (t, J = 7.2 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 7.6 Hz, 1H), 6.84 (d, J = 7.6 Hz, 1H), 6.33 (dd, J = 15.6, 10.0 Hz, 1H), 5.19 (d, J = 15.6 Hz, 1H), 4.07-4.03

(m, 2H), 3.61 (d, J = 9.2 Hz, 1H), 3.37-3.33 (m, 2H), 3.23 (s, 3H), 3.09 (d, J = 6.4 Hz, 1H), 2.62 (d, J = 18.0 Hz, 1H), 2.16 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H).<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 174.0, 165.1, 147.1, 143.3, 143.0, 139.6,130.2, 129.4, 128.9, 127.6, 127.2, 125.1, 124.6, 124.4, 124.3, 123.0, 122.1, 120.3, 108.0, 60.0, 52.5, 48.7, 47.3, 33.3, 32.6, 26.2, 18.9, 14.2. ESI-HRMS: calcd. for C<sub>28</sub>H<sub>26</sub>N<sub>2</sub>O<sub>3</sub>+Na<sup>+</sup> 461.1836, found 461.1833.



diastereomer 41': 18 mg as a light yellow solid, 42% yield;  $[\alpha]_D^{20} = +12.0$  (c = 0.20 in CHCl<sub>3</sub>); 95% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda = 254$  nm, t (major) = 13.12 min, t (minor) = 15.18 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.58 (d, J = 7.6

Hz, 1H), 7.43-7.36 (m, 1H), 7.29 (d, J = 7.6 Hz, 1H), 7.18 (t, J = 7.2 Hz, 1H), 7.03 (d, J = 4.0 Hz, 2H), 7.00 (d, J = 7.6 Hz, 1H), 6.93 (d, J = 7.2 Hz, 1H), 6.71 (dd, J = 15.6, 10.0 Hz, 1H), 5.38 (d, J = 15.6 Hz, 1H), 4.20-4.16 (m, 2H), 3.47 (dd, J = 12.0, 6.8 Hz, 1H), 3.38 (d, J = 8.4 Hz, 1H), 3.21 (s, 3H), 3.01 (t, J = 9.6 Hz, 1H), 2.96-2.73 (m, 2H), 2.18 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H).<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 175.9, 165.4, 147.2, 144.5, 144.0, 138.6, 132.8, 129.7, 127.9, 127.6, 125.7, 125.6, 124.4, 124.4, 124.3, 124.1, 123.0, 118.2, 108.9, 60.4, 53.3, 50.7, 48.3, 33.3, 32.9, 26.2, 18.6, 14.2. ESI-HRMS: calcd. for C<sub>28</sub>H<sub>26</sub>N<sub>2</sub>O<sub>3</sub>+Na<sup>+</sup> 461.1836, found 461.1833.



Synthesis of 4m: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of (E)-1-(methoxymethyl)-5-methyl-3-(2-oxo-2-phenylethylidene)indolin-2-o

ne (0.1 mmol). Then the mixture was stirred at room temperature for 25 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **4m**: 45.3 mg as a light yellow solid, 80% yield;  $[\alpha]_{D}^{20} = -227.3$  (c = 0.6 in CHCl<sub>3</sub>); >99% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) =9.58 min, t (major) =13.59 min]; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.72 (d, J = 7.8 Hz, 2H), 7.61 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 7.8 Hz, 1H), 7.36 (t, J = 7.2 Hz, 2H), 7.24 (d, J = 7.2 Hz, 1H), 6.93 (d, J = 7.2 Hz, 1H), 6.88-6.84 (m, 3H), 6.39 (dd, J = 15.6, 10.0

Hz, 1H), 5.17 (d, J = 15.6 Hz, 1H), 5.10 (dd, J = 39.6, 10.2 Hz, 2H), 4.11 (d, J = 9.0 Hz, 1H), 4.07-3.96 (m, 3H), 3.44-3.35 (m, 4H), 3.18 (dd, J = 18.6, 7.8 Hz, 1H), 2.40 (d, J = 18.6 Hz, 1H), 2.14 (s, 3H), 2.05 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 200.6, 177.2, 165.5, 148.3, 143.7, 140.5, 139.2, 137.4, 133.0, 132.5, 131.2, 129.7, 128.8, 128.5, 128.4, 127.3, 126.7, 126.7, 125.4, 124.4, 124.3, 121.1, 108.8, 71.4, 59.8, 56.7, 51.8, 50.4, 49.1, 44.2, 33.4, 20.8, 19.3, 14.2. ESI-HRMS: calcd. for C<sub>36</sub>H<sub>35</sub>NO<sub>5</sub>+Na<sup>+</sup> 584.2407, found 584.2410.



