Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI)

Cyclocondensation reactions of an electron deactivated 2-aminophenyl tethered imidazole with mono/1,2-biselectrophiles: Synthesis and DFT studies on rationalisation of imidazo[1,2-*a*]quinoxaline versus benzo[*f*]imidazo[1,5-*a*][1,3,5]triazepine selectivity switch

Gaurav Joshi,^{a,} Monika Chauhan,^{a,} Rakesh Kumar,^a Ankush Thakur,^a Sachin Sharma,^a Rajveer Singh,^b Aabid Abdullah Wani,^c Ashoke Sharon,^d Prasad V. Bharatam,^c and Raj Kumar^{a,b*}

^aDepartment of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda-151001 Punjab, India,

^bDepartment of Pharmaceutical Chemistry; I.S.F. College of Pharmacy, Moga, 142001 India

^cDepartment of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, India

^dDepartment of Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India—835215

*Corresponding author; E-mail: raj.khunger@gmail.com; rajcps@cup.ac.in

Table of content

1.	Reaction with anhydrides	S1
2.	List of absolute Gibbs Free Energies	S2
3.	X-ray crystallographic data	S22
4.	Experimental	S23
5.	2D-NMR Correlation Tables	S57
6.	Spectral files	S59
7.	References	S205

1. Reaction with anhydrides

Reaction of **7** with anhydrides such as acetic, maleic, phthalic and Boc_2O could only yield nucleophilic adducts and fail to afford corresponding PS products.

Scheme S1: Reactions of 7 with anhydrides

2. List of absolute Gibbs Free Energies

Table S1: Absolute Gibbs Free Energy (in Hartree) calculated at B3LYP/6-31+G(d) level of theory.

Cmpd. Code	Absolute
-	Energy
7	-660.104414
CDI	-564.490620
Imidazole	-226.182059
Int-A	-998.425809
Int-A1	-998.779443
Int-A2	-998.393686
2A2	-772.262991
Ts2	-814.790496
Acetaldehyde	-153.809079
Water	-76.419139
Int-B	-815.206435
Int-C	-814.810353
Int-D	-814.813403
1-Me	-814.877372
Paratoluenesulphonic	-895.276532
acid	
Paratoluenesulphonate	-894.778770
TS1	-1075.148465

Cartesian Coordinates

List of Cartesian coordinates of all the optimized structures at B3LYP/6-31+G(d) level of theory

7

0	1
---	---

С	-3.20822500	-1.24882200	-0.77386600
С	-3.85861700	-0.07474000	-0.38166200
С	-3.14771800	0.95988800	0.22344300
С	-1.76769700	0.84625800	0.45480300
С	-1.11588600	-0.33189100	0.03712200
С	-1.83416300	-1.36710900	-0.56818800
Η	-3.75922500	-2.05540200	-1.24760600
Η	-4.92737300	0.03696000	-0.54302000
Η	-3.66299800	1.86681100	0.53241300
Η	-1.29836700	-2.25597300	-0.88883800
Ν	0.29071800	-0.48023900	0.24669000
С	1.30544000	0.27391200	-0.31496200
С	0.91226700	-1.51141900	0.94893200
С	2.48572900	-0.34191600	0.08955600

Η	0.33153400	-2.23667600	1.50256400
Ν	2.21111400	-1.45744700	0.87196000
С	3.79023000	0.10283400	-0.24008400
Ν	4.83264900	0.52861100	-0.54461200
Ν	1.06128000	1.33360500	-1.16489200
Η	0.36797600	1.99728100	-0.82236200
Н	1.90949100	1.79761700	-1.47316300
Ν	-1.03263100	1.90361300	1.01742800
Η	-1.60481500	2.59847900	1.48520900
Η	-0.26628700	1.61193600	1.61821100

Acetaldehyde

01

0	-1.23875100	-0.27749500	-0.00000400
С	1.17087300	-0.14860400	-0.00002700
Η	1.71158200	0.22213000	0.88158300
Η	1.16267900	-1.24152100	-0.00057800
Η	1.71195100	0.22327700	-0.88089800
Η	-0.31074700	1.50956800	0.00006800
С	-0.23178200	0.39968800	0.00000200

Water

01			
0	0.00000000	0.00000000	0.11729100
Н	0.00000000	0.77129900	-0.46916500

Н 0.0000000 -0.77129900 -0.46916500

Int-B

01	
----	--

С	0.33647100	0.93445100	-2.00354600
С	2.17236900	0.40823400	-1.04280800
С	1.17173600	-0.26606500	-0.33793100
Ν	-0.00665700	0.09794600	-0.96694000
С	-1.33440500	-0.33744100	-0.63609200
С	-2.18346300	0.49343000	0.12203600
С	-1.77861000	-1.57656100	-1.10771900
С	-3.49513400	0.05145400	0.36614000
С	-3.07197600	-2.01368400	-0.82932000
Η	-1.09779300	-2.18805800	-1.69346200
С	-3.92839000	-1.19169400	-0.08792900
Η	-4.16106200	0.70400400	0.92322700
Η	-3.41093800	-2.97852500	-1.19491800
Η	-4.94266500	-1.51679900	0.12846000
Ν	-1.80737300	1.77878200	0.55611100
Ν	1.62764700	1.14936600	-2.07375200
С	3.56201300	0.41571400	-0.74574200
Ν	4.69502000	0.40155400	-0.47328700
Ν	1.13865100	-1.03249100	0.81135000
С	-0.88968800	1.91945000	1.43205300
Η	-0.39447300	1.04697800	1.88201700
С	-0.44308600	3.26894400	1.89841600
Η	0.62797300	3.40215400	1.69535500
Η	-1.00791100	4.06003100	1.39856700
Η	-0.57113800	3.35713200	2.98568600
Η	-0.41176500	1.34656200	-2.66679800
С	2.11600900	-1.81192600	1.09928800
Η	2.96259800	-1.94700300	0.41401600
С	2.15475200	-2.57919700	2.37983400
Η	2.25014100	-3.65468200	2.17762800
Η	3.04002500	-2.29180700	2.96371200
Η	1.25441500	-2.39673600	2.97206100

INT_C

~ -	0	1
-----	---	---

С	0.30406000	0.84966000	-2.14545800
С	2.22463300	0.29979300	-0.97335200
С	1.15875000	-0.25391300	-0.29287700
Ν	0.02112800	0.10893100	-1.01336200
С	-1.31227600	-0.31801800	-0.67724000
С	-2.16908400	0.51455800	0.06864700
С	-1.75271600	-1.55991200	-1.14222500
С	-3.47920600	0.06634000	0.31245200
С	-3.04424100	-2.00367000	-0.86551200
Η	-1.07185300	-2.16576100	-1.73377900
С	-3.90656200	-1.18224500	-0.13114700
Η	-4.15109600	0.72297200	0.85758200
Η	-3.37833400	-2.97033500	-1.23127300
Η	-4.92074500	-1.50918800	0.08350900
Ν	-1.81740000	1.80907400	0.49535900
Ν	1.65428400	0.95571800	-2.07466800
С	3.59926400	0.30632100	-0.66349300
Ν	4.74143800	0.32462000	-0.42323100
Ν	1.07456600	-0.91939300	0.91428500
С	-0.90298200	1.98202900	1.36669800
С	-0.49945200	3.34984000	1.82363100
Η	0.56889900	3.51496100	1.62886500
Η	-1.08391800	4.11768400	1.31011900
Η	-0.64032500	3.44660500	2.90878200
С	1.93636400	-1.81833700	1.21656200
Η	2.70650900	-2.13139300	0.49797300
С	1.93906900	-2.49190600	2.54856000
Η	1.85436000	-3.57989700	2.42441400
Η	2.89425400	-2.30832900	3.05933100
Η	1.11774100	-2.12978900	3.17176700
Η	2.19245400	1.46711700	-2.76040200
Η	-0.37979300	1.12945500	1.82294700

INT_D

С	-0.20183600	-1.63863100	-0.00530400
С	1.98179800	-1.15494700	-0.13964300
С	1.30610100	0.01668400	0.16888100
Ν	-0.05607800	-0.30949800	0.24650300
С	-1.20489100	0.52602900	0.20127700
С	-2.32282400	-0.07299600	-0.49241900
С	-1.19987600	1.85859000	0.64308100
С	-3.37190200	0.84458500	-0.83490800
С	-2.28489800	2.67351900	0.35855500
Η	-0.35054400	2.24146500	1.19683600
С	-3.35756500	2.15548200	-0.40820400
Η	-4.20572500	0.44549500	-1.40542800
Η	-2.30147300	3.70115600	0.70900400
Η	-4.19606100	2.80304000	-0.65617700
Ν	-2.39667200	-1.35978700	-0.85220800
С	-1.55552900	-2.26357800	-0.08579500
Η	-1.45238600	-3.20523800	-0.64431400
С	-2.12805500	-2.60089900	1.31087800
Η	-1.50905200	-3.34132600	1.83627100
Η	-2.20790400	-1.70287400	1.93270700
Η	-3.13427000	-3.01164900	1.17552500
Ν	1.01889800	-2.15376600	-0.25836500
С	3.36576500	-1.40364200	-0.24436400
Ν	4.50686600	-1.62661100	-0.33571400
Ν	1.78513100	1.26813800	0.46864400
С	2.71225500	1.78925300	-0.24914600
Η	3.06634000	1.29305600	-1.16341100
С	3.34641300	3.09081200	0.10579800
Η	4.42733500	2.95398400	0.24612300
Η	3.22549800	3.80633900	-0.71869800
Η	2.91062500	3.50459700	1.01819100
Η	1.21087900	-3.13894500	-0.38077300

1-Me

С	-0.14259200	-1.61602200	-0.14294900
С	1.95451400	-1.21925200	-0.06363900
С	1.33732100	0.02842800	0.04141000
Ν	-0.02483500	-0.24812600	0.01392700
С	-1.16611700	0.60901500	0.03459800
С	-2.37771100	0.03604800	-0.41666900
С	-1.12445100	1.93442500	0.47349000
С	-3.52722800	0.84031700	-0.44437600
С	-2.28011700	2.71689400	0.43897700
Η	-0.18672100	2.34408900	0.82587600
С	-3.47805100	2.16972400	-0.02922600
Η	-4.46232200	0.41029300	-0.79716100
Η	-2.23951100	3.74790700	0.77739400
Η	-4.38110500	2.77339800	-0.06126500
Ν	-2.38770600	-1.28334700	-0.87257200
С	-1.49760800	-2.25539200	-0.22024900
Η	-1.40774800	-3.12060700	-0.88441000
С	-1.99975600	-2.73054800	1.15872500
Η	-1.29832900	-3.45418600	1.58750700
Η	-2.10184000	-1.88957900	1.85370000
Η	-2.97790900	-3.21707100	1.05778000
Η	-3.31714900	-1.64590700	-1.05339100
Ν	1.01495300	-2.22615100	-0.17820900
С	3.34876600	-1.48382300	-0.00487700
Ν	4.49713800	-1.67692100	0.04443600
Ν	1.82918500	1.30332400	0.24672600
С	2.92650700	1.65946900	-0.31491300
Η	3.44367100	1.00205200	-1.02541400
С	3.56121300	2.98142000	-0.03478700
Η	4.56215700	2.83139500	0.39257800
Η	3.70062100	3.54399700	-0.96785700
Η	2.95690600	3.56853800	0.66142000

TS_2

С	0.13207100	1.67303700	-0.68723800
С	-2.02828500	1.08334000	-0.23602100
С	-1.28961700	-0.08018000	-0.31229100
Ν	0.02573500	0.30308900	-0.60216900
С	1.17463800	-0.54675100	-0.45378300
С	2.23110800	-0.07219600	0.37817400
С	1.19490200	-1.83061800	-1.00639700
С	3.25468500	-0.99120200	0.69751600
С	2.24977800	-2.69265200	-0.71416400
Η	0.38380000	-2.15087200	-1.65089300
С	3.26783500	-2.27123200	0.15505100
Η	4.04748900	-0.65403500	1.35913200
Η	2.27469500	-3.68567600	-1.15363200
Η	4.08512800	-2.94651200	0.39736000
Ν	2.19679600	1.20292900	0.89571000
Ν	-1.11919900	2.12510400	-0.46040500
С	-3.41355000	1.27147500	-0.05331800
Ν	-4.55629300	1.45290600	0.09665300
Ν	-1.69111400	-1.39667600	-0.24245700
С	1.97760100	2.17186700	0.01673500
С	1.85363600	3.58940300	0.52405100
Η	1.42445000	4.24893400	-0.23802800
Η	1.24704800	3.62786700	1.43422500
Η	2.85463700	3.96542000	0.77115900
С	-2.45584400	-1.77614800	0.71279300
Η	-2.72704100	-1.08926500	1.52684700
С	-3.00744400	-3.16028700	0.78091400
Η	-2.70931500	-3.63896300	1.72325500
Η	-4.10531600	-3.12430800	0.77992600
Η	-2.66163100	-3.76259400	-0.06242800
Η	-1.37894800	3.09936500	-0.52953200
Η	2.42443000	2.09204300	-0.98083800

CDI

С	-2.41350300	0.71106400	0.41197800
С	-2.80831000	-1.25243600	-0.35984200
С	-1.46391800	-1.08288500	-0.51746000
Ν	-1.19144600	0.19511400	-0.00856700
Η	-2.48289200	1.69955600	0.84285000
Η	-3.40611300	-2.10821200	-0.64186700
Η	-0.70180700	-1.69685300	-0.96964600
Ν	-3.38657000	-0.13712000	0.23157000
С	-0.00001400	0.94298000	-0.00008900
0	0.00000700	2.15403500	-0.00022300
Ν	1.19148800	0.19512500	0.00861900
С	2.41355700	0.71113200	-0.41175600
С	1.46390300	-1.08276300	0.51766500
Η	2.48291600	1.69971400	-0.84241400
С	2.80820000	-1.25268600	0.35937300
Η	0.70178500	-1.69664100	0.96995700
Η	3.40590700	-2.10866900	0.64097100
Ν	3.38662100	-0.13706300	-0.23123500

