Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2018

Supporting Information

Rh(III)-Catalyzed Regioselective C–H [4+2] *C*-Annulation of Vinyl Enaminones with Alkynes to Form Polysubstituted Salicylaldehydes

Yinsong Zhao, Qinze, Zheng, Chuangui Yu, Zheng Liu, Deping Wang, Jingsong You, Ge Gao*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China

*E-mail: gg2b@scu.edu.cn

Table of Contents

I.	General Remarks	S2
II.	Preparation of Enaminones	S2
III.	Rh-Catalyzed Annulation of Enaminones with Alkynes	S3
IV.	H/D Exchange Experiment	
V.	Transformations of 3a into 4-7	
VI.	References	
VII.	Copies of ¹ H and ¹³ C Spectra	

I. General Remarks

All commercial available reagents were used without further purification unless otherwise noted. DCE was dried through manual solvent purification system from Innovative Technology. DME were dried by refluxing over sodium and freshly distilled prior to use. $[Cp*RhCl_2]_{2,1}$ enaminones 1^2 and alkynes 2^3 were prepared according to previous reports.

NMR spectra were measured on a Agilent DD2 400-MR MHz. The ¹H NMR (400 MHz) chemical shifts were recorded relative to CDCl₃ as the internal reference (CDCl₃: δ 7.26 ppm, (CD₃)₂CO: δ 2.05 ppm). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ as the internal standard (CDCl₃: δ 77.16 ppm). High resolution mass spectra (HRMS) were collected on Shimadzu LCMS-IT-TOF (ESI). X-Ray single-crystal diffraction data were obtained on an Agilent Technologies Gemini single crystal diffractometer. Melting points were measured with SGW[®]X-4/4A/4B and are uncorrected.

II. Preparation of Exocyclic Enones²

To a magnetically stirred mixture of an α , β -enone⁴ (2.5 mmol) and DMF-DMA (0.66 mL, 5 mmol) at 80 °C was added L-proline (29 mg, 10 mol%) under an N₂ atmosphere. The mixture was stirred until the completion of the reaction (Detected by TLC). After the reaction mixture was cooled down to room temperature, it was concentrated under vacuum and the residue was purified by flash chromatography on silica gel column (PE/EA = 1/1-1:4, v/v) to provide the desired enaminone.

(*E*)-1-(Dimethylamino)-4-(4-methoxyphenyl)penta-1,4-dien-3-one: Viscous brown oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.79$ (bs, 3H), 3.08 (bs, 3H), 3.81 (s, 3H), 5.22 (d, J = 12.8 Hz, 1H), 5.56 (s, 1H), 5.63 (s, 1H), 6.86 (d, J = 8.4 Hz, 2H), 7.58 (s, 1H), 7.72 (d, J = 12.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.4$, 37.3, 45.1, 55.3, 95.0, 114.2, 128.9, 130.6, 131.1, 131.2, 133.4, 134.5, 138.1, 141.2, 154.1, 158.8, 189.3 ppm. HRMS (ESI⁺): calcd for C₁₄H₁₈NO₂ [M+H]⁺ 232.1338, found 232.1339.

(*E*)-4-([1,1'-Biphenyl]-4-yl)-1-(dimethylamino)penta-1,4-dien-3-one: Off-white solid, 106-108 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.81 (bs, 3H), 3.10 (bs, 3H), 5.26 (d, *J* = 12.4 Hz, 1H), 5.69 (s, 1H), 5.76 (s, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.42-7.51 (m, 4H), 7.56-7.62 (m, 3H), 7.68 (d, *J* = 12.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 37.3, 45.2, 96.1, 117.8, 127.0, 127.1, 127.4, 128.2, 128.9, 137.5, 140.6, 140.9, 150.6, 154.9, 195.0 ppm. HRMS (ESI⁺): calcd for C₁₉H₂₀NO [M+H]⁺ 278.1539, found 278.1548.