Synthesis of 4n: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CDCl<sub>3</sub> (1.0 mL), followed by the addition of (*E*)-5-methoxy-1-(methoxymethyl)-3-(2-oxo-2-phenylethylidene)indolin

-2-one (0.1 mmol). Then the mixture was stirred at room temperature for 25 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **4n**: 47.3 mg as a light yellow solid, 82% yield;  $[\alpha]_{D}^{20} = -249.5$  (c = 0.38 in CHCl<sub>3</sub>); >99% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda = 254$ nm, t (minor) =11.25 min, t (major) =16.35 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.75 (d, J = 7.6 Hz, 2H), 7.60 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.37 (t, J = 7.6 Hz, 2H), 7.23 (d, J = 7.7.6 Hz, 1H), 7.12 (t, J = 7.4 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 6.68 (d, J = 2.0 Hz, 1H), 6.64 (dd, J = 8.4, 2.0 Hz, 1H), 6.43 (dd, J = 15.6, 10.0 Hz, 1H), 5.22 (d, J = 15.6 Hz, 1H), 5.10 (dd, J = 28.0, 10.4 Hz, 2H), 4.12(d, J = 8.0 Hz, 1H), 4.05-3.99 (m, 3H), 3.52 (s, 3H), 3.46-3.34 (m, 4H), 3.19 (dd, J = 18.8, 7.2 Hz, 1H), 2.39 (d, J = 19.2 Hz, 1H), 2.14 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 200.4, 177.0, 165.5, 156.1, 148.2, 143.6, 140.4, 137.2, 135.1, 133.1, 131.1, 130.8, 128.6, 128.4, 127.3, 126.7, 125.3, 124.4, 124.3, 121.4, 114.5, 112.2, 109.7, 71.5, 59.9, 56.7, 55.6, 51.8, 50.8, 49.1, 44.0, 33.4, 19.3, 14.0. ESI-HRMS: calcd. for C<sub>36</sub>H<sub>35</sub>NO<sub>6</sub>+Na<sup>+</sup> 600.2357, found 600.2356.

Synthesis of 40: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of (*E*)-1-(methoxymethyl)-5,7-dimethyl-3-(2-oxo-2-phenylethylidene)indolin-2-one (0.1



mmol). Then the mixture was stirred at room temperature for 28 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was

conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **40** [a mixture (10:1 dr) of diastereomer]: 45.2 mg as a white solid, 85% yield;  $[\alpha]_{D}^{20} = -129.2$  (*c* = 0.26 in CHCl<sub>3</sub>); >99% ee, determined by HPLC analysis [Chiralpak IC, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (major) = 8.08 min, t (minor) = 12.80 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.70 (d, *J* = 7.7 Hz, 2H), 7.61 (d, *J* = 7.7 Hz, 1H), 7.48 (t, *J* = 7.3 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.23 (d, *J* = 7.6 Hz, 1H), 7.11 (t, *J* = 7.4 Hz, 1H), 6.92 (d, *J* = 7.4 Hz, 1H), 6.68 (s, 1H), 6.63 (s, 1H), 6.35 (dd, *J* = 15.4, 10.0 Hz, 1H), 5.20 (q, *J* = 10.9 Hz, 3H), 4.06-3.97 (m, 4H), 3.47-3.34 (m, 4H), 3.24-3.12 (m, 1H), 2.46 (s, 3H), 2.37 (d, *J* = 18.6 Hz, 1H), 2.15 (s, 3H), 1.99 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 201.0, 178.3, 165.5, 148.1, 143.8, 140.5, 137.7, 137.4, 132.8, 132.6, 132.4, 131.3, 130.4, 128.5, 128.3, 127.1, 126.6, 125.5, 124.3, 124.2, 121.3, 120.1, 71.9, 59.8, 56.5, 52.3, 49.6, 49.1, 44.3, 33.6, 20.5, 19.3, 18.1, 14.2. ESI-HRMS: calcd. for C<sub>37</sub>H<sub>37</sub>NO<sub>5</sub>+Na<sup>+</sup> 598.2564, found 598.2574.



Synthesis of 4p: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of (E)-6-methoxy-1-(methoxymethyl)-3-(2-oxo-2-phenylethylidene)indolin

-2-one (0.1 mmol). Then the mixture was stirred at room temperature for 27 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **4p**: 41.2 mg as a light yellow solid, 74% yield;  $[\alpha]_D^{20} = -353.2$  (c = 0.68 in CHCl<sub>3</sub>); 98% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 12.52 min, t (major) = 23.31 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.72-7.64 (m, 2H), 7.52 (d, J = 7.6 Hz, 1H), 7.43 (t, J = 7.2 Hz, 1H), 7.30 (t, J = 7.6 Hz, 2H), 7.20-7.14 (m, 1H),