INT_A

01	l
----	---

С	-2.18406400	3.64956400	0.09388000
С	-0.86128900	4.04477900	-0.12049400
С	0.18072300	3.11661300	-0.14235300
С	-0.09425800	1.75396800	0.05590500
С	-1.43412900	1.35839700	0.27536300
С	-2.46546600	2.29856700	0.29345000
Η	-2.98580800	4.38146700	0.10854200
Η	-0.62719400	5.09442600	-0.27519400
Η	1.20022700	3.43238900	-0.31435600
Η	-3.48112400	1.95428900	0.46495300
Ν	-1.73351200	-0.02754000	0.48514300
С	-2.17094200	-0.92714400	-0.46723000
С	-1.62520400	-0.74133000	1.68227100
С	-2.29308400	-2.14190800	0.20050600
Η	-1.30749500	-0.25499600	2.59489800
Ν	-1.94795200	-1.99428600	1.53950000
С	-2.70987600	-3.36066000	-0.38991400
Ν	-3.05246700	-4.32763800	-0.94430900
Ν	-2.48016600	-0.55828600	-1.75583400
Η	-1.95570600	0.21500800	-2.14935900
Η	-2.59536800	-1.33058100	-2.40233600
Ν	0.88866000	0.74548700	0.05717700
Η	0.53995100	-0.19021400	0.21937800
С	4.28044200	-0.46559300	-0.43218800
С	3.69529100	-2.36327400	0.37891200
С	2.59331100	-1.56788700	0.51372600
Ν	2.96550400	-0.32519800	-0.01314200
Η	4.81065100	0.35903300	-0.88532600
Η	3.80669800	-3.39603400	0.67952100
Η	1.63211400	-1.76315800	0.96581400
Ν	4.73781000	-1.66965600	-0.21479600
С	2.23852200	0.88530900	-0.16252100
0	2.80225600	1.92022300	-0.46982400

INT_A1

1 1	

С	4.26771400	-1.24261300	0.07973800
С	3.53833800	-2.39542000	-0.21605700
С	2.14222700	-2.36866100	-0.29204700
С	1.47311200	-1.16426000	-0.06357400
С	2.20847400	0.00330900	0.23985600
С	3.59806200	-0.03682400	0.30900300
Η	5.35102900	-1.27856800	0.13697800
Η	4.05524900	-3.33373000	-0.39310700
Η	1.58471500	-3.26783100	-0.52123200
Η	4.14243900	0.87024600	0.55535300
Ν	1.47578500	1.20903800	0.50035700
С	0.90233300	2.02277800	-0.46453200
С	0.82400700	1.50391600	1.70134700
С	-0.07009900	2.75993100	0.20426300
Η	1.10209800	1.01123400	2.62348400
Ν	-0.09580400	2.41402100	1.55382400
С	-0.94201900	3.70863600	-0.38795300
Ν	-1.65745500	4.44687200	-0.93678800
Ν	1.22153300	1.92165800	-1.79995100
Η	2.19456500	1.72985700	-2.01638700
Η	0.84509000	2.66762000	-2.37661700
Ν	0.05805300	-1.02129700	-0.11245100
Η	-0.26600800	-0.06345200	-0.18406700
С	-3.30379600	-2.18971100	-0.35321600
С	-4.06460100	-0.24653200	0.42425400
С	-2.70582000	-0.22130500	0.50405000
Ν	-2.24849800	-1.44279000	0.00556400
Η	-3.24444800	-3.19012300	-0.75638900
Η	-4.80284100	0.48905200	0.70661000
Η	-2.05278600	0.54251400	0.90445700
Ν	-4.40573700	-1.47835100	-0.11152500
С	-0.87002500	-1.99462600	-0.11067300
0	-0.74765600	-3.19389900	-0.19034400
Η	-5.35042000	-1.80139000	-0.29628900

INT_A2

1	1
L	1

С	4.25346800	-1.49555700	-0.17278000
С	2.91694800	-1.88635600	-0.27417400
С	1.89290000	-0.93319800	-0.25495000
С	2.23357200	0.42600400	-0.11169900
С	3.56827500	0.81404800	0.02230200
С	4.57975400	-0.14564700	-0.02301600
Η	5.03576500	-2.24786500	-0.20018300
Η	2.66553400	-2.93850600	-0.38765100
Η	3.80914900	1.86278000	0.16800100
Η	5.61656300	0.16099300	0.07260100
Ν	0.53340800	-1.32389100	-0.49647100
Ν	1.19331400	1.39321700	-0.10225400
С	-0.03115300	1.19245000	0.48959400
С	1.13123100	2.64047300	-0.69748200
Η	1.95440600	3.04218300	-1.27217500
Ν	-0.28091800	0.03418800	1.23176500
Η	-0.94673100	0.15755000	1.98957100
С	-0.45638000	-1.20484100	0.53341100
0	-0.55362700	-2.25618400	1.45401000
Η	0.47634100	-2.24145400	-0.93121300
С	-0.77542300	2.32982400	0.22859000
Ν	-0.02509000	3.22644100	-0.50568600
С	-2.13076500	2.50414900	0.62098200
Ν	-3.24540200	2.50744100	0.95939400
Η	0.21682300	-2.21259600	2.04894000
Ν	-1.80678500	-1.28632400	-0.16788700
С	-2.92338100	-1.79900300	0.36796200
С	-2.12753600	-0.65208500	-1.36120100
Η	-2.98328600	-2.34911500	1.29376300
С	-3.47065400	-0.79784700	-1.54370300
Η	-1.37803500	-0.16700100	-1.96466500
Η	-4.12096200	-0.45653900	-2.33438200
N	-3.93705300	-1.51284300	-0.45625400
Η	-4.90198900	-1.78304400	-0.29594200

2A2

0	1
---	---

С	3.94044800	-0.18084400	-0.16778300
С	3.06471700	0.84490000	0.18084400
С	1.68348800	0.61833500	0.26810900
С	1.19356000	-0.66882600	-0.00969700
С	2.07078400	-1.68638700	-0.40359700
С	3.44214400	-1.45086700	-0.47041300
Η	5.00664800	0.01876000	-0.22126300
Η	3.44779100	1.84044500	0.39157800
Η	1.67035800	-2.66176500	-0.66141400
Η	4.11244100	-2.25068000	-0.76991400
Ν	0.83878500	1.67929700	0.68050300
Ν	-0.19047800	-0.95476000	0.12974600
С	-1.23879400	-0.11481800	-0.16193500
С	-0.76125000	-2.15469400	0.53483400
Η	-0.15650200	-2.98093300	0.88017300
Ν	-1.06291800	1.18080500	-0.63789200
Η	-1.88669100	1.59366000	-1.06527200
С	-0.28619800	2.15002800	0.00452000
0	-0.57661000	3.33227500	-0.02557500
Η	1.32891800	2.46134400	1.10170500
С	-2.39184100	-0.85254200	0.05791700
Ν	-2.06473200	-2.12709900	0.49064900
С	-3.72150900	-0.39538700	-0.13832700
Ν	-4.78971000	0.03141000	-0.32269600

TS-1

1	- 1	
	- I	
	1	

С	4.16797700	-1.33397600	-0.65558100
С	2.83137000	-1.71844900	-0.77842400
С	1.79820000	-0.78229400	-0.62824500
С	2.14626800	0.55033600	-0.32463800
С	3.48184300	0.93106800	-0.16880800
С	4.49595800	-0.01006800	-0.34791700
Η	4.95236400	-2.07247900	-0.79197800
Η	2.58075400	-2.75047900	-1.01147400
Η	3.71977700	1.95882200	0.08995500
Η	5.53392600	0.28850500	-0.23973600
N	0.43590100	-1.13051800	-0.87520900
N	1.10301700	1.50850000	-0.19130600
С	-0.09542200	1.26098300	0.42592000
С	1.00446800	2.78695700	-0.71253000
Η	1.80541200	3.23136900	-1.28714900
N	-0.32227400	0.04590600	1.11229200
С	-0.48102000	-1.27321200	0.26910200
0	-0.40264700	-2.30411000	1.04086800
Η	0.39468300	-2.01333100	-1.38235800
С	-0.86321700	2.40002400	0.26263900
N	-0.15170400	3.34390500	-0.44917700
С	-2.19533600	2.54672400	0.73718400
N	-3.28547900	2.53336700	1.14681600
Ν	-1.88780800	-1.20872600	-0.36395400
С	-2.90137600	-1.93862500	0.11152800
С	-2.34479900	-0.42785700	-1.41658500
Η	-2.82100400	-2.65118100	0.91836500

- $C \quad -3.67359900 \quad -0.69594800 \quad -1.56682600$
- Н -1.68911800 0.22875400 -1.96410000
- Н -4.40464100 -0.30523000 -2.25801800
- N -3.99223000 -1.63781200 -0.60367800
- Н -4.90869500 -2.04664500 -0.45656600
- H -1.16594300 0.13548600 1.68582300
- Н 0.59895600 -0.40687400 2.04148300
- O 1.05960000 -1.22942500 2.72974300
- Н 2.02834300 -1.29930000 2.64668200
- Н 0.59571900 -1.98545700 2.17276900

Imidazole

С	0.98904600	-0.54376300	-0.00009300
С	-1.13941200	-0.28077000	-0.00001000
С	-0.61015600	0.98797400	0.00007200
Ν	0.75913800	0.80523700	0.00005900
Η	1.45995600	1.53313000	0.00018300
Η	1.98619100	-0.96333400	-0.00016300
Η	-2.18194900	-0.56827000	-0.00002400
Η	-1.06120400	1.96929000	0.00013800
Ν	-0.13626000	-1.22687500	-0.00005100

Paratoluenesulphonic acid

01			
С	1.95974900	-1.20145100	0.00897200
С	2.67592500	0.00733300	0.00988500
С	1.95587400	1.20955300	-0.04566300
С	0.56072500	1.21671900	-0.08981400
С	-0.12053600	-0.00117700	-0.08157600
С	0.56751100	-1.21703200	-0.03872600
Η	2.50023300	-2.14481600	0.03771300
Η	2.49182400	2.15547700	-0.06269900
Η	0.01065500	2.15031100	-0.15139700
Η	0.02050500	-2.15411500	-0.05548100
С	4.18463100	0.00569700	0.08081600
Η	4.52805700	-0.22307700	1.09844300
Η	4.61512800	-0.75153900	-0.58426400
Η	4.60081400	0.97900800	-0.19779700
S	-1.90673500	-0.01155600	-0.13194000
0	-2.38367400	1.29701600	-0.58729700
0	-2.35450300	-1.25959600	-0.73245700
0	-2.31075600	-0.12592200	1.46843300
Н	-2.57127100	0.76380800	1.77371100

Paratoluenesulphonate

-11

С	1.94479900	1.20509700	0.00005600
С	2.66231500	0.00337200	0.00006900
С	1.93340600	-1.19890600	0.00005300
С	0.53923000	-1.19655300	0.00000400
С	-0.16429300	0.01413000	-0.00003000
С	0.54369900	1.21451400	0.00000600
Η	2.48651300	2.15099100	0.00009000
Η	2.46853600	-2.14888200	0.00008900
Η	-0.01460400	-2.13119400	-0.00000700
Η	-0.01401800	2.14631200	-0.00000400
С	4.17608200	-0.00966500	-0.00007900
Η	4.57722400	-0.52462800	-0.88415900
Η	4.58155800	1.00908000	0.00161400
Η	4.57737400	-0.52766200	0.88214400
S	-1.99327200	0.00042600	-0.00001000
0	-2.34929000	-0.73188600	1.25090300
0	-2.37410700	1.44300400	-0.00048300
0	-2.34931100	-0.73271400	-1.25042900

1-Me1

Absolute energy: -1885.227952

С	1.70832200	0.89646300	-1.63181500
С	0.07221500	2.12445000	-1.01758600
С	-0.40631600	0.81053800	-0.95484100
Ν	0.67916900	0.02562000	-1.34051400
С	0.79352700	-1.37914500	-1.56786600
С	1.91104200	-1.79603800	-2.32639500
С	-0.13038300	-2.31296400	-1.09242500
С	2.05008600	-3.16190400	-2.61769400
С	0.02895500	-3.66766700	-1.38762200
Н	-0.97326600	-1.96782200	-0.50921300
С	1.11634800	-4.08820800	-2.15832500
Η	2.90312500	-3.48990700	-3.20817600
Н	-0.69718900	-4.38531300	-1.01785400
Η	1.24603200	-5.14051300	-2.39667600
Ν	2.81479800	-0.85298000	-2.81545300
С	3.05119100	0.38357200	-2.07429800
Н	3.44449800	1.12268300	-2.78099800
Η	3.65052900	-1.24965300	-3.22878600
N	1.38607400	2.15166800	-1.44246300
С	-0.62141400	3.30638000	-0.64823700
Ν	-1.20299900	4.27023500	-0.34421600
Ν	-1.59277300	0.26249400	-0.53622700
С	-2.69680600	0.91181100	-0.70051200
Η	-2.72323900	1.85620200	-1.25679000
С	-3.97846200	0.44612400	-0.18232200
С	-5.12595100	1.21258000	-0.46387600
С	-4.09188800	-0.72047300	0.58096600
С	-6.37407800	0.80143300	0.00048400
Η	-5.02629800	2.11498000	-1.05654100
С	-5.33580300	-1.13384600	1.06094500
Η	-3.21594100	-1.31267100	0.81919900
С	-6.49437600	-0.37734900	0.77792900
С	4.04836300	0.27954700	-0.90579200
С	4.52347100	-0.94130200	-0.44391700
С	4.48989200	1.47035200	-0.30686300
С	5.44018100	-0.99634800	0.62080300
Η	4.19866800	-1.88408900	-0.86904200
С	5.40784200	1.42645000	0.74164200
Η	4.10576300	2.41797400	-0.66656000
С	5.89217600	0.18524300	1.22768900
0	-5.35254300	-2.32054700	1.73826100

0	-7.71146100	-0.86724900	1.16310100
0	-7.54411600	1.45112800	-0.27242000
0	5.88625900	-2.24924000	0.94368800
0	6.87910700	0.12655100	2.18187200
0	5.92655200	2.53588600	1.34652600
С	5.51736500	3.81830300	0.88022200
Η	5.78826700	3.96043800	-0.17346500
Η	4.43725900	3.96272600	1.00543400
Η	6.05771600	4.53955200	1.49570900
С	6.55576200	0.61435200	3.49140800
Η	6.33974600	1.68522300	3.47311800
Η	5.69704500	0.06815400	3.90448900
Η	7.43952000	0.42340600	4.10473800
С	6.06391700	-2.61915700	2.31416300
Η	6.06317100	-3.71196400	2.32189400
Η	7.00907600	-2.24247100	2.71132700
Η	5.22967600	-2.25283400	2.92590500
С	-6.13742400	-2.46149500	2.92762600
Η	-7.18033500	-2.68486500	2.69271900
Η	-5.68950100	-3.29567500	3.47302700
Η	-6.07865300	-1.55465600	3.54254400
С	-8.52866400	-0.05796200	2.02420600
Η	-8.87525900	0.84126900	1.51127600
Η	-9.37911500	-0.68729500	2.29505900
Η	-7.97207200	0.21845600	2.92914000
С	-7.50190900	2.61166200	-1.09746300
Η	-7.10074100	2.37590500	-2.09105300
Η	-8.53770500	2.94144900	-1.19226000
Η	-6.90413500	3.40743900	-0.63568800

3. X- Ray Crystallography data

Manuscript Text:

Single crystal X-ray analysis confirmed the structure of the compound 1-amino-4-(3,4,5-trimethoxyphenyl)imidazo[1,2-*a*]quinoxaline-2-carbonitrile (**1A2**). Figure S1 represents an ORTEP diagram drawn with 50% probability displacement ellipsoids with atomic labeling.