(*IE*,*4E*)-5-(Dimethylamino)-2-(4-methoxyphenyl)-1-(*p*-tolyl)penta-1,4-dien-3-one: Viscous brown oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.25$ (s, 3H), 2.66 (bs, 3H), 3.06 (bs, 3H), 3.85 (s, 3H), 4.96 (d, *J* = 12.4 Hz, 1H), 6.89-6.94 (m, 6H), 7.13 (d, *J* = 8.4 Hz, 2H), 7.58 (s, 1H), 7.72 (d, *J* = 12.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.4$, 37.2, 45.1, 55.3, 95.0, 114.2, 128.9, 130.6, 131.1, 131.2, 133.4, 134.5, 138.1, 141.2, 154.1, 158.8, 189.3 ppm. HRMS (ESI⁺): calcd for C₂₁H₂₄NO₂ [M+H]⁺ 322.1802, found 322.1798.

(*1E*,*4E*)-2-Benzyl-5-(dimethylamino)-1-phenylpenta-1,4-dien-3-one: Viscous yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 2.83 (bs, 3H), 3.05 (bs, 3H), 4.02 (s, 2H), 5.48 (d, *J* = 12.4 Hz, 1H), 7.18 (t, *J* = 7.2 Hz, 1H), 7.23-7.38 (m, 9H), 7.59 (s, 1H), 7.68 (d, *J* = 12.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 33.6, 37.4, 45.0, 93.0, 125.9, 127.9, 128.3, 128.5, 128.6, 129.1, 135.1, 136.7, 140.4, 141.5, 154.2, 190.9 ppm. HRMS (ESI⁺): calcd for C₂₀H₂₂NO [M+H]⁺ 292.1696, found 292.1696.

III. Rh-Catalyzed Annulation of Enaminones with Alkynes

General procedure: A Schlenk tube containing an enaminone 1 (0.3 mmol), an alkyne 2 (0.2 mmol),

[Cp*RhCl₂]₂ (3.1 mg, 2.5 mol%), AgSbF₆ (6.8 mg, 10 mol %), AgOAc (66.4 mg, 0.4 mmol), H₂O

(0.1 mol) and DCE (2.0 mL) was sealed with a teflon-coated screw cap and the mixture was stirred at 90 °C under N₂ for 15-20 h. After cooled down to room temperature, the mixture was filtered through a celite pad and washed with DCM. The filtrate was then concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel column (PE/EA=25:1~5:1) to provide the final product.

4'-Hydroxy-5'-(4-methoxyphenyl)-[1,1':2',1''-terphenyl]-3'-carbaldehyde (3a): 15 h, 63.1 mg, 83%, yellow solid. M.p.: 130-132 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.87 (s, 3H), 7.00-7.06 (m, 4H), 7.15-7.18 (m, 5H), 7.26-7.29 (m, 3H), 7.62-7.65 (m, 3H), 9.74 (s, 1H), 12.59 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.5, 113.9, 118.8, 126.6, 127.87, 127.94, 128.0, 128.7, 129.5, 130.0, 130.6, 131.4, 133.4, 135.9, 139.3, 140.1, 143.8, 159.4, 159.5, 198.4 ppm. HRMS (ESI⁺): calcd for C₂₆H₂₀O₃Na [M+Na]⁺ 403.1305, found 403.1310.

4'-Hydroxy-5'-(4-methoxyphenyl)-4,4''-dimethyl-[1,1':2',1''-terphenyl]-3'-carbaldehyde (3b): 20 h, 69.4 mg, 85%, M.p.: 132-134 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.28$ (s, 3H), 2.35 (s, 3H), 3.86 (s, 3H), 6.93-7.01 (m, 6H), 7.04 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 7.61-7.63 (m, 3H), 9.72 (s, 1H), 12.58 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.2$, 21.4, 55.5, 113.9, 119.0, 128.7, 128.8, 128.9, 129.2, 129.8, 130.6, 131.3, 132.9, 133.3, 136.1, 137.3, 137.5, 139.5, 143.9, 159.32, 159.34, 198.6 ppm. HRMS (ESI⁺): calcd for C₂₈H₂₄O₃Na [M+Na]⁺ 431.1618, found 431.1620.