7.05 (t, J = 7.2 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.86 (d, J = 7.6 Hz, 1H), 6.46 (d, J = 2.4 Hz, 1H), 6.32 (dd, J = 15.6, 10.0 Hz, 1H), 6.22 (dd, J = 8.4, 2.4 Hz, 1H), 5.16 (d, J = 15.6 Hz, 1H), 5.03 (dd, J = 26.4, 10.8 Hz, 2H), 4.06 (d, J = 9.6 Hz, 1H), 4.01-3.88 (m, 3H), 3.64 (s, 3H), 3.34 (s, 3H), 3.29 (t, J = 9.6 Hz, 1H), 3.12 (dd, J = 19.6, 8.0 Hz, 1H), 2.31 (d, J = 18.8 Hz, 1H), 2.05 (s, 3H), 1.14 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 200.6, 177.8, 165.6, 160.5, 148.2, 143.7, 143.0, 140.5, 137.2, 133.1, 131.2, 128.6, 128.4, 127.3, 126.8, 126.7, 125.2, 124.4, 124.4, 121.7, 121.2, 107.7, 96.3, 59.9, 56.9, 55.3, 52.4, 49.9, 49.2, 44.2, 33.4, 19.3, 14.1. ESI-HRMS: calcd. for C<sub>36</sub>H<sub>35</sub>NO<sub>6</sub>+Na<sup>+</sup> 600.2357, found 600.2361.



Synthesis of 4q: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of (*E*)-7-chloro-1-methyl-3-(2-oxo-2-phenylethylidene)indolin-2-one (0.1

mmol). Then the mixture was stirred at room temperature for 22 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **4q**: 27 mg as a light yellow solid, 49% yield;  $[\alpha]_{D}^{20} = -188.4$  (*c* = 0.36 in CHCl<sub>3</sub>); >99% ee, determined by HPLC analysis [Chiralpak OD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min,  $\lambda$  = 254 nm, t (minor) = 7.13 min, t (major) = 10.65 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm)7.68 (d, J = 7.2) Hz, 2H), 7.60 (d, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.37 (t, J = 7.6 Hz, 2H), 7.23 (d, Hz, 1H), 7.12 (t, J = 7.2 Hz, 1H), 7.00 (t, J = 8.0 Hz, 2H), 6.93 (d, J = 7.6 Hz, 1H), 6.68 (t, J = 8.0 Hz, 1H), 6.37 (dd, J = 15.2, 10.0 Hz, 1H), 5.32 (d, J = 15.2 Hz, 1H), 4.05 (dd, J = 7.2, 6.4 Hz, 2H), 3.97-3.95 (m, 2H), 3.59 (s, 3H), 3.37 (t, J = 9.6 Hz, 1H), 3.17 (dd, J = 18.0, 6.8 Hz, 1H), 2.41 (d, J = 18.4 Hz, 1H), 2.15 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H).<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 200.5, 176.9, 165.4, 148.4, 143.6, 140.1, 139.3, 137.2, 133.3, 133.0, 131.3, 130.6, 128.6, 128.31, 127.3, 126.7, 125.5, 124.3, 124.2, 123.2, 121.8, 121.8, 115.2, 59.9, 52.4, 50.0, 49.2, 44.4, 33.3, 29.5, 19.4, 14.2. ESI-HRMS: calcd. for C<sub>34</sub>H<sub>30</sub><sup>35</sup>ClNO<sub>4</sub>+Na<sup>+</sup> 574.1756, found 574.1758.



**diastereomer 4q':** 18 mg as a light yellow solid, 32% yield;  $[\alpha]_D^{20} = -35.7$  (c = 0.30 in CHCl<sub>3</sub>); 95% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda = 254$  nm, t (major) = 9.74 min, t (minor) = 18.91 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.83 (d, J = 7.6

Hz, 2H), 7.63-7.51 (m, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.29-7.23 (m, 2H), 7.17 (t, J = 7.6 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 6.90-6.83 (m, 2H), 6.74 (dd, J = 15.4, 10.0 Hz, 1H), 5.58 (d, J = 15.4 Hz, 1H), 4.44 (dd, J = 12.8, 6.4 Hz, 1H), 4.21-4.18 (m, 2H), 3.52 (d, J = 7.6 Hz, 1H), 3.42 (s, 3H), 2.99 (t, J = 9.6 Hz, 1H), 2.84 (dd, J = 18.4, 5.6 Hz, 1H), 2.72-2.58 (m, 1H), 2.16 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H).<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 199.7, 178.3, 165.6, 147.8, 144.9, 140.0, 138.9, 136.4, 133.1, 132.9, 132.1, 130.4, 128.5, 128.4, 127.6, 127.4, 126.9, 124.6, 124.2, 123.9, 123.6, 123.1, 115.7, 60.3, 56.1, 50.1, 49.2, 47.1, 34.7, 29.4, 18.9, 14.2. ESI-HRMS: calcd. for  $C_{34}H_{30}^{35}CINO_4+Na^+$  574.1756, found 574.1758.