Figure S1: ORTEP diagram for 1A2

4. Experimental

General considerations: All the reagents were purchased from commercial suppliers. Biotage® Initiator microwave synthesizer (Company: Biotage® Model No. 355301 (Initiator EXPEU)) (used for sealed reactions) and Discover System; Company: CEM; Model No. 908010; Serial No. DU9671) (used for open reflux reactions) were used for carrying out microwave reactions at 200 W power. ¹H NMR and ¹³C NMR spectra were obtained in CDCl₃/*d*₆-DMSO on 400 MHz and 100 MHz Bruker Advance II NMR spectrometer, respectively using TMS ($\delta = 0$) as an internal standard. The physical data of intermediates and final compounds are presented as below:

Synthesis

N-(2-amino-1, 2-dicyano-vinyl)-formimydic acid ester (9)

To the reaction mixture of 2,3-diaminomaleonitrile (3 g, 27.75 mmol) in 1,4-dioxane (20 ml), was added CH(OEt)₃ (4.5 mL). The mixture was heated at 80 °C for 6 h (TLC). The reaction mixture was evaporated using rotary evaporator, dark brown solid was extracted with diethyl ether (6 X 20 mL) and kept overnight. Yellow needles (**9**) were formed which were used for next step without further purification. Yield: 81 %; Color: Yellow; m.p: 135 °C (reported 134 - 136 °C)¹.

N-(2-amino-1,2-dicyano-vinyl)-*N*'-(2-amino-phenyl)formimidine (10)

To a suspension of **9** (3 g, 21.42 mmol) in methanol (1.5 mL) added *o*-phenylenediamine (1.85 g, 17.14 mmol) and aniline hydrochloride (2.7 mg, 0.021 mmol). The reaction mixture was stirred for 12 h at rt. The precipitate so obtained was filtered, washed with diethyl ether and dried to afford **10**. Yield: 83 %; Color: Brown; m.p: 118 -120 $^{\circ}$ C.

5-Amino-1-(2-amino- phenyl)-1H-imidazole-4-carbonitrile (7)

To a suspension of **10** (1 g, 4.42 mmol), in water (1 mL) added 1 M aqueous KOH solution (15 mL) which was stirred for 12 h at rt (TLC). The mixture was extracted with EtOAc (10 mL × 3). Organic layer was washed with water, brine, dried over anhydrous Na₂SO₄ and concentrated under vacuum using rotary evaporator to afford the crude product 5-Amino-1-(2-amino-phenyl)-1*H*-imidazole-4-carbonitrile (7). The crude product was recrystallized from EtOAc. Yield: 89 %; Color: Yellowish solid; m.p: 196 - 198 °C. IR (KBr, cm⁻¹): 3334 (NH₂ stretch), 2211 (CN stretch), 1577 (NH₂ bend). ¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 7.20 - 7.16 (2H, m), 7.00 (1H, d, *J* = 7.32 Hz), 6.85 (1H, d, *J* = 7.92 Hz), 6.66-6.62 (1H, t, *J* = 7.32 Hz), 5.86 (2H, s, NH₂), 5.13 (2H, s, NH₂). ¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 147.79, 144.72, 132.85, 130.30, 128.42, 118.10, 117.54, 116.54, 116.38, 90.38. HRMS (TOF-ESI) Calcd for C₁₀H₉N₅, 199.2200 [M]⁺; observed: 199.9258 [M+H]⁺.

5-(((Z)-3,4,5-trimethoxybenzylidene)amino)-1-(2-(((E)-3,4,5-

trimethoxybenzylidene)amino)phenyl)-1H-imidazole-4-carbonitrile (11)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) in methanol (1 mL) was added 3,4,5-trimthoxybenzaldehyde (199.9 mg, 1.004 mmol) and *p*-TsOH (1 mol %). The mixture was stirred 1 h. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL \times 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 1 : 9).Yield: 94 %; Color: Yellowish solid; m.p: 181-183 °C; IR (KBr, cm⁻¹): 3665 (NH stretch), 2075 (CN stretch), 1454 (C=N).¹H NMR (400 MHz,

CDCl₃, TMS = 0) δ : 8.59 (1H. s), 8.16 (1H, s), 7.68 (1H, s), 7.53 - 7.47 (2H, m), 7.41 - 7.38 (1H, dd, *J* = 4 Hz), 7.17 (1H, d, *J* = 4 Hz), 6.77 (4H, d, *J* = 4 Hz), 3.90 (3H, s), 3.89 (3H, s), 3.82 (6H, s), 3.79 (6H, s).¹³C NMR (100 MHz, CDCl₃, TMS = 0) δ : 163.13, 161.46, 153.43, 153.32, 148.94, 147.31, 142.08, 141.44, 137.88, 130.82, 130.56, 130.42, 128.22, 127.19, 129.22, 119.08, 116.04, 106.16, 105.69, 61.00, 56.16, 56.14.MS (ESI): m/z: 556.21 [M+H]⁺. HRMS (TOF-ESI) Calcd for C₃₀H₂₉N₅O₆, 555.2118[M]⁺; observed: 578.2002 [M+Na]⁺.

1-amino-4-(3-nitrophenyl)imidazo[1,2-*a*]quinoxaline-2-carbonitrile (1A1)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) in methanol (1 mL) was added 3nitrobenzaldehyde (75.9 mg, 0.502 mmol) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (open reflux) at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 2 : 8).Yield: 89 %; Colour: Yellow; m.p: 312 °C (decomposed).IR (KBr, cm⁻¹): 3328 (NH₂ stretch), 2230 (CN stretch), 1455 (NO₂ Symmetric stretch), 1350 (NO₂ asymmetric stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 9.38 (1H, s), 8.99 (1H, d, *J* = 8 Hz), 8.61 (1H, d, *J* = 8 Hz), 8.39 (1H, d, *J* = 8 Hz), 8.03 (1H, d, *J* = 8 Hz), 7.84 (1H, m), 7.64 (2H, t, m), 7.00 (2H, s, NH₂).¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 148.11, 146.93, 145.44, 136.81, 135.98, 135.90, 132.28, 130.34, 130.24, 128.99, 127.98, 127.48, 125.57, 124.20, 116.35, 116.00, 100.00. HRMS (TOF-ESI) Calcd for C₁₇H₁₀N₆O₂, 330.0865[M]⁺; observed: 353.0762[M+Na]⁺.

1-amino-4-(3,4,5-trimethoxyphenyl)imidazo[1,2-a]quinoxaline-2-carbonitrile (1A2)

To a reaction mixture of **4** (100 mg, 0.502 mmol,) in 1,4-dioxane (1 mL) was added 3,4,5trimethoxybenzaldehyde (136.5 mg, 0.693 mmol) using *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (open reflux) at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from the reaction mixture, concentrated under vacuum using rotary evaporator, extracted with ethyl acetate, dried and purified via flash chromatography (EtOAc: Pet ether:: 1.5 : 8.5). Yield: 84 %; Colour: brownish Solid, mp:211-213 °C. IR (KBr, cm-1) 3318 & 3245 (NH₂ stretch), 2957 (sp³ hybz C-H stretch), 2216 (CN stretch), 1220 (C-O stretching). ¹H NMR (400 MHz, CDCl₃, TMS = 0) δ : 8.53 (1H, d, *J* = 4), 8.14 (1H, d, *J* = 8), 7.96 (2H, s), 7.64-7.60 (2H, m), 4.53 (2H, s; D₂O exchangeable NH₂), 4.03 (6H, s), 3.94 (3H, s). ¹³C NMR (100 MHz, CDCl₃, TMS = 0) δ : 153.02, 149.63, 142.20, 140.67, 136.57, 133.59, 130.83, 130.40, 128.14, 127.53, 127.45, 114.82, 107.20, 104.19, 61.09, 56.39. HRMS (TOF-ESI) Calcd for C₂₀H₁₇N₅O₃, 375.1331[M]⁺; observed: 376.1349[M+H]⁺.

3-amino-10-oxo-10,11,12,12a-tetrahydroimidazo[1,2-a]pyrrolo[2,1-c]quinoxaline-2carbonitrile

To a reaction vial, a suspension of **7** (200 mg, 1.005 mmol) in methanol (1 mL) was added Methyl 4-oxobutanoate (116.58 mg, 1.005 mmol) and *p*-TsOH (1mol %). The mixture was heated under mw irradiation (open reflux) at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with ethyl acetate (10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 4 : 6). Yield: 82 %; Colour: Brown; m.p: 202 - 204 °C. IR (KBr, cm-1) 3420 & 3215 (NH₂ stretch), 2979 (sp³ hybz C-H stretch), 2207 (CN stretch), 1692 (C=C stretch), 1645 (C=O stretch), 1215 (C-O stretching). ¹H NMR (400 MHz, d₆-DMSO, TMS = 0) δ : 8.01 (1H, d, *J* = 8.02 Hz), 7.93 (1H, d, *J* = 7.96 Hz), 7.35-7.27 (2H, m), 6.37 (2H, s), 4.87-4.83 (1H, t, *J* = 4.85 Hz), 2.69-2.28 (3H, m). ¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 173.39, 146.78, 141.11, 128.22,

126.87, 126.72, 125.92, 122.14, 118.46, 117.02, 93.76, 53.84, 30.99, 21.85. HRMS (TOF-ESI) Calcd for C₁₄H₁₁N₅O, 265.0964 [M]⁺; observed: 266.1144 [M+H]⁺.

(*E*)-1-((3,4,5-trimethoxybenzylidene)amino)-4-(3,4,5-trimethoxyphenyl)imidazo[1,2*a*]quinoxaline-2-carbonitrile (1B1)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) in methanol (1 mL) was added 3,4,5-trimthoxybenzaldehyde (199.9 mg, 1.004 mmol) and *p*-TsOH (1mol %). The mixture was heated under mw irradiation (open reflux) at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with ethylacetate(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 2.5 : 7.5). Yield: 93 %; Colour: yellow; m.p: 142 - 144 °C. IR (KBr, cm⁻¹): 2227 (CN stretch), 1575 (C=N stretch), 1501 (C=C stretch) and 1127 (C-O stretch).¹H NMR (400 MHz, CDCl₃, TMS = 0) δ : 8.98 (2H, s), 8.12 - 8.09 (1H, dd, *J* = 4 Hz), 8.03 (2H, s), 7.64 - 7.55 (2H, m), 7.28 (2H, d, *J* = 8 Hz), 4.00 (15H, s), 3.94 (3H, s).¹³C NMR (100 MHz, CDCl₃, TMS = 0) δ : 164.11, 153.74, 152.93, 149.02, 144.79, 143.14, 140.71, 136.87, 135.66, 130.31, 130.13, 130.07, 128.63, 127.50, 117.83, 115.56, 107.27, 106.93, 104.03, 61.19, 60.95, 56.36, 56.27. HRMS (TOF-ESI) Calcd for C₃₀H₂₇N₅O₆, 553.1961[M]⁺; observed: 375.2598 [M- C₁₀H₁₂O₃]⁺.

(*E*)-1-((3,4-dimethoxybenzylidene)amino)-4-(3,4-dimethoxy-phenyl)imidazo[1,2*a*]quinoxaline-2-carbonitrile (1B2)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) in methanol (1 mL) was added 3,4dimethoxybenzaldehyde (166.83 mg, 1.004 mmol) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (open reflux) at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc (10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 3 : 7).Yield: 90 %; Colour: yellow; m.p: 141 - 143 °C. IR (KBr, cm⁻¹): 2227 (CN stretch), 1575 (C=N stretch), 1503 (C=C stretch) and 1126 (C-O). ¹H NMR (400 MHz, CDCl₃, TMS = 0) δ : 9.59 (1H, s), 9.09 (1H, d, *J* = 4 Hz) 8.18 (1H, d, *J* = 4 Hz), 7.80 (1H, d, *J* = 4 Hz), 7.69 - 7.65 (2H, m), 7.28 - 7.16 (5H, m), 3.95 (6H, s), 3.93 (6H, s).¹³C NMR (100 MHz, CDCl₃, TMS = 0) δ : 161.24, 155.76, 153.81, 153.74, 152.18, 152.09, 146.01, 130.42, 129.13, 128.15, 127.40, 123.97, 121.97, 118.18, 117.07, 115.70, 113.58, 113.19, 111.26, 104.80, 56.64, 56.49, 55.93, 55.87. HRMS (TOF-ESI) Calcd for C₂₈H₂₃N₅O₄, 493.1800 [M]⁺; observed: 494.25648 [M+H]⁺. (*E*)-1-((2,5-dimethoxybenzylidene)amino)-4-(2,5-dimethoxyphenyl)imidazo[1,2a]quinoxaline-2-carbonitrile (1B3)

1**B**3

To a reaction vial, a suspension of 7 (100 mg, 0.502 mmol) in methanol (1 mL) was added 2,5dimthoxybenzaldehyde (166.83 mg, 1.004 mmol) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (open reflux) at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 0.5: 9.5).Yield: 93 %; Colour: Reddish orange; m.p: 140 - 142 °C.IR (KBr, cm⁻¹): 2233 (CN stretch), 1496 (C=C stretch) and 1039 (C-O stretch).¹H NMR (400 MHz, CDCl₃, TMS = 0) δ : 9.57 (1H, s), 9.09 - 9.06 (1H, m), 8.20 - 8.19 (1H, m) 7.79 (1H, d, *J* = 3.2 Hz), 7.67 - 7.64 (2H, m), 7.20 -7.17 (1H, dd, *J*= 8 Hz), 7.15 - 7.14 (1H, m), 7.05 (2H, d, *J*= 4 Hz), 7.02 (1H, d, *J* = 8 Hz), 3.93 (3H, s), 3.91 (3H, s), 3.83 (3H, s), 3.78 (3H, s).¹³C NMR (100 MHz, CDCl₃, TMS = 0) δ : 161.32, 155.81, 153.86, 152.16, 129.15, 127.43, 122.03, 118.18, 117.24, 115.76, 113.63, 113.24, 111.30, 99.99, 56.66, 56.51, 55.93, 55.89. HRMS (TOF-ESI) Calcd for C₂₈H₂₃N₅O₄, 493.1750 [M]⁺; observed: 494.25648 [M+H]⁺ and 346.1389 [M-C₉H₁₀O₃]⁺.