4'-Hydroxy-4,4''-dimethoxy-5'-(4-methoxyphenyl)-[1,1':2',1''-terphenyl]-3'-carbaldehyde (3c): 20 h, 70.4 mg, 80%, yellow solid. M.p.: 183-185 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.76 (s, 3H), 3.81 (s, 3H), 3.86 (s, 3H), 6.72 (d, *J* = 8.4 Hz, 2H), 6.82 (d, *J* = 8.4 Hz, 2H), 6.96 (d, *J* = 8.4 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 7.61-7.63 (m, 3H), 9.75 (s, 1H), 12.56 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.3, 55.4, 55.5, 113.4, 113.6, 113.9, 119.0, 128.1, 128.8, 129.1, 130.6, 131.0, 132.6, 133.1, 139.4, 143.6, 158.2, 159.15, 159.24, 159.3, 198.6 ppm. HRMS (ESI⁺): calcd for C₂₈H₂₄O₅Na [M+Na]⁺ 463.1516, found 463.1515.

4,4''-Difluoro-4'-hydroxy-5'-(4-methoxyphenyl)-[1,1':2',1''-terphenyl]-3'-carbaldehyde (3d): 20 h, 71.5 mg, 86%, yellow solid. M.p.: 118-120 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.86 (s, 3H), 6.88 (t, *J* = 8.4 Hz, 2H), 6.97-7.02 (m, 6H), 7.10-7.14 (m, 2H), 7.60-7.62 (m, 3H), 9.73 (s, 1H), 12.58 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.5, 114.0, 115.1 (d, *J*_{CF} = 21.3 Hz), 115.3 (d, *J*_{CF} = 21.5 Hz), 118.8, 128.4, 129.9, 130.6, 131.4 (d, *J*_{CF} = 7.9 Hz), 131.63 (d, *J*_{CF} = 3.4 Hz), 132.5, 132.9 (d, *J*_{CF} = 8.0 Hz), 135.8 (d, *J*_{CF} = 3.4 Hz), 139.2, 142.6, 159.4. 159.6, 161.7 (d, *J*_{CF} = 245.3 Hz), 162.4 (d, *J*_{CF} = 247.2 Hz), 197.9 ppm. HRMS (ESI⁺): calcd for C₂₆H₁₈F₂O₃Na [M+Na]⁺ 439.1116, found 439.1123.

4,4''-Dichloro-4'-hydroxy-5'-(4-methoxyphenyl)-[1,1':2',1''-terphenyl]-3'-carbaldehyde (3e): 20 h, 71.5 mg, 71.7%, yellow solid. M.p.: 167-169 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.86 (s, 3H), 6.96 (d, *J* = 8.4 Hz, 2H), 7.01 (d, *J* = 8.8 Hz, 2H), 7.09 (d, *J* = 8.4 Hz, 2H), 7.17 (d, *J* = 8.4 Hz, 2H),

7.29 (d, J = 8.4 Hz, 2H), 7.58-7.61 (m, 3H), 9.71 (s, 1H), 12.58 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 55.5$, 114.0, 118.7, 128.3, 128.4, 128.6, 130.2, 130.6, 131.2, 132.1, 132.6, 133.0, 134.1, 134.4, 138.2, 139.1, 142.3, 159.5, 159.8, 197.7 ppm. HRMS (ESI⁺): calcd for C₂₆H₁₈Cl₂O₃Na [M+Na]⁺ 471.0531, found 471.0530.

4,4''-Dibromo-4'-hydroxy-5'-(4-methoxyphenyl)-[1,1':2',1''-terphenyl]-3'-carbaldehyde (3f): 15 h, 83.4 mg, 78%, yellow solid. M.p.: 195-197 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.86 (s, 3H), 6.90 (d, *J* = 8.4 Hz, 2H), 6.99-7.04 (m, 4H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.58-7.61 (m, 3H), 9.70 (s, 1H), 12.59 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.5, 114.0, 118.6, 121.2, 122.6, 128.3, 130.2, 130.6, 131.4, 131.5, 131.6, 132.0, 132.9, 134.5, 138.7, 139.1, 142.2, 159.5, 159.8, 197.7 ppm. HRMS (ESI⁺): calcd for C₂₆H₁₉Br₂O₃ [M+H]⁺ 536.9695, found 536.9695.