Synthesis of 4r: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of ethyl (E)-2-(5-chloro-1-methyl-2-oxoindolin-3-ylidene)acetate (0.1 mmol). Then

the mixture was stirred at room temperature for 20 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **4r**: 43.3 mg as a white solid, 83% yield;  $[\alpha]_{D}^{20} = -340.3$  (c = 1.05 in CHCl<sub>3</sub>); 97% ee, determined by HPLC analysis [Chiralpak IC, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (major) = 5.62 min, t (minor) = 7.03 min]; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.59 (d, J = 7.8 Hz, 1H), 7.24 (t, J = 7.8 Hz, 1H), 7.20 (dd, J = 8.4, 1.8 Hz, 1H), 7.13 (d, J = 1.8 Hz, 1H), 7.11 (t, J = 7.8 Hz, 1H), 6.91 (d, J = 7.2 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 6.39 (dd, J = 15.0, 9.6 Hz, 1H), 5.17 (d, J = 15.6 Hz, 1H), 4.28-4.13 (m, 2H), 4.13-4.05 (m, 2H), 3.78 (d, J = 9.6 Hz, 1H), 3.32 (t, J = 9.8 Hz, 1H), 3.23 (s, 3H), 3.09 (dd, J = 17.4, 6.0 Hz, 1H), 2.89 (d, J = 6.6 Hz, 1H), 2.46 (d, J = 17.4 Hz, 1H), 2.16 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H), 1.20 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 175.7, 172.9, 165.3, 148.1, 143.4, 142.0, 140.2, 132.1, 130.3, 128.7, 127.9, 127.4, 126.8, 125.8, 125.0, 124.3, 121.9,

108.8, 60.8, 60.2, 51.2, 49.5, 49.1, 44.0, 33.1, 26.2, 19.3, 14.1, 14.1. ESI-HRMS: calcd. for  $C_{30}H_{30}{}^{35}CINO_5+Na^+$  542.1705, found 542.1713.



Synthesis of 4s: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of ethyl (*E*)-2-(6-chloro-1-methyl-2-oxoindolin-3-ylidene)acetate (0.1 mmol). Then

the mixture was stirred at room temperature for 20 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product 4s: 35.2 mg as a light yellow solid, 68% yield;  $\left[\alpha\right]_{D}^{20} = -157.8$  (c = 0.90 in CHCl<sub>3</sub>); >99% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 9.80 min, t (major) = 12.33 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.58 (d, J = 7.6 Hz, 1H), 7.23 (t, J = 7.6 Hz, 1H), 7.10 (t, J = 7.2 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H), 6.94-6.87 (m, 2H), 6.82 (d, J = 1.6Hz, 1H), 6.35 (dd, J = 15.4, 10.0 Hz, 1H), 5.20 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 3.79 (d, J = 15.4 Hz, 1H), 4.18-4.03 (m, 4H), 4.18-4. 9.6 Hz, 1H), 3.32 (t, J = 9.6 Hz, 1H), 3.20 (s, 3H), 3.09 (dd, J = 18.8, 6.4 Hz, 1H), 2.88 (dd, J = 7.6, 1.6 Hz, 1H), 2.44 (d, J = 18.8 Hz, 1H), 2.15 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H), 1.17 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ (ppm) 176.1, 172.9, 165.4, 148.1, 144.7, 143.4, 140.2, 134.7, 130.3, 128.9, 127.4, 126.8, 125.8, 125.5, 124.3, 124.3, 122.2, 121.8, 108.5, 60.7, 60.3, 51.5, 49.2, 49.1, 44.0, 33.1, 26.1, 19.3, 14.2, 14.1. ESI-HRMS: calcd. for C<sub>30</sub>H<sub>30</sub><sup>35</sup>ClNO<sub>5</sub>+Na<sup>+</sup> 542.1705, found 542.1720.