(*E*)-1-((4-chlorobenzylidene)amino)-4-(4-chlorophenyl)imidazo[1,2-*a*]quinoxaline-2carbonitrile (1B4)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) in methanol (1 mL) was added 4chlorobenzaldehyde (141.12 mg, 1.004 mmol) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (open reflux) at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 1.5 : 8.5).Yield: 84 %; Colour: Yellow; m.p: 283 – 285 °C.IR (KBr, cm⁻¹): 2075 (CN stretch), 1345 (C=N stretch), 772 (C-Cl stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 9.26 (1H, s), 8.84 (1H, d, *J* = 8 Hz), 8.66-8.56 (4H, m), 8.20 (2H, d, *J* = 8 Hz), 8.13 (1H, d, *J* = 4 Hz), 7.73 (2H, m), 7.68 (2H, *J* = 8 Hz), 7.62 (1H, *J* = 8 Hz), 6.95 (1H, s). HRMS (TOF-ESI) Calcd for C₂₄H₁₃C₁₂N₅, 441.0548[M]⁺; observed: 443.2332[M+2]⁺.

(*E*)-1-((4-isopropylbenzylidene)amino)-4-(4-isopropylphenyl)imidazo[1,2-a]quinoxaline-2-carbonitrile (1B5)

To a reaction vial, a suspension of **7** (0.2 g, 1.005 mmol) in methanol (1 mL) was added was added 4-isopropylbenzaldehyde (0.268 g, 1.809 mmol) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (open reflux) at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 2.5 : 7.5).Yield: 75 %; Colour: Yellow; m.p: 165-168°C.IR (KBr, cm⁻¹): 1668 (C=N), 2225 (CN), 1600 (C=C Stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 9.13 (1H, s), 9.08-9.04 (1H, m), 8.52 (2H, d, *J* = 8 Hz), 8.15-8.13 (1H, m), 8.03 (2H, d, *J* = 8 Hz), 7.63-7.61 (2H, m), 7.47-7.42 (4H, m), 3.08-2.98 (2H, m), 1.24 (12H, m). HRMS (TOF-ESI) Calcd for C₃₀H₂₇N₅, 457.2266 [M]+; observed: 458.2122 [M+H]+.

((*E*)-1-((2,4-dinitrobenzylidene)amino)-4-(2,4-dinitrophenyl)imidazo[1,2-a]quinoxaline-2-carbonitrile(1B6)

To a reaction vial, a suspension of **7** (0.2 g, 1.005 mmol) in methanol (1 mL) was added was added 2,4 dinitrobenzaldehyde (0.393 g, 2.001 mmol) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (open reflux) at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL \times 3), washed with water, brine, dried over

anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 0.5 : 9.5). Yield: 88 %; Colour: Yellow; m.p: 138-140 °C.IR (KBr, cm⁻¹): 1607 (C=N), 2225 (CN), 1540 (asymmetric stretch NO₂), 1375 (symmetric stretch NO₂).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 9.64 (1H, s), 8.94-8.89 (3H, m), 8.79-8.76 (2H, m), 8.67 (1H), 8.27-8.16 (2H, m), 7.93-7.80 (2H, m). HRMS (TOF-ESI) Calcd for C₂₄H₁₁N₉O₈, 553.0731 [M]+; observed: 378.0890 [M- C₇H₆N₂O₄]⁺.

(*E*)-1-((3,4,5-trimethoxybenzylidene)amino)-4-(3,4,5-trimethoxyphenyl)-4,5dihydroimidazo[1,2-*a*]quinoxaline-2-carbonitrile (1C1)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) in methanol (1 mL) was added 3,4,5-trimthoxybenzaldehyde (199.9 mg, 1.004 mmol) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (sealed tube) at 80 °C for 25 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 1 : 9).Yield: 92 %; Colour: yellow; m.p: 389 °C (decomposed).IR (KBr, cm⁻¹): IR (KBr, cm⁻¹): 2125 (CN stretch), 3285 (NH stretch) cm⁻¹, 1641 (C=N stretch), 1421 (C=C stretch) and 1093 (C-O stretch). ¹H NMR (400 MHz, d₆ -DMSO & CDCl₃, TMS = 0) δ : 8.93 (1H, s), 8.18- 8.15 (1H, dd, *J* = 4 Hz) 7.64- 7.59 (2H, m), 7.52- 7.49 (1H, dd, *J* = 4 Hz), 7.16- 7.13 (1H, m), 7.08- 7.05 (1H, dd, *J* = 4 Hz), 7.00- 6.96 (3H, m), 6.94- 6.83 (3H, m), 5.59 (1H, s), 3.99 (3H, s), 3.89 (3H, s), 3.86 (6H, s), 3.83 (3H, s), 3.82 (3H, s). HRMS (TOF-ESI) Calcd for C₃₀H₂₉N₅O₆, 555.2100 [M]⁺; observed: 556.1965 [M+H]⁺.

1-((3,4-dimethoxybenzylidene)amino)-4-(3,4-dimethoxyphenyl)-4,5-dihydroimidazo[1,2*a*]quinoxaline-2-carbonitrile (1C2)

To a reaction vial, a suspension of 7 (100 mg, 0.502 mmol) in methanol (1 mL) was added veratraldehyde (166.83 mg, 1.004 mmol) and p-TsOH (1 mol %). The mixture was heated under mw irradiation (sealed tube) at 80 °C for 25 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL \times 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 3 : 7). Yield: 88 %; Colour: yellow; m.p: 387 °C (decomposed).IR (KBr, cm⁻¹): 2218 (CN stretch), 3333 (NH stretch) cm⁻¹ ¹, 1511 (C=N stretch), 1366 (C=C stretch) and 1022 (C-O stretch).¹H NMR (400 MHz, CDCl₃, TMS = 0) δ: 8.95 (1H, s), 7.66 - 7.62 (1H, dd, J= 4 Hz), 7.54 - 7.52 (1H, m), 7.28 (1H, s), 7.19 - 7.16 (1H, m), 7.11- 6.97 (2H, m), 6.95 - 6.86 (3H, m), 5.61 (1 H, s), 4.01 (1H, s, NH), 3.97 (6H, s), 3.89 (6H, s). ¹³C NMR (100 MHz, CDCl₃, TMS = 0) δ : 163.24, 153.68, 149.65, 149.38, 149.33, 147.04, 143.63, 136.83, 131.16, 128.32, 127.55, 125.85, 123.02, 119.74, 119.60, 116.15, 115.58, 111.14, 110.87, 110.25, 109.69, 99.68, 56.22, 56.01, 56.88, 56.93, 56.88. HRMS (TOF-ESI) Calcd for C₂₈H₂₅N₅O₄, 495.1900 [M]⁺; observed: 496.3256 [M+H]⁺. (E) - 1 - ((2, 5 - dimethoxy benzy lidene) amino) - 4 - (2, 5 - dimethoxy phenyl) imidazo [1, 2 - dimethoxy phenyl] imidazo [1, 2 - dimethox*a*]quinoxaline-2-carbonitrile (1C3)

1C3

To a reaction vial, a suspension of 7 (100 mg, 0.502 mmol) in methanol (1 mL) was added 2,5dimethoxybenzaldehyde (166.83 mg, 1.004 mmol) and p-TsOH (1 mol %). The mixture was heated under mw irradiation (sealed tube) at 80 °C for 25 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 1.5 : 8.5). Yield: 79 %; Colour: Reddish orange; m.p: 263 - 265 °C.IR (KBr, cm⁻¹): 2219 (CN stretch), 3333 (NH stretch), 1640 (C=N stretch), 1502 (C=C stretch) and 1127 (C-O stretch).¹H NMR (400 MHz, CDCl₃, TMS = 0) δ : 8.92 (1H, s), 8.18 - 8.15 (1H, dd, *J*= 4 Hz), 7.59 (1H, d, *J* = 4 Hz,), 7.52 - 7.49 (1H, dd, *J*= 4 Hz), 7.17 - 7.13 (1H, m), 7.00 - 6.83 (7H, m), 5.59 (1H, s), 3.98 (6H, s), 3.86 (3H, s), 3.83 (3H, s).¹³C NMR (100 MHz, CDCl₃, TMS = 0) δ : 163.27, 153.69, 149.67, 149.41, 149.37, 147.03, 143.59, 136.78, 131.13, 128.33, 127.55, 125.84, 123.04, 119.84, 119.73, 119.63, 115.56, 111.16, 110.87, 110.26, 109.71, 99.67, 56.21, 56.01, 55.93, 55.89.HRMS (TOF-ESI) Calcd for C₂₈H₂₅N₅O₄, 495.1907 [M]⁺; observed: 496.1827 [M+H]⁺. (*E*)-1-((3,4-dihydroxybenzylidene)amino)-4-(3,4-dihydroxyphenyl)-4,5-dihydroimidazo[1,2-a]quinoxaline-2-carbonitrile (1C4)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) in methanol (1 mL) was added 3,4dihydroxybenzaldehyde (138.6 mg, 1.004 mmol) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (sealed tube) at 80 °C for 25 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 2 : 8).Yield: 77 %; Colour: Yellow; m.p: 286 - 288 °C.IR (KBr, cm⁻¹): 2221 (CN stretch), 3354 (OH stretch), 3029 (NH stretch), 1633 (C=N stretch), 1367 (C=C stretch) and 1092 (C-O stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 8.16 (2H, m), 7.81 (1H, s), 7.60 (2H, m), 7.46 (1H, d, *J* = 4 Hz), 7.41 (1H, d, *J* = 4 Hz), 7.19 - 7.13 (1H, m), 7.12 - 7.01 (1H, m), 6.97 (1H, m), 6.40 (1H, d, *J* = 4 Hz), 5.85 (1H, t, *J*= 8 Hz).¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 149.38, 147.04, 144.15, 138.39, 132.59, 129.74, 127.88, 127.76, 127.70, 123.15, 123.07, 122.86, 121.58, 116.04, 97.38, 74.76. HRMS (TOF-ESI) Calcd for C₂₄H₁₇N₅O₄, 439.1281[M]⁺; observed: 413.2660[M - CN]⁺.

(*E*)-1-((2-nitrobenzylidene)amino)-4-(2-nitrophenyl)-4,5-dihydroimidazo[1,2*a*]quinoxaline-2-carbonitrile (1C5)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) in methanol (1 mL) was added 2nitrobenzaldehyde (151.72 mg, 1.004 mmol) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (sealed tube) at 80 °C for 25 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether::1 : 9). Yield: 90 %; Colour: Brownish solid; m.p: 216 - 218 °C. IR (KBr, cm⁻¹): 2075 (CN stretch), 3331 (NH stretch), 1398 (NO₂ Symmetric stretch), 1219 (NO₂ asymmetric stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 9.34 (1H, s), 8.27 (1H, d, *J* = 8 Hz), 8.16 (1H, d, *J* = 8 Hz), 8.05 (1H, d, *J* = 8 Hz), 7.96 - 7.87 (3H, m), 7.72 (1H, t, *J* = 16 Hz), 7.62 (2H, t, *J* = 16 Hz), 7.14-7.06 (2H, m), 6.97 (1H, d, *J* = 8 Hz), 6.84 (1H, t, *J* = 16 Hz), 6.29 (1H, s).¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 161.89, 149.93, 149.04, 146.02, 143.63, 137.94, 134.62, 134.24, 134.16, 133.59, 130.61, 130.35, 128.94, 128.37, 125.58, 125.49, 122.01, 119.56, 119.31, 116.48, 115.59, 100.47, 51.65.MS (ESI): m/z: 465.74 [M]⁺. HRMS (TOF-ESI) Calcd for C₂₄H₁₅N₇O₄, 465.1186[M]⁺; observed: 488.1083[M + Na]⁺.

(*E*)-1-((3-nitrobenzylidene)amino)-4-(3-nitrophenyl)-4,5-dihydroimidazo[1,2*a*]quinoxaline-2-carbonitrile (1C6)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) in.methanol (1 mL) was added 3nitrobenzaldehyde (151.72 mg, 1.004 mmol) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (sealed tube) at 80 °C for 25 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 1.5 : 8.5).Yield: 93 %; Colour: Yellow; m.p: 216 - 218 °C. IR (KBr, cm⁻¹): 2222 (CN stretch), 1496 (NO₂ Symmetric stretch), 1039 (NO₂ asymmetric stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 9.21 (1H, s), 8.81 (1H, s), 8.46 (2H, t, *J*= 16 Hz), 8.29 (1H, s), 8.17 (1H, d, *J* = 8 Hz), 7.87 - 7.79 (3H, m), 7.66 (1H, m), 7.36 (1H, s), 7.14 (1H, m), 7.04 (1H, m), 6.81 (1H, m), 6.00 (1H, s).¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 164.24, 148.83, 148.29, 146.36, 143.62, 142.04, 137.70, 136.48, 135.38, 134.54, 131.49, 130.71, 128.42, 127.86, 124.47, 123.63, 122.49, 122.04, 119.48, 119.23, 116.37, 115.87, 100.07, 53.96; HRMS (TOF-ESI) Calcd for C₂₄H₁₅N₇O₄, 465.1186[M]⁺; observed: 466.1286 [M + H]⁺.