4,4''-Diacetyl-4'-hydroxy-5'-(4-methoxyphenyl)-[1,1':2',1''-terphenyl]-3'-carbaldehyde (3g): 18 h, 65.0 mg, 70%, yellow solid. M.p.: 189-191 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.55 (s, 3H), 2.61 (s, 3H), 3.87 (s, 3H), 7.01 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.61-7.64 (m, 3H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.89 (d, *J* = 8.4 Hz, 2H), 9.69 (s, 1H), 12.62 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 26.76, 26.82, 55.5, 114.0, 118.5, 128.1, 128.20, 128.24, 130.1, 130.56, 130.60, 132.1, 135.4, 136.5 138.9, 140.6, 142.4, 144.7, 159.6, 160.1, 197.4, 197.5, 197.8 ppm. HRMS (ESI⁺): calcd for C₃₀H₂₄O₅Na [M+Na]⁺ 487.1516, found 487.1514.

Diethyl 3'-formyl-4'-hydroxy-5'-(4-methoxyphenyl)-[1,1':2',1''-terphenyl]-4,4''-dicarboxylate (**3h**): 15 h, 75.3 mg, 72%, yellow solid. M.p.: 144-146 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.37$ (t, J = 7.2 Hz, 3H), 1.40 (t, J = 7.2 Hz, 3H), 3.86 (s, 3H), 4.34 (q, J = 7.2 Hz, 3H), 4.38 (q, J = 7.2 Hz, 3H), 7.01 (d, J = 8.8 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.0 Hz), 7.61-7.64 (m, 3H), 7.84 (d, J = 8.4 Hz, 2H), 7.97 (d, J = 8.4 Hz, 2H), 9.69 (s, 1H), 12.61 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.4$, 55.5, 61.2, 61.4, 114.0, 118.5, 128.2, 128.9, 129.39, 129.40, 129.9, 130.2, 130.4, 131.4, 132.3, 138.9, 140.3, 142.6, 144.4, 159.6, 160.0, 166.1, 166.4, 197.6 ppm. HRMS (ESI⁺): calcd for C₃₂H₂₈O₇Na [M+Na]⁺ 547.177, found 547.1725.

4'-Hydroxy-5'-(4-methoxyphenyl)-4,4''-dinitro-[1,1':2',1''-terphenyl]-3'-carbaldehyde (3i): 15 h, 47.0 mg, 50%, yellow solid. M.p.: 239-241 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.87$ (s, 3H), 7.02 (d, J = 8.8 Hz, 2H), 7.13 (d, J = 9.2 Hz, 2H), 7.29 (d, J = 8.8 Hz, 2H), 7.61 (d, J = 9.2 Hz, 2H), 7.64 (s, 1H), 8.06 (d, J = 8.8 Hz, 2H), 8.20 (d, J = 8.8 Hz, 2H), 9.68 (s, 1H), 12.64 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 55.5$, 114.1, 118.3, 123.6, 123.7, 127.6, 130.6, 130.7, 131.0, 131.6, 132.3, 138.6, 140.9, 142.2, 146.1, 147.7, 159.8, 160.6, 196.6 ppm. HRMS (ESI⁺): calcd for C₂₆H₁₇N₂O₇ [M-H]⁻ 469.1041, found 469.1038.