Synthesis of 4t: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of ethyl (*E*)-2-(7-chloro-1-methyl-2-oxoindolin-3-ylidene)acetate (0.1 mmol). Then

the mixture was stirred at room temperature for 20 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash

chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **4t**: 36.5 mg as a white solid, 69% yield;  $[\alpha]_{D}^{20} = -25.0$  (c = 1.00 in CHCl<sub>3</sub>); 99% ee, determined by HPLC analysis [Chiralpak IC, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (major) = 6.27 min, t (minor) = 8.08 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.59 (d, J = 8.0 Hz, 1H), 7.24 (t, J = 7.6 Hz, 1H), 7.14-7.11 (m, 2H), 7.03 (d, J = 7.6 Hz, 1H), 6.91 (d, J = 7.2 Hz, 1H), 6.85 (t, J = 8.0 Hz, 1H), 6.35 (dd, J = 15.6, 10.0 Hz, 1H), 5.34 (d, J = 15.6 Hz, 1H), 4.15-4.02 (m, 4H), 3.70 (d, J = 8.0 Hz, 1H), 3.60 (s, 3H), 3.38 (t, J = 10.0 Hz, 1H), 3.06 (dd, J = 18.4, 6.8 Hz, 1H), 2.90 (d, J = 18.4 Hz, 1H), 2.45 (d, J = 18.4 Hz, 1H), 2.16 (s, 3H), 1.25 (t, J = 7.2 Hz, 3H), 1.14 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 176.5, 172.8, 165.4, 148.2, 143.5, 140.1, 139.4, 133.4, 130.9, 130.6, 127.4, 126.8, 126.0, 124.3, 123.2, 122.8, 122.0, 115.5, 60.6, 60.0, 51.8, 49.2, 49.2, 44.5, 33.3, 29.5, 19.4, 14.2, 14.1. ESI-HRMS: calcd. for C<sub>30</sub>H<sub>30</sub><sup>35</sup>ClNO<sub>5</sub>+Na<sup>+</sup> 542.1705, found 542.1712.



Synthesis of 4u: 5,6-Dichloro-1-(Propan-2-ylidene)-1*H*-indene-3carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of (*E*)-1-(methoxymethyl)-3-(2-oxo-2-phenylethylidene)indolin-

2-one (0.1 mmol). Then the mixture was stirred at room temperature for 19 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **4u**: 47 mg as a white solid, 77% yield;  $[\alpha]_D^{20} = -286.7$  (c = 0.85 in CHCl<sub>3</sub>); >99% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 12.07 min, t (major) = 17.35 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.71 (d, J = 7.6 Hz, 2H), 7.65 (s, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.37 (t, J = 7.6 Hz, 2H), 7.15-7.04 (m, 2H), 7.00-6.91 (m, 2H), 6.79 (t, J = 7.4 Hz, 1H), 6.31 (dd, J = 15.2, 10.0 Hz, 1H), 5.27-5.03 (m, 3H), 4.17 (d, J = 8.4 Hz, 1H), 4.11-3.91 (m, 3H), 3.42 (s, 3H), 3.33 (t, J = 9.6 Hz, 1H), 3.19 (dd, J = 18.8, 7.2 Hz, 1H), 2.39 (d, J = 18.8 Hz, 1H), 2.12 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 200.4, 177.0, 165.2, 146.6, 143.7, 141.6, 140.3, 137.1, 133.2, 131.4, 130.4, 129.6, 129.2, 128.8, 128.6, 128.4, 127.9, 126.2, 125.9, 125.7, 123.1, 122.3, 109.2, 71.4, 60.0, 56.9, 52.0, 50.2, 48.6, 44.0, 33.4, 19.4, 14.2. ESI-HRMS: calcd. for C<sub>35</sub>H<sub>31</sub><sup>35</sup>Cl<sub>2</sub>NO<sub>5</sub>+Na<sup>+</sup> 638.1471, found



Synthesis of 4v: 5,6-Dimethoxy-1-(Propan-2-ylidene)-1*H*-indene-3carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of ethyl (*E*)-2-(7-chloro-1-methyl-2-oxoindolin-3-ylidene)acetate

(0.1 mmol). Then the mixture was stirred at room temperature for 25 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product 4v: 49.4 mg as a white solid, 81% yield;  $[\alpha]_{D}^{20} = -72.7$  (c = 3.00 in CHCl<sub>3</sub>); >99% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda$  = 254 nm, t (minor) = 26.83 min, t (major) = 59.81 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.70 (d, J = 7.6 Hz, 2H), 7.49 (t, J = 7.2 Hz, 1H), 7.35 (t, J = 7.6 Hz, 2H), 7.17 (s, 1H), 7.12-7.06 (m, 2H), 6.93 (d, J = 8.0 Hz, 1H), 6.78 (t, J = 7.6 Hz, 1H), 6.44-5.32 (m, 2H), 5.22-5.03 (m, 3H), 4.11 (d, J = 8.4 Hz, 1H), 4.03-3.97 (m, 3H), 3.90 (s, 3H), 3.79 (s, 3H), 3.41 (s, 3H), 3.35 (t, J = 9.6 Hz, 1H), 3.15 (dd, J = 18.4, 7.6 Hz, 1H), 2.39 (d, J = 18.6 Hz, 1H), 2.13 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ (ppm) 200.6, 177.3, 165.6, 148.6, 148.6, 148.5, 141.7, 137.3, 136.39, 133.0, 131.3, 129.8, 128.6, 128.4, 126.0, 123.0, 122.5, 121.3, 109.1, 107.8, 107.3, 71.5, 59.9, 56.9, 56.2, 56.0, 52.3, 50.6, 49.1, 44.3, 33.3, 30.9, 19.2, 14.2. ESI-HRMS: calcd. for C<sub>37</sub>H<sub>37</sub>NO<sub>7</sub>+Na<sup>+</sup> 630.2462, found 630.2464.