(*E*)-1-((4-nitrobenzylidene)amino)-4-(4-nitrophenyl)-4,5-dihydroimidazo[1,2*a*]quinoxaline-2-carbonitrile (1C7)

To a reaction vial, a suspension of 7 (100 mg, 0.502 mmol) in methanol (1 mL) was added 4nitrobenzaldehyde (151.72 mg, 1.004 mmol) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (sealed tube) at 80 °C for 25 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL \times 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 1.3 : 8.7).Yield: 82 %; Colour: Yellow; m.p: 216 - 218 °C.IR (KBr, cm⁻¹): 2222 (CN stretch), 3345 (NH stretch), 1522 (NO₂ Symmetric stretch), 1345 (NO₂ asymmetric stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 9.19 (1H, d, *J* = 1.2 Hz), 8.41 (2H, d, *J* = 8 Hz), 8.29 (2H, d, *J* = 8 Hz), 8.22 - 8.17 (2H, m), 7.94 (1H, d, *J* = 8 Hz), 7.68 (1H, d, *J* = 8 Hz), 7.29 (1H, d, *J* = 8 Hz), 7.17 - 7.13 (1H, m), 7.09 - 7.07 (1H, m), 6.86 - 6.81 (1H, m), 5.93 (1H, s).¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 162.32, 149.69, 147.18, 146.60, 145.32, 142.88, 139.86, 136.94, 130.29, 128.21, 127.66, 124.04, 123.37, 121.51, 118.95, 118.55, 115.80, 54.08;

(*E*)-1-((2,3,4-trimethoxybenzylidene)amino)-4-(2,3,4-trimethoxyphenyl)-4,5dihydroimidazo[1,2-*a*]quinoxaline-2-carbonitrile (1C8)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) in methanol (1 mL) was added 2,3,4-trimthoxybenzaldehyde (199.9 mg, 1.004 mmol) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (sealed tube) at 80 °C for 25 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 2 : 8).Yield: 92 %; Colour: yellow; m.p: 228 - 230 °C.IR (KBr, cm⁻¹): 2125 (CN stretch), 3285 (NH stretch), 1641 (C=N stretch), 1366 (C=C stretch), 1127 (C-O stretch).¹H NMR (400 MHz, CDCl₃, TMS = 0) δ : 9.13 (1H, s), 8.02 (1H, d, *J* = 8 Hz) 7.91 (1H, d, *J* = 8 Hz), 7.12 - 7.08 (2H, m), 6.91 (2H, m), 6.82- 6.76 (3H, m), 5.82 (1H, s).¹³C NMR (100 MHz, CDCl₃, TMS = 0) δ : 159.82, 158.25, 155.18, 153.50, 151.10, 147.62, 143.38, 141.63, 141.55, 137.76, 127.32, 125.99, 123.01, 122.82, 117.66, 115.31, 109.27, 107.88, 98.29, 60.60, 60.32, 56.31, 55.90, 49.71. HRMS (TOF-ESI) Calcd for C₃₀H₂₉N₅O₆, 555.2100 [M]⁺; observed: 556.1967 [M+H]⁺. (*E*)-1-((5-hydroxy-2-nitrobenzylidene)amino)-4-(5-hydroxy-2-nitrophenyl)-4,5-dihydroimidazo[1,2-a]quinoxaline-2-carbonitrile (1C9)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) in methanol (1 mL) was added 5-hydroxy-2-nitrobenzaldehyde (0.335 g, 2.010 mmol) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (sealed tube) at 80 °C for 25 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 1.7: 8.3).Yield: 78 %; Colour: brown; m.p: 224-226 °C.IR (KBr, cm⁻¹): 1611 (C=N), 2225 (CN), 3367 (NH stretch), 1519 (NH bend).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 11.3 (1H, s), 10.9 (1H, s), 9.44 (1H, s), 8.13 (1H, m), 8.7 (1H, d, *J* = 8.56), 7.93 (1H, d, *J* = 7.32), 7.55 (1H, d, *J* = 3.04), 7.14-7.11 (2H, m), 7.07-6.99 (2H, m), 6.90-6.83 (3H, m), 6.41 (1H, s).¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 190.69, 163.06, 162.99, 162.48, 145.88, 143.43, 140.12, 137.93, 137.17, 129.09, 128.83, 128.40, 119.57, 119.33, 116.27, 116.13, 115.34, 100.59, 56.55, 51.55, 51.41, 21.4, 19.08.HRMS (TOF-ESI) Calcd for C₂₄H₁₅N₇O₆, 497.1084 [M]+; observed: 498.1112 [M+H]+.

(E)-1-((2-bromobenzylidene)amino)-4-(2-bromophenyl)-4,5-dihydroimidazo[1,2a]quinoxaline-2-carbonitrile (1C10)

To a reaction vial, a suspension of 7 (100 mg, 0.502 mmol) in methanol (1 mL) was added was added 2-bromobenzaldehyde (0.370 g, 2.010 mmol) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (sealed tube) at 80 °C for 25 min. After the completion of the

reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 2 : 8).Yield: 79 %; Colour: yellow; m.p: 155-157 °C.IR (KBr, cm⁻¹): 2984 (CH stretch) 2221 (CN). ¹H NMR (400 MHz, CDCl₃, TMS = 0) δ : 9.53 (1H, s), 8.28-8.26 (1H, m), 8.13 (1H, d, *J* = 8), 7.71-7.69 (1H, m), 7.62-7.60 (1H, m), 7.50-7.40 (3H, m), 7.20-7.16(1H, m), 7.11-7.07 (1H, m), 6.99-6.97 (1H, m), 6.92-6.89 (1H, m), 6.77 (1H, d, *J* = 4), 6.11 (1H, m), 4.75 (1H, s).¹³C NMR (100 MHz, CDCl₃, TMS = 0) δ : 163.37, 146.39, 142.77, 137.55, 135.91, 134.15, 133.93, 133.75, 133.50, 130.37, 129.24, 129.12, 128.14, 128.07, 127.87, 127.75, 123.26, 122.99, 120.16, 119.81, 116.27, 115.52, 101.15, 55.27.HRMS (TOF-ESI) Calcd for C₂₄H₁₅Br₂N₅, 530.9694 [M]⁺; observed: 533.9792 [M + 2]⁺ and 535.9767.

(*E*)-1-((2-Fluorobenzylidene)amino)-4-(2-Fluorophenyl)-4,5-dihydroimidazo[1,2a]quinoxaline-2-carbonitrile (1C11)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) in methanol (1 mL) was added 2-fluorobenzaldehyde (0.248 g, 2.010 mmol) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (sealed tube) at 80 °C for 25 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 1 : 9).Yield: 71 %; Colour: yellow; m.p: 139-141 °C.IR (KBr, cm⁻¹): 2125 (CN stretch), 3285 (NH stretch), 1641 (C=N stretch), 1366 (C=C stretch), 1127 (C-O stretch).¹H NMR (400 MHz, CDCl₃, TMS = 0) δ : 9.33 (1H, s), 8.19-8.11 (2H, m), 7.60-7.55 (1H, m), 7.34-7.29 (2H, m), 7.26-7.11 (4H, m), 7.06 (1H, d, *J* = 8), 6.92-6.88 (1H, t, *J* = 8), 6.79 (1H, d, *J* = 8), 6.0 (1H, s), 4.47 (1H, s).¹³C NMR (100 MHz, CDCl₃, TMS = 0) δ : 164.76, 161.11 159.24, 157.96, 157.91, 142.44, 136.20, 135.11, 135.02, 130.68, 130.60, 128.79, 128.49, 127.80, 124.92, 124.74, 122.94, 120.13, 119.76, 116.69, 116.48, 116.16, 115.96, 115.57, 50.06. HRMS (TOF-ESI) Calcd for C₂₄H₁₅F₂N₅ 411.1296[M]⁺; observed: 412.1283 [M + H]⁺.

(*E*)-4-(furan-2-yl)-1-((furan-2-ylmethylene)amino)-4,5-dihydroimidazo[1,2a]quinoxaline-2-carbonitrile (1C12)

To a reaction vial, a suspension of **7** (0.1 g, 0.502 mmol) in methanol (1 mL) was added furan-2-carbaldehyde (0.386 g, 1.005 mmol) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (sealed tube) at 80 °C for 25 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 2.5 : 7.5).Yield: 73 %; Colour: brown; m.p: 246-248 °C.IR (KBr, cm⁻¹): 1611 (C=N), 2218 (CN), 1219 (C-O stretch), 1484 (C=C aromatic stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) & 8.83 (1H, s), 8.25 (1H, d, *J* = 7.32 Hz), 7.75 (1H, d, *J* = 1.24 Hz), 7.35 (1H, d, *J* = 3.68 Hz), 7.22 (1H, d, *J* = 3.68 Hz), 7.11 (1H, t, *J* = 7.32 Hz), 6.93 (1H, t, *J* = 7.36 Hz), 6.84 (1H, d, *J* = 1 Hz), 6.66-6.65 (1H, m), 6.28-6.27 (1H, m), 6.16 (1H, d, *J* = 3.64 Hz), 5.75 (1H, s), 4.54 (1H, s).¹³C NMR (100 MHz, CDCl₃, TMS = 0) δ : 151.37, 150.26, 157.96, 147.95, 143.20, 135.70, 127.69, 120.41, 119.90, 115.96, 113.28, 110.61, 110.61, 108.03, 49.97. HRMS (TOF-ESI) Calcd for C₂₀H₁₃N₅O₂, 355.1069 [M]⁺; observed: 378.0699 [M+Na]⁺.

1-amino-4-(3-nitrophenyl)-4,5-dihydroimidazo[1,2-a]quinoxaline-2-carbonitrile (1D1)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) in methanol (1 mL) was added 3nitrobenzaldehyde (75.86 mg, 0.502 mmol.) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (sealed tube) at 80 °C for 25 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 1.5 : 8.5).Yield: 86 %; Colour: Brownish solid; m.p: 374 °C (decomposed).IR (KBr, cm⁻¹): 3384 (NH stretch), 2226 (CN stretch), 1527 (NO₂ Symmetric stretch), 1366 (NO₂ asymmetric stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 8.17 - 8.13 (2H, m), 7.92-7.65 (3H, m), 7.17- 6.84 (4H, m), 6.34 (2H, NH₂), 5.71 (1H, s).¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 148.21, 146.51, 142.37, 139.31, 137.70, 136.10, 134.59, 130.52, 127.56, 127.42, 123.36, 122.89, 122.45, 119.34, 116.61, 93.83, 54.09.HRMS (TOF-ESI) Calcd for C₁₇H₁₂N₆O₂, 332.10 [M]⁺; observed: 333.1169 [M+H]⁺.

1-amino-4-(4-cyanophenyl)-4,5-dihydroimidazo[1,2-*a*]quinoxaline-2-carbonitrile (1D2)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) in methanol (1 mL) was added *p*cyanobenzaldehyde (65.82 mg, 0.502 mmol and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (sealed tube) at 80 °C for 25 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 2 : 8).Yield: 94 %; Colour: Yellow; m.p: 275 - 277 °C.IR (KBr, cm⁻¹): 3365 (NH stretch), 2228, 2143 (CN stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 8.77 (2H, d, *J* = 8.24 Hz), 8.65 - 8.62 (1H, dd, *J* = 8 Hz) 8.03 - 7.97 (1H, m), 7.94 - 7.81 (2H, *J* = 8 Hz), 7.64 - 7.57 (2H, m), 6.76 (2H, s), 4.08-4.03 (1H, m). ¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 147.86, 144.65, 139.05, 135.59, 131.68, 131.50, 129.91, 129.74, 128.08, 127.41, 126.55, 118.22, 115.69, 115.19, 112.94, 100.19, 59.60.

1-amino-4-propyl-4,5-dihydroimidazo[1,2-a]quinoxaline-2-carbonitrile (1D3)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) in methanol (1 mL) was added butyraldehyde (0.0724 g, 1.005 mmol) and *p*-TsOH (1 mol %). The mixture was heated under mw irradiation (sealed tube) at 80 °C for 25 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 1 : 9).Yield: 88 %; Colour: white; m.p: 132-134 °C. IR (KBr, cm⁻¹): 3387 (NH₂ stretch) 2227 (CN stretch), 1218 (NH bend).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 7.72 (1H, d, *J* = 7.92 Hz), 7.00 (1H, t, *J* = 7.96 Hz), 6.92 (1H, d, *J* = 1.2 Hz), 6.75 (1H, t, *J* = 7.36 Hz), 6.27 (1H, s), 6.13 (2H, s), 4.14 (1H, t, *J* = 6.12 Hz), 1.65-1.54 (2H, m), 1.41-1.36 (2H, m), 0.84 (3H, t, *J* = 7.32 Hz).¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 146.2, 141.0, 138.4, 127.1, 122.9, 118.6, 117.6, 117.4, 116.3, 93.6, 51.0, 39.8, 18.4, 14.3.MS (ESI): m/z: 253 [M+], 55 (base peak); HRMS (TOF-ESI) CalcdC₁₄H₁₅N₅, 253.1327 [M⁺]; observed: 254.1009 [M+H]⁺.

1-amino-4,4-dimethyl-4,5-dihydroimidazo[1,2-*a*]quinoxaline-2-carbonitrile (1E1)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) was added acetone (1 equiv.) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), acetone was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 1.8 : 8.2).Yield: 88 %; Colour: Light Yellow: mp: 213 - 215 °C. ¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 7.80 (1H, d, *J* = 8 Hz), 7.05-7.02 (1H, m), 6.86 (1H, d, *J* = 8 Hz), 6.80 (1H, t, *J* = 8 Hz), 6.28 (1H, NH, s), 6.11 (2H, NH, s), 1.31 (6H, s). ¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 199.91, 146.94, 144.58, 137.03, 127.25, 121.86, 117.95, 117.74, 115.57, 98.48, 51.40, 28.64, 26.54, 22.84. HRMS (TOF-ESI) Calcd for C₁₃H₁₃N₅, 239.1171 [M]⁺; observed: 262.1062 [M + Na]⁺.

1-amino-4-methyl-4-(3-nitrophenyl)-4,5-dihydroimidazo[1,2*a*]quinoxaline-2carbonitrile (1E2)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) in methanol (1 mL) was added 3nitro acetophenone (82.90 mg, 0.502 mmol) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 1.5 : 8.5).Yield: 91 %; Colour: Light Yellow: mp: 264 – 266 °C.IR (KBr, cm⁻¹): 3329 (NH stretch), 2212 (CN stretch), 1233 (C-N stretch), 1609 (C=N stretch), 1453 (C=C stretch), 1528 (NO₂ Symmetric stretch), 1376 (NO₂ asymmetric stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 8.10 (1H, s, NH), 7.97 (1H, d, *J* = 8 Hz), 7.64 (1H, d, *J* = 8 Hz), 7.59-7.49 (3H, m), 7.06 (2H, s), 6.70 (1H, s), 6.25 (2H, s, NH₂), 1.79 (3H, s).¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 147.88, 146.95, 146.15, 136.71, 132.15, 130.12, 127.02, 122.33, 120.03, 118.91, 117.26, 116.14, 93.28, 57.17, 28.10. HRMS (TOF-ESI) Calcd for C₁₈H₁₄N₆O₂, 346.1178 [M]⁺; observed: 369.1066 [M + Na]⁺.