4'-Hydroxy-5'-(4-methoxyphenyl)-3,3''-dimethyl-[1,1':2',1''-terphenyl]-3'-carbaldehyde (3j): 24 h, 67.7 mg, 83%, yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 2.22 (s, 3H), 2.28 (s, 3H), 3.86 (s, 3H),

6.80 (d, J = 7.2 Hz, 1H), 6.90-7.04 (m, 6H), 7.08 (d, J = 7.6 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 7.61-7.63 (m, 3H), 9.74 (s, 1H), 12.57 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.47$, 21.49, 55.5, 113.9, 118.8, 127.0, 127.2, 127.7, 127.8, 128.5, 128.8, 129.2, 130.6, 130.7, 132.2, 133.4, 133.9, 135.8, 137.4, 137.6, 139.3, 140.0, 144.0, 159.31, 159.33, 198.6 ppm. HRMS (ESI⁺): calcd for C₂₈H₂₅O₃Na [M+Na]⁺ 431.1623, found 431.1619.

4'-Hydroxy-3,3''-dimethoxy-5'-(4-methoxyphenyl)-[1,1':2',1''-terphenyl]-3'-carbaldehyde (3k): 16 h, 74.0 mg, 84%, yellow solid. M.p.: 125-127 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.61 (s, 3H), 3.68 (s, 3H), 3.86 (s, 3H), 6.59 (s, 1H), 6.69-6.72 (m, 3H), 6.80-6.85 (m, 2H), 7.01 (d, *J* = 8.4 Hz, 2H), 7.10 (t, *J* = 8.0 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.62 (d, *J* = 8.8 Hz, 2H), 7.66 (s, 1H), 9.77 (s, 1H), 12.58 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.2, 55.4, 55.5, 112.8, 113.8, 113.9, 115.1, 116.8, 118.7, 122.3, 124.1, 128.6, 129.0, 129.1, 129.5, 130.6, 133.0, 137.2, 139.1, 141.4, 143.5, 159.1, 159.2, 159.37, 159.45, 198.4 ppm. HRMS (ESI⁺): calcd for C₂₈H₂₅O₅ [M+H]⁺ 441.1697, found 441.1697.

3,3''-Difluoro-4'-hydroxy-5'-(4-methoxyphenyl)-[1,1':2',1''-terphenyl]-3'-carbaldehyde (3l): 20 h, 66.5 mg, 80%, yellow solid. M.p.: 121-123 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.87 (s, 3H), 6.77 (d, *J* = 8.4 Hz, 1H), 6.82 (d, *J* = 8.4 Hz, 1H), 6.85-6.90 (m, 2H), 7.97-7.05 (m, 4H), 7.12-7.17 (m, 1H), 7.26-7.32 (m, 1H), 7.60-7.62 (m, 3H), 9.73 (s, 1H), 12.59 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.5, 113.9 (d, *J*_{CF} = 21.0 Hz), 114.0, 115.3 (d, *J*_{CF} = 21.0 Hz), 117.8 (d, *J*_{CF} = 21.8 Hz), 118.3 (d, *J*_{CF} = 21.7 Hz), 118.5, 125.6 (d, *J*_{CF} = 2.8 Hz), 127.2 (d, *J*_{CF} = 3.1 Hz), 128.3, 129.5 (d, *J*_{CF} = 8.3 Hz), 129.9 (d, *J*_{CF} = 8.5 Hz), 130.2, 130.6, 132.0 (d, *J*_{CF} = 2.0 Hz), 137.7 (d, *J*_{CF} = 8.9 Hz), 139.0, 141.9 (d, *J*_{CF} = 7.8 Hz), 142.1 (d, *J*_{CF} = 1.9 Hz), 159.5, 159.8, 162.37 (d, *J*_{CF} = 247.0 Hz), 162.42 (d, *J*_{CF} = 245.0 Hz), 197.7 ppm. HRMS (ESI⁺): calcd for C₂₆H₁₈F₂O₃Na [M+Na]⁺ 439.1116, found 439.1113.