Synthesis of 4w: 1-Cyclopentylidene-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of (E)-1-(methoxymethyl)-3-(2-oxo-2-phenylethylidene) indolin-2-one (0.1

mmol). Then the mixture was stirred at room temperature for 24 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired

product **4w**: 45.4 mg as a white solid, 80% yield;  $[\alpha]_{D}^{20} = -185.1$  (c = 0.74 in CHCl<sub>3</sub>); 95% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda = 254$  nm, t (major) = 12.38 min, t (minor) = 15.83 min];<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.50 (d, J = 7.6 Hz, 1H), 7.39-7.32 (m, 3H), 7.31-7.25 (m, 1H), 7.18 (d, J = 8.0 Hz, 3H), 7.13 (d, J = 7.6Hz, 1H), 7.09 (t, J = 7.6 Hz, 1H), 6.99 (t, J = 7.5 Hz, 2H), 6.65 (d, J = 7.6 Hz, 1H), 6.41 (dd, J = 15.6, 8.8 Hz, 1H), 5.25 (d, J = 15.6 Hz, 1H), 4.88 (d, J = 10.8 Hz, 1H), 4.44 (d, J = 10.8 Hz, 1H), 4.03 (dd, J = 14.0, 7.2 Hz, 2H), 3.86 (d, J = 10.4 Hz, 1H), 3.67 (t, J = 8.0 Hz, 1H), 3.40-3.35 (m, 1H), 3.21-3.08 (m, 4H), 2.95-2.88 (m, 1H), 2.86-2.73 (m, 1H), 2.30-2.18 (m, 1H), 2.06-2.01 (m, 1H), 1.98-1.82 (m, 1H), 1.34-2.23 (m, 1H), 1.17 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 200.9, 179.1, 165.8, 148.4, 144.1, 141.2, 139.5, 138.8, 138.2, 132.5, 130.4, 128.3, 128.0, 127.8, 127.7, 127.0, 125.4, 125.1, 123.3, 123.0, 121.7, 108.8, 71.8, 60.0, 57.0, 56.6, 55.9, 54.8, 48.8, 43.6, 32.9, 30.2, 26.1, 14.2. ESI-HRMS: calcd. for C<sub>37</sub>H<sub>35</sub>NO<sub>5</sub>+Na<sup>+</sup> 596.2407, found 596.2409.



Synthesis of 4x: 1-Cyclohexylidene-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of (E)-1-(methoxymethyl)-3-(2-oxo-2-phenylethylidene)indolin-2-one (0.1

mmol). Then the mixture was stirred at room temperature for 24 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **4x**: 45.7 mg as a white solid, 79% yield;  $[\alpha]_D^{20} = -171.3$  (c = 0.58 in CHCl<sub>3</sub>); 96% ee, determined by HPLC analysis [Chiralpak ID, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 10.33 min, t (major) = 11.43 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.71-7.62 (m, 3H), 7.47 (t, J = 7.2 Hz, 1H), 7.33 (t, J = 7.6 Hz, 2H), 7.23 (d, J = 7.6 Hz, 1H), 7.12 (t, J = 7.2 Hz, 1H), 7.05 (t, J = 7.6 Hz, 1H), 6.98 (d, J = 7.6 Hz, 1H), 6.95-6.88 (m, 2H), 6.71 (t, J = 7.6 Hz, 1H), 6.37 (dd, J = 15.6, 10.0 Hz, 1H), 5.19 (d, J = 15.6 Hz, 1H), 5.18-5.07 (m, 2H), 4.05-3.95 (m, 3H), 3.73 (s, 1H), 3.52-3.43 (m, 2H), 3.39 (s, 3H), 2.57 (d, J = 10.8 Hz, 1H), 2.29-2.16 (m, 1H), 2.16-2.07 (m, 1H), 1.80 (t, J = 13.6 Hz, 3H), 1.60-1.37 (m, 2H), 1.18 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 201.5, 177.8, 165.5, 148.5, 144.2, 141.4, 140.4, 137.9, 133.0, 132.3, 129.7, 129.2, 128.5, 128.5, 128.3, 127.2, 126.7, 126.1, 124.8, 124.5, 122.7, 121.5, 108.9, 71.4, 59.8, 56.7, 52.2, 51.4, 50.3, 49.6, 41.5, 34.5, 29.4, 26.5, 25.9, 14.2. ESI-HRMS: calcd. for C<sub>38</sub>H<sub>37</sub>NO<sub>5</sub>+Na<sup>+</sup> 610.2564, found 610.2565.