1-amino-4-benzoyl-4-phenyl-4,5-dihydroimidazo[1,2-*a*]quinoxaline-2-carbonitrile (1E3)

To a reaction vial, a suspension of **7** (100 mg, 0.502 mmol) in methanol (1 mL) was added benzil (105.48 mg, 0.502 mmol) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL \times 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 2 : 8).Yield: 95 %; Colour: yellow; m.p: 184 - 186 °C.IR Spectrum (KBr, cm⁻¹): 3440 (NH stretch), 2206 (CN stretch),

1448 (NH bend), 1670 (C=N stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 7.74 (2H, t, *J*= 16 Hz), 7.63 (2H, d, *J* = 4 Hz), 7.49 (1H, m), 7.36-7.31 (7H, m), 7.01 (1H, t, *J*= 4 Hz), 6.93 (1H, d, *J* = 4 Hz), 6.78 (1H, m), 6.36 (2H, NH, s)¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 196.26, 139.53, 137.50, 135.80, 134.04, 133.64, 130.22, 128.88, 128.72, 127.65, 127.51, 122.57, 120.19, 117.30, 116.91, 93.51, 69.72. HRMS (TOF-ESI) Calcd for C₂₄H₁₇N₅O, 391.1433 [M]⁺; observed: 414.1319 [M + Na]⁺.

1-amino-4-methyl-4-phenyl-4,5-dihydroimidazo[1,2-a]quinoxaline-2-carbonitrile (1E4)

To a reaction vial, **7** (100 mg, 0.502 mmol) in methanol was added acetophenone (189.04 mg, 1.005 mmol) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 3 : 7).Yield: 92 %; Colour: Light Yellow, m.p: 189-190 °C.IR Spectrum (KBr, cm⁻¹): 3422 (NH stretch), 2202 (CN stretch), 1371 (CH₃ bend).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 7.62 (1H, d, *J* = 8 Hz), 7.33 (1H, s), 7.16 (4H, d, *J* = 4 Hz), 7.01 (2H, d, *J* = 4 Hz), 6.67 (1H, d, *J* = 4 Hz), 6.14 (2H, s), 1.74 (3H, s).¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 146.46, 145.10, 142.81, 137.90, 128.76, 127.47, 127.38, 127.26, 125.73, 123.19, 118.85, 117.61, 117.41, 93.71, 52.72, 28.99. HRMS (TOF-ESI) Calcd C₁₈H₁₆N₅, 301.1327 [M+]; observed: 302.1330 [M+H]^{+.}

1-amino-4-(3-bromophenyl)-4-methyl-4,5-dihydroimidazo[1,2-a]quinoxaline-2carbonitrile (1E5)

To a reaction vial, **7** (100 mg, 0.502 mmol) in methanol was added 3-bromoacetophenone (120 mg, 0.502 mmol) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 4 : 6).Yield: 89 %; Colour: Light Yellow, m.p: 244 - 245 °C.IR Spectrum (KBr, cm⁻¹): 3085 (NH₂ stretch), 2923 (CH stretch), 1460 (CH₃ bend), 785 (Br stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 7.72 (1H, d, *J* = 8 Hz), 7.40 (1H, t, *J* = 4 Hz), 7.18 - 7.07 (3H, m), 6.98-6.95 (1H, dd, *J* = 4 Hz, *J*₃₄ = 4 Hz), 6.90 - 6.86 (1H, m), 4.63 (1H, s), 4.18 (1H, s), 1.55 (3H, s).¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 144.61, 134.85, 129.65, 129.06, 127.41, 126.59, 122.93, 121.67, 119.32, 115.83, 115.46, 114.42, 76.27, 27.69. HRMS (TOF-ESI) CalcdC₁₈H₁₅BrN₅, 379.0433 [M⁺]; observed: 380.0441 [M+H]⁺.

1-amino-4-methyl-4-(naphthalene-2-yl)-4,5-dihydroimidazo-[1,2-a]quinoxaline-2carbonitrile (1E6)

To a reaction vial, **7** (200 mg, 1.005 mmol) in methanol was added 2-acetonaphthone (170.87 mg, 1.005 mmol) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 3 : 7). Yield: 93 %; Colour: Light Yellow, m.p. decomposed at 240 °C.IR Spectrum (KBr, cm⁻¹): 3665 (NH stretch), 3330 (Ar stretch), 2942 (CH stretch), 1020 (Ar bend).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 7.82 - 7.77 (2H, m), 7.73 (1H, t, *J* = 8 Hz), 7.67 (1H, d, *J* = 8 Hz), 7.56 - 7.52 (3H, m), 7.43 - 7.41 (2H, m), 7.14 (1H, dd, *J* = 4 Hz), 7.06 (1H, m), 6.66 (1H, m), 6.28 (2H, s), 1.92 (3H, s).¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 146.60, 142.66, 137.93, 132.81, 132.44, 128.67, 128.32 127.86, 127.31, 126.88, 126.63, 124.26, 123.27, 118.97, 117.66, 116.65, 93.68, 57.93, 28.73. HRMS (TOF-ESI) CalcdC₂₂H₁₈N₅, 351.1484 [M⁺]; observed: 352.1240 [M+H]⁺.

1-amino-4-(2,4-dimethoxyphenyl)-4-methyl-4,5-dihydroimidazo[1,2-*a*]quinoxaline-2carbonitrile (1E7)

To a reaction vial, **7** (200 mg, 1.005 mmol,) in methanol was added 2,4-dimethoxyacetophenone (180. mg, 1.005 mmol)) the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 1 : 9).Yield: 86 %; Colour: Light Yellow, m.p: 136 -137 °C.IR Spectrum (KBr, cm⁻¹): 3300 (NH stretch), 3000 (CH stretch), 1646 (NH bend), 1448 (CH3 stretch) 1330 (CO stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 7.67 (1H, d, *J* = 8 Hz), 6.97-6.94 (2H, m), 6.74 (1H, t₁₃, *J* = 8 Hz), 6.55 (1H, s), 6.46 (1H, d, *J* = 4 Hz), 6.23 (2H, s), 6.20 (1H, dd, *J* = 4 Hz, *J*₃₄ = 4 Hz), 6.14 (1H, d, *J* = 8 Hz), 3.84 (3H, s), 3.62 (3H, s), 1.86 (3H, s).¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 160.31, 158.25, 146.54, 142.82, 138.10, 128.14, 127.01, 123.37, 119.17, 117.42, 116.76, 104.38, 99.96, 93.18, 57.89, 56.17, 55.52, 25.22. HRMS (TOF-ESI) CalcdC₂₀H₂₀N₅O₂, 361.1539 [M⁺]; observed: 362.1218 [M+H]^{+.}

1-amino-4-methyl-(3,4,5-trimethoxyphenyl)-4,5-dihydroimidazo-[1,2-a]quinoxaline-2carbonitrile (1E8)

To a reaction vial, **7** (200 mg, 1.005 mmol,) in methanol was added 3,4,5trimethoxyacetophenone (211.28 mg, 1.005 mmol) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL \times 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 2.1: 7.9).Yield: 82 %; Colour: Light Yellow, m.p: 151-152 °C.IR Spectrum (KBr, cm⁻¹): 3512 (NH stretch),2845, 2994 (CH stretch), 1373 (CH₃ bend),1244 (CH₃ bend).¹H NMR (400 MHz, d₆ - DMSO, TMS = 0) δ : 7.68 (1H, d, *J* = 8 Hz), 7.49 (2H, d, *J* = 8 Hz), 7.25 (1H, s), 7.13-7.06 (5H, m), 6.74 (1H, m), 6.52 (2H, s), 3.57 (6H, s), 3.50 (3H, s), 1.78 (3H, s).¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 152.99, 146.45, 145.76, 142.80, 140.64, 138.45, 138.03, 136.64, 128.68, 127.29, 126.01, 123.11, 118.98, 117.71, 116.61, 103.41, 93.48, 60.34, 57.89, 56.23, 29.00, 21.32. HRMS (TOF-ESI) Calcd C₂₁H₂₂N₅O₃, 391.1644 [M+]; observed: 392.1251 [M+H]⁺.

1-amino-4-(chloromethyl)-4-phenyl-4,5-dihydroimidazo[1,2-a]quinoxaline-2carbonitrile (1E9)

To a reaction mixture of **9** (100 mg, 0.502 mmol,) in methanol was added 2-chloroacetophene (77.6 mg, 0.502 mmol) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 1:9). Yield: 74 %; Yield: 62 %; Colour: light brownish, mp: 229-231 °C .¹H NMR (400 MHz, d₆-DMSO, TMS = 0) δ : 7.67 (1H, d, *J* = 8.56), 7.42 (1H, s), 7.32 (2H, d, *J* = 7.32), 7.24 (2H, t, *J* = 15.28), 7.18-7.16 (2H, m), 7.05 (1H, t, *J* = 15.28), 6.73 (1H, t, *J* = 15.28), 6.27 (2H, s), 4.32 (1H, d, *J* = 11.6), 4.00 (1H, d, *J* = 11.6). ¹³C NMR (100 MHz, CDCl₃, TMS = 0) δ :146.52, 140.78, 139.34, 136.98, 129.02, 128.56, 127.49, 126.83, 122.34, 119.05, 117.40, 117.20, 116.83, 94.16, 61.87, 50.23. HRMS (TOF-ESI) Calcd for C₁₈H₁₄ClN₅, 335.0938 [M]⁺; observed: 336.0963 [M + H]⁺.

(E)-4-methyl-1-((3-oxo-1-phenylbutyl)amino)-4-styryl-4,5-dihydroimidazo[1,2a]quinoxaline-2-carbonitrile (IE10)

To a reaction mixture of **7** (200 mg, 1.407 mmol,) in methanol was added benzylideneacetone (205.69 mg, 1.005 mmol) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 2 : 8). Yield: 71 %; Colour: orange Solid, mp:264-266 °C.¹H NMR (400 MHz, CDCl₃, TMS = 0) δ : 7.96 (1H, d, *J* = 6.12), 7.83 (2H, d, *J* = 6.4), 7.60-7.56 (3H, m), 7.46-7.39 (3H, m), 6.99 (1H, t, *J* = 11.24), 6.84 (2H, t, *J* = 11.96), 6.42 (2H, d, *J* = 6.32), 5.99 (1H, s), 4.15-4.12 (1H, q), 3.74-3.63 (2H, m) ¹³C NMR (100 MHz, CDCl₃, TMS = 0) δ : 203.83, 152.59, 145.98, 133.87, 131.38, 130.46, 129.45, 128.66, 128.21, 128.16, 128.13, 127.92, 127.61, 124.75, 123.59, 121.30, 121.30, 116.35, 115.12, 111.34, 99.08, 61.15, 45.63, 43.93, 30.59, 10.77. HRMS (TOF-ESI) Calcd for C₃₀H₂₇N₅O, 473.2216 [M]⁺; observed: 457.1980 [M – CH₃]⁺.

4,4-dimethyl-1-(propan-2-ylideneamino)-4,5-dihydroimidazo-[1,2-*a*]quinoxaline-2carbonitrile (1E11)

To a reaction vial, 7(100 mg, 0.502 mmol) was dissolved in acetone (2 equiv.) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), acetone was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 3 : 7).Yield: 85 %; Colour: Light Yellow, m.p: 142 -144 °C. IR Spectrum

(KBr, cm⁻¹): 3322 (NH stretch), 2210 (CN stretch), 1637 (C=N stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 7.60 (1H, d, *J* = 8 Hz), 7.08 (1H, m), 6.89 (1H, d, *J* = 8 Hz), 6.75 (1H, m), 6.51 (1H, s), 2.34 (3H, s), 2.12 (3H, s), 1.39 (6H, s). ¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 179.91, 146.95, 144.58, 137.03, 127.25, 121.86, 117.95, 117.74, 115.77, 98.48, 51.40, 28.64, 26.54, 22.84. HRMS (TOF-ESI) Calcd for C₂₄H₁₇N₅O, 391.1433 [M]⁺; observed: 414.1319 [M + Na]⁺.

(*E*)-4-(3,4-dimethoxyphenyl)-1((1-(3,4-dimethoxyphenyl)ethylidene)amino)-4-methyl-4,5-dihydroimidazo[1,2-a]quinoxaline-2-carbonitrile (1E12)

To a reaction vial, **7** (100 mg, 0.502 mmol) in methanol was added 3,4-dimethoxyacetophenone (180.93 mg, 1.004 mmol) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 2 : 8).Yield: 88 %; Colour: Light Yellow solid, m.p: 170 -171 °C.IR Spectrum (KBr, cm⁻¹): 3208 (NH stretch), 2966 (CH₃ stretch), 2328 (CN stretch), 1454 (CH₃ bend).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 7.60 (1H, d, *J* = 7.32 Hz), 6.95-6.80 (2H, m), 6.70-6.68 (1H, m), 6.51 (1H, s), 6.41 (1H, d, *J* = 4 Hz), 6.17-6.15 (2H, m), 6.10 (1H, d, *J* = 8 Hz), 3.83 (3H, s), 3.58 (3H, s), 1.82 (3H, s). ¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ :160.44, 158.35, 146.44, 142.82, 138.10, 128.35, 127.01, 123.5, 118.92, 117.78, 116.76, 104.67, 100.09, 93.18, 57.89, 56.18, 55.91, 22.45. HRMS (TOF-ESI) Calcd C₃₀H₂₉N₅O₄, 523.2220 [M+]; observed: 524.2198 [M+H]⁺ and 362.2128 [M - C₁₀H₁₂O₂]⁺

(*E*)-4-(3-iodo-4-methoxyphenyl)-1-((1-(3-iodo-4-methoxyphenyl)ethylidene)amino)-4methyl-4,5-dihydroimidazo[1,2-a]quinoxaline-2-carbonitrile (1E13)

To a reaction vial, **7** ((200 mg, 1.005 mmol,) in methanol was added 3-iodo-4methoxyacetophenone (332.86 mg, 1.206 mmol) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 1.5 : 8.5).Yield: 78 %; Colour: Brownish solid, m.p: 191-192 °C.IR Spectrum (KBr, cm⁻¹): 3231 (NH stretch), 2230 (CN stretch), 759 (I stretch), 1247 (C-O stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : (400MHz, d₆-DMSO,TMS=0) δ : 7.67(1H, d, *J* = 7.92), 7.60 (1H, d, *J* = 2.44), 7.46 (2H, d, *J* = 8.56), 7.34 (1H, s), 7.11-7.02 (4H, m), 6.85(1H, d, *J* = 8.56), 6.74 (1H, t, *J* = 8.4 Hz), 3.71. (6H, s), 2.28 (3H, s), 1.74 (3H, s). ¹³C NMR (100 MHz, d₆-DMSO, TMS = 0) δ : 171.61, 157.23, 147.23, 146.49, 142.58, 139.00, 138.22, 137.65, 128.59, 126.01, 127.2, 126.1, 123.11, 119.53, 117.54, 117.43, 116.57, 111.70, 93.65, 86.55, 79.49, 56.81, 29.32, 21.37. HRMS (TOF-ESI) Calcd C₂₈H₂₃I₂N₅O₂, 714.9941 [M+]; observed: 458.0117 [M+H-C₉H₉IO₂]⁺.