Synthesis of 6: 1-(Propan-2-ylidene)-1*H*-indene-3-carbaldehyde (0.12 mmol), catalyst C2 (7.2 mg, 0.02 mmol), acid A2 (2.7 mg, 0.02 mmol) were dissolved in CHCl<sub>3</sub> (1.0 mL), followed by the addition of (*Z*)-2-benzylidene-5-methylenecyclopentan-1-one (0.1 mmol). Then the mixture was stirred at room

temperature for 20 h. After completion, purification by flash chromatography on silica gel (EtOAc/petroleum ether) to give the cycloadduct. Subsequently, Wittig reaction of the cycloadduct with Ph<sub>3</sub>PCHCO<sub>2</sub>Et (35 mg, 0.1 mmol) was conducted in DCM (1.0 mL) at room temperature overnight. Then the mixture was concentrated, and purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the desired product **6**: 45.2 mg as a white solid, 67% yield;  $[\alpha]_D^{20}$  = +88.0 (c = 0.40 in CHCl<sub>3</sub>); 85% ee, determined by HPLC analysis [Chiralpak IE, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min,  $\lambda$  = 254 nm, t (minor) = 24.59 min, t (major) = 29.26 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.55 (dd, J = 7.6, 3.2 Hz, 3H), 7.47-7.36 (m, 4H), 7.32-7.24 (m, 1H), 7.20-7.13 (m, 1H), 7.04 (d, J = 7.6 Hz, 1H), 6.77 (dd, J = 15.6, 9.6 Hz, 1H), 5.77 (d, J = 15.6 Hz, 1H), 4.08-4.02 (m, 2H), 3.64 (t, J = 9.6 Hz, 1H), 3.24-3.17 (m, 1H), 3.06-2.89 (m, 2H), 2.41-2.21 (m, 2H), 2.15-2.12 (m, 1H), 2.04 (d, J = 2.0 Hz, 3H), 1.94-1.87 (m, 2H), 1.69-1.64 (m, 1H), 1.14 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 210.6, 165.7, 148.8, 144.3, 140.1, 136.2, 135.6, 133.4, 132.6, 130.6, 129.3, 128.6, 127.8, 127.3, 126.8, 124.6, 124.0, 123.2, 60.1, 54.3, 49.8, 48.2, 31.5, 30.2, 26.5, 26.0, 19.3, 14.0. ESI-HRMS: calcd. for C<sub>30</sub>H<sub>30</sub>O<sub>3</sub>+Na<sup>+</sup> 461.2087, found 461.2085.

### 6. Transformation of cycloadduct 4b



Synthesis of 7: The cycloadduct 4b (0.1 mmol) and 20% Pd/C was dissolved in MeOH (1.0 mL).

The suspension stirred under an atmosphere of hydrogen overnight. The mixture was filtered and the solvent evaporated. The product **7** was isolated by flash chromatography on silica gel (EtOAc/petroleum ether): 45.1 mg as a white solid, 82% yield;  $[\alpha]_{D}^{20} = +59.5$  (c = 0.75 in CHCl<sub>3</sub>); 99% ee, determined by HPLC analysis [Chiralpak IB, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min,  $\lambda = 254$  nm, t (minor) = 6.40 min, t (major) = 8.31 min]; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.66 (d, J = 7.2 Hz, 1H), 7.35-7.23 (m, 6H), 7.15-7.03 (m, 6H), 5.20 (dd, J = 24.4, 10.8 Hz, 2H), 4.10-3.99 (m, 3H), 3.72 (dd, J = 10.8, 4.4 Hz, 1H), 3.58-3.49 (t, J = 7.2 Hz, 1H), 3.42 (s, 3H), 3.06-2.95 (m, 1H), 2.25-2.13 (m, 3H), 2.07 (dd, J = 10.8, 8.0 Hz, 1H), 2.04-1.96 (m, 1H), 1.92 (dd, J = 13.2, 4.0 Hz, 1H), 1.83-1.78 (m, 1H), 1.47 (d, J = 6.4 Hz, 1H), 1.27-1.24 (m, 1H), 1.21 (t, J = 7.2 Hz, 3H), 0.41 (d, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 181.7, 173.7, 145.5, 144.9, 143.2, 141.9, 134.8, 128.6, 128.0, 127.7, 127.0, 126.7, 123.7, 123.3, 123.3, 122.3, 110.0, 78.4, 72.5, 60.1, 56.9, 51.5, 51.0, 45.5, 44.4, 39.9, 32.1, 31.5, 29.3, 15.3, 14.2. ESI-HRMS: calcd. for C<sub>35</sub>H<sub>39</sub>NO<sub>5</sub>+Na<sup>+</sup> 576.2720, found 576.2719. *The absolute configuration of the newly formed tertiary alcohol has not been assigned yet*.