(*E*)-4-(4-bromophenyl)-1-((1-(4-bromophenyl)ethylidene)amino)-4-methyl-4,5dihydroimidazo[1,2-a]quinoxaline-2-carbonitrile (1E14)

To a reaction vial, **7** (100 mg, 0.502 mmol) in methanol was added 4-bromoacetophenone (198.7 mg, 1.004 mmol) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc (10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 3 : 7).Yield: 82 %; Colour: Light Yellow solid, m.p: 230 – 231 °C.IR Spectrum (KBr, cm⁻¹): 3281 (NH stretch), 2229 (CN stretch), 1394 (CH₃ bend); ¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 7.62 (1H, d, *J* = 8 Hz), 7.44 (2H, d, *J* = 8 Hz), 7.38 (2H, d, *J* = 8 Hz), 7.09 (4H, m), 7.04-6.98 (2H, m), 6.71 - 6.67 (1H, m), 2.24 (3H, s), 1.72 (3H, s).¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 146.52, 144.56, 138.33, 131.71, 128.64, 128.12, 127.36, 126.02, 123.12, 123.04, 120.84, 119.10, 117.66, 117.30, 116.62, 93.66, 57.50, 28.62, 21.31. HRMS (TOF-ESI) Calcd C₂₆H₁₉Br₂N₅, 559.0007 [M+]; observed: [M+H- C₇H₅BrO] 380.0828, [M+2] .382.0174.

(E)-4-(4-chlorophenyl)-1((1-(4-chlorophenyl)ethylidene)amino)-4-methyl-4,5dihydroimidazo[1,2-a]quinoxaline-2-carbonitrile(1E15)

To a reaction vial, **7** ((100 mg, 0.502 mmol)) in methanol was added *p*-chloroacetophenone (154.63 mg, 1.004 mmol) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 2:8).Yield: 89 %; Colour: brown solid, m.p: 210 – 212 °C. IR (KBr, cm⁻¹): 3253 (NH stretch), 2232 (CN stretch), 1420 (CH₃ bend), 770 (Cl stretch); ¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 7.67 (1H, d, *J* = 8 Hz), 7.29 - 7.26 (2H, m), 7.22 - 7.19 (2H, m), 7.13 (2H, d, *J* = 8 Hz), 7.06 - 7.04 (2H, m), 6.74 - 6.71 (1H, m), 2.28 (3H, s), 1.77 (3H, s). ¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 146.52, 145.69, 144.11, 142.37, 138.50, 137.60, 132.26, 128.78, 128.69, 127.76,

127.36, 126.02, 123.11, 119.09, 117.65, 117.30, 116.63, 93.65, 57.45, 28.67, 21.31. HRMS (TOF-ESI) CalcdC₂₆H₁₉Cl₂N₅, 471.1008 [M+]; observed: 336.0695 [M- C₈H₇Cl]⁺., 338.0905 [M- C₈H₇Cl +2]⁺.

(*E*)-4-methyl-4-(thiophen-2-yl)-1-((1-(thiophen-2-yl)ethylidene)amino)-4,5dihydroimidazo[1,2-*a*]quinoxaline-2-carbonitrile (1E16)

To a reaction vial, **7** (100 mg, 0.502 mmol) in methanol was added 2-acetylthiophene (126.67 mg, 1.004 mmol and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 3 : 7).Yield: 74 %; Colour: brown solid, m.p: 239 - 240 °C.IR Spectrum (KBr, cm⁻¹): 3350 (NH stretch), 3000 (CH stretch),2362 (CN stretch), 2880 (SH stretch), 1447 (CH₃ bend); ¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 7.72(1H, d, *J* = 8 Hz), 7.45 (2H, d, *J* = 8), 7.26-7.24(1H, dd, *J* = 4 Hz), 7.08(2H, d, *J* = 8 Hz), 7.03(1H, d, *J* = 8 Hz), 6.97-6.95 (1H,m), 6.78-6.70 (3H, m), 2.25(3H, s), 1.86 (3H, s). ¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 149.86, 146.43, 145.80, 142.62, 138.42, 137.33, 128.68, 127.34, 127.11, 126.01, 125.79, 124.40, 122.99, 119.17, 117.51, 117.28, 116.69, 93.64, 55.66, 29.05, 21.32. HRMS (TOF-ESI) Calcd C₂₂H₁₈N₅S₂, 415.0925[M⁺]; observed: 416.1492 [M+H]⁺.

1-amino-4-hydroxy-4-(phenylamino)-4,5-dihydroimidazo[1,2-a]quinoxaline-2carbonitrile (1F1)

To a reaction mixture of **4** (150 mg, 0.753 mmol,) in methanol was added phenyl isocyanate (89.69 mg, 0.753 mmol) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 5 : 5). Yield: 73 %; Colour: Yellowish Solid, mp: 271 – 273 °C. ¹H NMR (400 MHz, d₆ - DMSO/ CDCl₃, TMS = 0) δ : 8.94 (1H, s, D₂O exchangeable NH), 8.21 (1H, d, *J* = 8), 7.73 (1H, s, D₂O exchangeable NH), 7.34 (1H, t, *J* = 8), 7.30 (2H, d, *J* = 8), 7.16-7.03 (3H, m), 6.86 (IH, m), 5.70 (2H, s; D₂O exchangeable NH₂). ¹³C NMR (100 MHz, d₆ - DMSO, TMS = 0) δ : 151.02, 146.79, 137.93, 135.10, 130.81, 128.90, 127.32, 127.09, 121.48, 121.11, 120.74, 120.51, 116.92, 115.81, 89.64. HRMS (TOF-ESI) Calcd C₁₇H₁₄N₆O, 318.1229, [M⁺]; observed: 319.1235 [M+H]⁺.

4*H*-benzo[*f*]imidazo[1,5-*a*][1,3,5]triazepine-3-carbonitrile (2A1)

To a reaction mixture of **9** (100 mg, 0.502 mmol) in acetonitrile (1 mL) was added triethylorthoformate (74.39 mg, 0.502 mmol) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), acetonitrile was evaporated from mixture, washed with water, brine, dried over anhydrous Na₂SO₄, extracted with EtOAc(10 mL × 3), concentrated under vacuum using rotary evaporator, dried and purified *via* flash chromatography (EtOAc: Pet ether:: 2.5 : 7.5).Yield: 89 %; Colour: Yellowish Solid; m.p: 387 °C (decomposed).IR (KBr, cm⁻¹): 3332 (NH stretch), 2224 (CN stretch), 1642 (C=N stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 9.57 (1H, s, NH), 8.07 (1H, s), 7.51 – 7.47 (1H, m), 7.13 - 7.10 (1H, d, *J* = 8 Hz), 6.95 - 6.92 (1H, m), 6.78 – 6.76 (1H, m), 6.64 (1H, d, *J* = 4 Hz). ¹³C NMR (100 MHz, d₆ -DMSO,

TMS = 0) δ : 147.42, 146.57, 136.27, 133.51, 129.35, 126.51, 124.70, 121.58, 121.22, 115.47, 110.0. HRMS (TOF-ESI) Calcd for C₁₁H₇N₅, 209.0700 [M]⁺; observed: 209.9262 [M+H]⁺. **5-oxo-5,6-dihydro-4***H***-benzo**[*f*]**imidazo**[1,5-*a*][1,3,5]**triazepine-3-carbonitrile (2A2)**

To a reaction mixture of **7** (100 mg, 0.502 mmol) in methanol (1 mL) was added carbonyldiimidazole (81.39 mg, 0.502 mmol) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, washed with water, brine, dried over anhydrous Na₂SO₄, extracted with EtOAc(10 mL × 3), concentrated under vacuum using rotary evaporator, dried and purified *via* flash chromatography (EtOAc: Pet ether:: 1 : 9).Yield: 91 %, Colour: Yellowish Solid, m.p: 309 °C (decomposed). IR (KBr, cm⁻¹): 3200 (NH stretch), 2350 (CN stretch), 1710 (C=O stretch). ¹H NMR (400 MHz, CDCl₃, TMS = 0) δ : 9.51 (1H, s, NH), 8.21 (1H, s), 7.73 (1H, s), 7.48 (1H, m), 7.33 (2H, m), 7.09 (1H, m).¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 158.40, 137.32, 133.76, 131.90, 129.25, 125.36, 125.09, 122.46, 122.21, 114.42, 99.06.HRMS (TOF-ESI) Calcd for C₁₁H₇N₅O, 225.0700 [M]⁺; observed: 226.0090 (M+H)⁺.

5-amino-1-(2-amino-3,5-dibromophenyl)-2-bromo-1*H*-imidazole-4-carbonitrile (14)

To the reaction vial added **7** (200 mg, 1.005 mmol), and NBS (3 equiv.) in acetonitrile. The reaction mixture was stirred for 1h at rt on. After the completion of the reaction (TLC), acetonitrile was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 1.8 : 8.2).Yield: 91 %; Colour: yellow; m.p: 163 - 165 °C. IR (KBr, cm⁻¹): 3330 (NH stretch), 2212 (CN stretch), 685 (C-Br stretch). ¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 7.70 (1H, d, *J* = 4 Hz), 7.29 (1H, d, *J* =

4 Hz) 6.39 (2H, s, NH₂), 5.60 (2H, s, NH₂). ¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 174.98, 150.23, 143.47, 136.10, 132.16, 118.20, 116.76, 112.61, 109.25, 105.15, 90.43.

2-bromo-1-(3,5-dibromo-2-(((*E*)-2,3-dimethoxybenzylidene)amino)phenyl)-5-(((*E*)-2,3-dimethoxybenzylidene)amino)-1*H*-imidazole-4-carbonitrile (15)

To a reaction vial, a suspension of **16** (200 mg, 0.458 mmol) in methanol (1 mL) was added 2,3-dimethoxybenzaldehyde (152.46 mg, 0.917 mmol) and the mixture was heated under mw irradiation (open reflux) using *p*-TsOH (1 mol %) as catalyst at 80 °C for 30 min. After the completion of the reaction (TLC), methanol was evaporated from mixture, concentrated under vacuum using rotary evaporator, extracted with EtOAc(10 mL × 3), washed with water, brine, dried over anhydrous Na₂SO₄, and purified *via* flash chromatography (EtOAc: Pet ether:: 3 : 7).Yield: 93 %; Colour: yellow; m.p: 168 - 170 °C.IR (KBr, cm⁻¹): 3016 (NH stretch), 2349 (CN stretch), 707 (C-Br stretch).¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 9.19 (1H, s), 9.06 (1H, s), 8.46 (1H, d, *J* = 8 Hz), 8.20 (1H, s), 8.00 (1H, d, *J* = 8 Hz), 7.83 (1H, d, *J* = 8 Hz), 7.68 (2H, m), 7.23 - 7.15 (2H, dd, *J* = 8 Hz), 3.92 (3H, s), 3.89 (3H, s), 3.84 (6H, s). HRMS (TOF-ESI) Calcd for C₂₈H₂₂Br₃N₅O₄, 728.9992 [M]⁺; observed: 701.4915 [M +2 – OCH₃]⁺.

(E)-4-((2-(5-amino-4-cyano-1H-imidazol-1-yl)phenyl)amino)-4-oxobut-2-enoic acid (1G1)

Yield: 86%; colour: Dark brownish; m. p: 192-194°C. IR (KBr, cm⁻¹): 3363 & 3310 (NH₂ stretch), 3213 & 3124 (sp² hybz C-H stretch), 2936 (Carboxylic Acid O-H Stretch), 2216 (CN), 1703 (C=O of carboxylic acid), 1623 & 1593 (amide peaks), 1495-1446 (aromatic C=C) ¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 13.06 (1H, s), 9.95 (1H, s, NH), 7.86 (1H, d, *J* = 7.92 Hz), 7.49-7.45 (1H, m), 7.31 (2H, d, *J* = 4.2 Hz), 7.12 (1H, s), 6.41 (1H, d, *J* = 12.24 Hz), 6.23 (1H, d, *J* = 12.24 Hz), 5.96 (2H, s, NH₂) ¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 167.37, 167.28, 164.46, 148.45, 134.52, 133.05, 132.34, 130.31, 128.97, 126.93, 117.88, 91.03. HRMS Calcd for C₁₄H₁₁N₅O₃, 297.2740 [M⁺]; observed: 298.1044 [M+H]⁺

tert-butyl (2-(5-amino-4-cyano-1H-imidazol-1-yl)phenyl)carbamate (IH1)

Yield 71%; Colour: pale yellow; m. p: 164-166°C. IR (KBr, cm⁻¹): 3437-3348 (NH₂), 2240 (CN), 1720 (C=O stretch). ¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 9.0 (1H, s, NH), 7.82 (1H, s), 7.15 (1H, t, *J* = 6.72 Hz), 6.90 (1H, d, *J* = 7.92 Hz), 6.82 (1H, d, *J* = 7.32 Hz), 6.60 (1H, t, *J* = 7.32 Hz), 4.99 (2H, s, NH₂), 1.27 (9H, s). ¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 152.89, 145.08, 138.71, 136.51, 130.93, 128.68, 118.68, 116.78, 116.62, 115.32, 108.60, 81.08, 28.13. HRMS Calcd for C₁₅H₁₇N₅O₂, 299.1382 [M⁺]; observed: 300.1415 [M+H]⁺

tert-butyl (2-(5-((tert-butoxycarbonyl)amino)-4-cyano-1H-imidazol-1-yl)phenyl)carbamate (IH2)

Yield 63%; Colour: white; m. p: 136-138°C. IR (KBr, cm⁻¹): 3390 (NH), 2229 (CN), 1698 (C=O stretch). ¹H NMR (400 MHz, d₆ -DMSO, TMS = 0) δ : 9.09 (1H, s, NH), 8.49 (1H, s, NH), 7.76 (1H, s), 7.59 (1H, d, *J* = 7.32 Hz), 7.46 (1H, t, *J* = 5.52 Hz), 7.25 (1H, t, *J* = 6.06 Hz), 7.21 (1H, d, *J* = 6.08 Hz), 1.32 (9H, s), 1.29 (9H, s). ¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 153.45, 153.14, 138.52, 135.26, 130.72, 129.05, 127.50, 125.90, 125.66, 115.39, 107.73, 81.14, 80.03, 28.37, 28.13