## 7. Crystal data and structural refinement for enantiopure 4n





The absolute configuration of the Diels–Alder product 4n was unambiguously determined by X-ray crystallographic analysis. Based on these results, we proposed that the product was formed through an *endo*-selective cycloaddition after the final protonation process.

## 8. NMR spectra and HPLC chromatograms













<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)







| Ret Time<br>[min] | Peak<br>Type | Width<br>[min] | Height<br>[mAU] | Area<br>[mAU*s] | Area<br>[%] |
|-------------------|--------------|----------------|-----------------|-----------------|-------------|
| 14.310            | BBA          | 0.39           | 137.3809        | 3519.2876       | 50.6964     |
| 29.009            | BBA          | 0.85           | 61.4001         | 3422.5952       | 49.3036     |
|                   |              |                | Totals:         | 6941.8828       | 100.0000    |



| Ret Time<br>[min] | Peak<br>Type | Width<br>[min] | Height<br>[mAU] | Area<br>[mAU*s] | Area<br>[%] |
|-------------------|--------------|----------------|-----------------|-----------------|-------------|
| 13.593            | BB           | 0.38           | 2.0199          | 50.9763         | 0.5021      |
| 27.278            | BBA          | 0.80           | 189.4639        | 10101.0859      | 99.4979     |
|                   |              |                | Totals:         | 10152.0623      | 100.0000    |






































| # | [min]  |     | [min]  | mAU   | *s    | [mAU | ]     | 8       |
|---|--------|-----|--------|-------|-------|------|-------|---------|
|   |        |     |        |       |       |      |       |         |
| 1 | 14.335 | BBA | 0.6047 | 189.  | 55951 | 4.   | 71272 | 0.4870  |
| 2 | 19.528 | BB  | 0.8517 | 3.873 | 816e4 | 685. | 11749 | 99.5130 |







































S60











| 16.357 BBA 0.78 80 | 3.5150 41263.2500 99.6917 |
|--------------------|---------------------------|













| 12.525 | BBA | 0.47 | 4.0115   | 111.8718   | 0.8290   |
|--------|-----|------|----------|------------|----------|
| 23.314 | BBA | 0.90 | 230.0665 | 13382.2666 | 99.1710  |
|        |     |      | Totals:  | 13494.1385 | 100.0000 |













| Totals: | 13476.1810 | 100.0000 |
|---------|------------|----------|
|         |            |          |



4.5 4.0 fl (ppm) 8.5 8.0 7.5 7. 0 6.5 5.0 3.5 3.0 2.5 2. 0 1.5 1.0 0.0 6.0 5.5 0.5












| Ret Time<br>[min] | Peak<br>Type | Width<br>[min] | Height<br>[mAU] | Area<br>[mAU*s] | Area<br>[%] |  |
|-------------------|--------------|----------------|-----------------|-----------------|-------------|--|
| 10.075            | BB           | 0.34           | 0.8595          | 19.2545         | 0.1360      |  |
| 12.602            | BB           | 0.43           | 495.2272        | 14140.1621      | 99.8640     |  |
|                   |              |                | Totals:         | 14159.4166      | 100.0000    |  |



S77



















| Totals: | 6222.8101 | 100 |
|---------|-----------|-----|
|---------|-----------|-----|



























S92



| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Area<br>mAU *s | Height<br>[mAU ] | Area<br>% |
|-----------|------------------|------|----------------|----------------|------------------|-----------|
|           |                  |      |                |                | -                |           |
| 1         | 6.315            | BBA  | 0.2352         | 1.18909e4      | 771.19019        | 49.4617   |
| 2         | 8.355            | BBA  | 0.2956         | 1.21497e4      | 612.11926        | 50.5383   |

S93



| # | [min] | 11.0 | [min]  | m 7.11 | **    | f == 7.11 | 1     | 2       |
|---|-------|------|--------|--------|-------|-----------|-------|---------|
| # | [111] |      | [111]  | IIIAO  | - 3   | UIIAO     | 1     | °       |
|   |       |      |        |        |       |           |       |         |
| 1 | 6.408 | BB   | 0.2513 | 55.    | 07197 | 3.4       | 48640 | 0.5015  |
| 2 | 8.312 | BB   | 0.3020 | 1.092  | 66e4  | 549.3     | 11676 | 99.4985 |