5-amino-1-(2-(1,3-dioxoisoindolin-2-yl)phenyl)-1H-imidazole-4-carbonitrile (111)

Yield: 83%; colour: yellowish; m. p: 172-176°C. IR (KBr, cm⁻¹): 3488 & 3347(NH₂), 2225 (CN), 1715 (aromatic C=C), 1643 (C=O). ¹H NMR (400 MHz, d₆-DMSO, TMS = 0) δ : 7.91-7.85 (4H, m), 7.69-7.64 (3H, m), 7.60-7.58 (1H, m), 7.04 (1H, s), 5.92 (2H, s, NH₂). ¹³C NMR (100 MHz, d₆ -DMSO, TMS = 0) δ : 166.46, 147.93, 135.51, 132.68, 131.77, 131.73, 131.26, 131.15, 130.89, 129.41, 128.73, 124.23, 117.32. HRMS Calcd for C₁₈H₁₁N₅O₂, 329.09 [M⁺]; observed: 330.1066 [M+H]⁺

5. 2D-NMR Correlation Tables

Electronic Supplementary Information (ESI)
--

C-2"	109.69	111.26	H-2"	7.66 - 7.62	7.69 -7.65
C-5"	119.82	113.19	H-5"	8.17	8.18
C-6"	125.85	113.58	Н-6"	7.54 – 7.52	7.28 -7.16
C-1'	131.16	123.97	H-1'	-	-
C-2'	110.25	118.18	Н-2'	7.19-7.16	9.09
C-5'	111.14	130.42	Н-5'	7.11-6.97	7.28 – 7.16
C-6'	119.59	111.26	Н-6'	6.95-6.86	7.80

C-9	121.58	Н-9	7.51 – 7.47
C-10	124.70	H-10	6.95 - 6.92
C-10a	133.51	H-10a	-

¹³ C NMR	1A3	¹ H NMR	1A3
C-1	128.22	H-1	8.01
C-2	93.7	H-2	-
C-3	146.78	Н-3	6.37;
C-4a	118.46	H-4a	7.93; 8.01; 7.35-7.27
C-5	122.14	H-5	8.01; 7.93; 7.35-7.27
C-6	125.92	H-6	8.01, 7.35-7.27
C-7	126.72	H-7	7.35-7.27; 8.01

C-8	126.87	H-8	7.35-7.27; 8.01
C-8a	141.11	H-8a	-
C-10	173.79	H-10	-
C-11	30.99	H-11	2.41-2.28; 2.69-2.46
C-12	21.85	H-12	2.69-2.46; 2.41-2.28; 4.87-4.83
C-12a	53.84	H-12a	4.87-4.83; 2.69-2.46; 2.41-2.28
-CN	117.02		-
-NH ₂		NH ₂	6.37

¹H NMR

Electronic Supplementary Information (ESI)

HRMS

¹H NMR

Acquisition Paran	neter				
Source Type Focus Scan Begin Scan End	ESI Not active 50 m/z 650 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V t -500 V ² 300.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.2 Bar 250 °C 5.0 l/min Waste
Intens. x10 ⁴					578 2002
3 2				[M + Na] ⁺	
1	101.0025 1	76.9895 255.0031	336.5940 400.138	5 475.3250	
-	100	200 20	00 400	500	800 m/m

#	m/z	Res.	S/N	1	FWHM
1	101.0025	12713	137.3	6690	0.0079
2	106.9994	13458	23.5	1270	0.0080
3	116.0048	13754	61.1	3252	0.0084
4	134.9789	14539	17.2	884	0.0093
5	137.0016	14226	21.7	1112	0.0096
6	146.0066	14515	45.9	2313	0.0101
7	153.1387	15245	31.4	1618	0.0100
8	162.9737	15123	34.6	1854	0.0108
9	176.9895	16125	85.5	4812	0.0110
10	180.9832	14666	13.6	777	0.0123
11	181.0619	14636	22.8	1300	0.0124
12	194.9999	15969	34.2	1901	0.0122
13	202.1084	16771	18.5	985	0.0121
14	212.9930	16624	35.3	1739	0.0128
15	216.9829	14255	19.8	949	0.0152
16	240.9877	17042	24.0	1015	0.0141
17	255.0031	16823	57.6	2331	0.0152
18	261.1314	17790	18.8	743	0.0147
19	273.1959	17581	29.9	1114	0.0155
20	336.5940	17226	43.4	1235	0.0195
21	451.2217	18717	27.2	730	0.0241
22	475.3250	17992	72.5	2106	0.0264
23	556.2179	20375	46.5	1630	0.0273
24	578.2002	18973	366.4	33910	0.0305
25	579.2033	19005	121.7	11581	0.0305
26	580.2060	19178	23.0	2249	0.0303
27	594.1747	18704	29.3	3913	0.0318
28	595.1778	18889	10.9	1429	0.0315
29	610.2264	19159	39.2	3536	0.0319
30	611.2294	17098	12.8	1121	0.0357

HRMS

Acquisition Para	meter				
Source Type Focus Scan Begin Scan End	ESI Not active 50 m/z 650 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 300.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	1.2 Bar 250 °C 5.0 l/min Waste
Intens. ×10 ⁴		192.1747 Ind . No.1+			
6-				475 3248	
4-	101.0029		353.0755		
2-		261.1308			581.3651
0-	بمليقه بالتاوير ب	hall a shake a she a she	يحير بسيح والاجتبار		

#	m/z	Res.	S/N	- E	FWHM
1	101.0029	13044	668.1	39705	0.0077
2	102.9989	12807	33.0	2050	0.0080
3	106.9998	13682	55.9	3692	0.0078
4	116.0052	13917	102.4	6806	0.0083
5	137.0017	14437	72.5	4895	0.0095
6	146.0070	14964	86.6	5878	0.0098
7	152.9448	14540	25.7	2016	0.0105
8	162.9738	15471	39.4	3758	0.0105
9	176.9899	15099	26.8	3182	0.0117
10	181.0617	14924	44.6	5605	0.0121
11	192.1747	15652	489.0	63134	0.0123
12	193.1781	15639	75.0	9576	0.0124
13	212.9930	17209	25.9	2582	0.0124
14	216.9893	14890	29.1	2744	0.0146
15	217.1047	15581	35.5	3342	0.0139
16	230.9589	15919	60.0	4695	0.0145
17	261.1308	17398	104.3	7596	0.0150
18	263.0379	17171	42.2	3057	0.0153
19	305.1569	17045	117.2	6504	0.0179
20	349.1830	17204	25.6	2812	0.0203
21	353.0755	18471	359.2	38243	0.0191
22	354.0783	17470	69.4	7284	0.0203
23	369.0493	17558	25.2	2094	0.0210
24	475.3246	18615	345.1	50404	0.0255
25	476.3279	18383	95.4	13670	0.0259
26	477.3304	17742	16.2	2281	0.0269
27	493.3124	19056	27.7	2692	0.0259
28	537.3386	18338	61.3	2881	0.0293
29	581.3651	18876	67.4	2945	0.0308
30	625.3915	18655	64.6	2704	0.0335

¹³C NMR

¹H NMR

¹³C NMR

DEPT-135

нмвс

HRMS

¹H NMR

0

¹³C NMR

¹H NMR

HRMS

HRMS

¹H NMR

¹H NMR

¹³C NMR

629

-NO₂

NH

11 155 ſ s s sCN O₂N² 1C5

Electronic Supplementary Information (ESI)

Acquisition Parameter Source Type ESI Focus Not active Scan Begin 50 m/z			Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF			Positive 4500 V -500 V		Set Nebulizer Set Dry Heater Set Dry Gas	1.2 Bar 250 °C 5.0 l/min	
Scan End	300.0 Vpp	Set Divert Valve				Waste				
Int	ons									
	<10 ⁴									
	3								488.1074	
		101.0011								
	1							[M+ Na] ⁺		
	47		181	.0618					• •	
	-									
	1									
	1			216.9	896					
	0		. بالله	4		ш.			يستح بالطيب وسين	
		100	• •	200		300		400	500	600 m/z
	+	MS, 0.5m	in #29							
	L									
#	m/z	Res.	S/N	1	FWHM					
1	101.0011	12819	690.3	22141	0.0079					
2	102.9969	12419	39.9	1328	0.0083					
3	116,0027	13480	40.1	1067	0.0079					
7	124 0791	14700	22.1	1241	0.0004					
ĕ	135 0016	13662	30.6	1242	0.0099					
ž	137.0009	14174	50.0	2046	0.0097					
8	146.0063	15318	52.0	2220	0.0095					
9	162.9733	15784	25.0	1449	0.0103					
10	176.9889	15246	27.0	1920	0.0116					
11	180.0655	14869	54.0	3999	0.0121					
12	181.0618	14870	213.0	15960	0.0122					
13	212.9929	16212	30.4	2046	0.0131					
14	210.9896	10032	78.8	0143	0.0139					
10	230.9090	16183	25.0	2122	0.0143					
17	273 1948	15988	32.7	1317	0.0171					
18	301,2113	16836	46.0	1880	0.0179					
19	305.1574	17043	56.2	2306	0.0179					
20	349.1840	16984	34.6	1306	0.0206					
21	475.3250	18972	75.9	8031	0.0251					
22	476.3281	18546	21.7	2263	0.0257					
23	488.1074	18773	331.7	28416	0.0260					
24	489.1102	17652	91.5	7695	0.0277					
25	490.1129	19378	16.9	1398	0.0253					
26	504.0819	18967	40.2	2431	0.0266					
27	520.1335	18312	50.8	2214	0.0284					
28	591.3390	19044	41.9 54.4	1499	0.0275					
28	361.3030	10004	04.4	1481	0.0311					

1267 0.0348

46.9

30 625.3923 17994

HRMS

Electronic Supplementary Information (ESI)

HRMS

HRMS

DEPT Experiment

HRMS

15

D₂O exchange NMR

HRMS

Acquisitior	Paramete	r								
Source Type Focus	EN	SI ot active		Ion Pola Set Cap	arity billary	Positive 4500 V	Set I	Nebulizer Dry Heater	1.2 Bar 250 °C	
Scan Begin 50 Scan End 65		50 m/z		Set End Set Col	lision Cell RF	300.0 Vpp	Set	Set Dry Gas Set Divert Valve	Waste	Waste
In	tens.									
	x10 ⁵									
	20					369.1066				
					_					
	1.5				[M + Na					
	1.0		181.	0627						
	0.5			221.05	46					
	0.0 ¹	· · · ·	ه بع			بعبالب فاسبت				
		100		200	30	0 4	100	500	600	m/a
	+	MS, 0.8m	in #48							
#	m/z	Res.	S/N	1	FWHM					
1	102.9780	13203	146.4	4189	0.0078					
3	133.0782	13685	48.7	3544	0.0097					
4	134.0738	14135	92.5	6884	0.0095					
5	135.0062	14151	88.1	6687	0.0095					
6	142.9696	15245	98.0	8668	0.0094					
8	176 1192	15479	246.9	9851	0.0112					
9	180.0663	15386	826.0	26960	0.0117					
10	181.0627	15124	3472.6	106970	0.0120					
11	182.0667	14970	172.6	5003	0.0122					
12	197.0363	15681	301.9	5549	0.0126					
13	210.0526	15742	181.9	3079	0.0133					
15	215.0051	16289	306.6	5014	0.0132					
16	220.0582	15751	200.5	3167	0.0140					
17	221.0546	16462	791.1	12391	0.0134					
18	301 1408	17133	821.0	12109	0.0132					
20	302.1430	16041	168.7	2505	0.0188					
21	315.1565	17448	367.7	6476	0.0181					
22	338.1380	18301	277.4	7353	0.0185					
23	339.1346	17366	333.0	14409	0.0195					
25	369.1066	18256	8610.2	204774	0.0202					
26	370.1096	17233	1752.8	41033	0.0215					
27	371.1120	17094	202.3	4669	0.0217					
28	385.0807	17733	573.3	10196	0.0217					

CN

H₂N

N N N O

1E3

Acquisition Para	meter				
Source Type Focus Scan Begin	ESI Not active 50 m/z	Ion Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer Set Dry Heater Set Dry Gas	1.2 Bar 250 °C 5.0 I/min
Scan End	650 m/z	Set Collision Cell RF	300.0 Vpp	Set Divert Valve	Waste
Intens. x10 ⁵ 3		[M +	• Na] 414.1:	319	
2			341.1006		
1		214.1088 287.1162		499.1736	572.2056
, i i i i i i i i i i i i i i i i i i i	100	200 300) <u> </u>	500	600 m/z
ſ					

#	m/z	Res.	S/N	1	FWHM
1	135.0029	14350	96.1	3939	0.0094
2	180.0655	15392	71.9	5541	0.0117
3	181.0620	15274	285.1	22209	0.0119
4	214.1088	16307	698.8	25858	0.0131
5	215.1108	15620	95.5	3374	0.0138
6	221.0547	16673	148.8	3736	0.0133
7	232.0593	16470	524.6	6878	0.0141
8	255.0854	16374	335.0	4151	0.0156
9	287.1162	17451	808.7	10431	0.0165
10	308.0905	17205	316.2	4424	0.0179
11	309.0978	16500	492.2	6907	0.0187
12	319.1189	17013	382.6	6061	0.0188
13	339.1344	17483	283.3	5528	0.0194
14	341.1006	17642	7468.1	148143	0.0193
15	342.1037	17511	1476.6	29569	0.0195
16	343.1060	17176	177.4	3594	0.0200
17	357.0750	18404	420.1	8617	0.0194
18	392.1503	18282	1563.5	25925	0.0214
19	393.1533	17574	404.1	6905	0.0224
20	414.1319	18274	11090.4	302781	0.0227
21	415.1352	18390	2871.3	79806	0.0226
22	416.1383	17436	364.2	10314	0.0239
23	430.1061	18793	1309.6	45974	0.0229
24	431.1093	17698	333.5	11881	0.0244
25	432.1374	16420	193.4	7058	0.0263
26	436.1143	18507	267.2	10727	0.0236
27	447.1426	18125	326.6	16424	0.0247
28	448.1452	18651	93.7	4804	0.0240
29	499.1736	18293	150.0	4861	0.0273
30	572.2056	17981	131.5	5556	0.0318

13C NMR

HRMS

1H NMR

HRMS

13C NMR

HRMS

HRMS

HRMS

HRMS

HRMS

6. References

1. R. Kumar, R. K. Ujjinamatada and R. S. Hosmane, *Org. Lett.*, 2008, **10**, 4681-4684.