Dimethyl 3'-formyl-4'-hydroxy-5'-(4-methoxyphenyl)-[1,1':2',1''-terphenyl]-3,3''-dicarboxylate (**3m**): 15 h, 79.3 mg, 80%, yellow solid. M.p.: 134-136 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.87 (brs, 6H), 3.90 (s, 3H), 7.01 (d, *J* = 8.4 Hz, 2H), 7.12 (d, *J* = 7.6 Hz, 1H), 7.18 (t, *J* = 8.0 Hz, 1H), 7.30-7.37 (m, 2H), 7.62-7.65 (m, 3H), 7.82 (d, *J* = 6.4 Hz, 2H), 7.92 (s, 1H), 7.97 (d, *J* = 7.2 Hz, 1H), 9.70 (s, 1H), 12.61 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 52.3, 52.5, 55.5, 114.0, 118.6, 128.0, 128.1, 128.3, 128.5, 129.3, 130.1, 130.2, 130.3, 130.6, 131.0, 132.3, 132.4, 134.5, 135.5, 136.0, 139.1, 140.0, 142.6, 159.5, 159.9, 166.5, 166.9, 197.6 ppm. HRMS (ESI⁺): calcd for C₃₀H₂₄O₇Na [M+Na]⁺ 519.1414, found 519.1412.

2-Hydroxy-4'-methoxy-4,5-di (naphthalen-2-yl)-[1,1'-biphenyl]-3-carbaldehyde (3n): 20 h, 87.0 mg, 90%, yellow solid. M.p.: 148-150 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.88 (s, 3H), 7.02-7.08 (m, 3H), 7.28 (s, 1H), 7.37-7.43 (m, 2H), 7.46-7.50 (m, 3H), 7.66-7.79 (m, 10H), 9.76 (s, 1H), 12.67 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.5, 114.0, 119.0, 126.0, 126.2, 126.7, 126.8, 127.3, 127.6, 127.9, 128.0, 128.07, 128.14, 128.7, 128.9, 129.7, 130.6, 131.0, 132.0, 132.55, 132.64, 133.33, 133.34, 137.8, 139.7, 143.7, 159.4, 159.6, 198.3 ppm. HRMS (ESI⁺): calcd for C₃₄H₂₄O₃ [M+Na]⁺ 503.1623, found 503.1627.

2-Hydroxy-4'-methoxy-4,5-di(thiophen-2-yl)-[1,1'-biphenyl]-3-carbaldehyde (30): 16 h, 57.2 mg, 73%, yellow solid. M.p.: 117-119 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.87 (s, 3H), 6.83 (d, *J* = 1.2 Hz, 1H), 6.91 (t, *J* = 3.6 Hz, 1H), 7.01 (d, *J* = 8.8 Hz, 2H), 7.06-7.10 (m, 2H), 7.44 (d, *J* = 5.2 Hz, 1H),

7.60 (d, J = 8.4 Hz, 2H), 7.78 (s, 1H), 9.86 (s, 1H), 12.60 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 55.5, 114.0, 120.0, 126.3, 126.8, 127.2, 127.8, 128.18, 128.22, 130.6, 130.9, 131.2, 135.7, 135.9,$ 138.8, 141.3, 159.6, 159.7, 198.0 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₆O₃S₂Na [M+Na]⁺ 415.0433, found 415.0436.

2-Hydroxy-4'-methoxy-4,5-bis(5-methylthiophen-2-yl)-[1,1'-biphenyl]-3-carbaldehyde (3p): 16 h, 65.5 mg, 78%, yellow solid. M.p.: 115-117 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.42 (s, 3H), 2.51 (s, 3H), 3.86 (s, 3H), 6.58 (s, 1H), 6.65 (d, *J* = 3.2 Hz, 1H), 6.74 (s, 1H), 6.83 (d, *J* = 3.2 Hz, 1H), 7.01 (d, *J* = 8.8 Hz, 2H), 7.59 (d, *J* = 8.4 Hz, 2H), 7.74 (s, 1H), 9.89 (s, 1H), 12.57 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 15.4, 15.5, 55.5, 114.0, 120.1, 125.2, 125.4, 126.6, 128.0, 128.4, 130.6, 131.2, 133.5, 135.7, 138.7, 139.0, 140.7, 142.8, 159.4, 159.5, 198.3 ppm. HRMS (ESI⁺): calcd for C₂₄H₂₁O₃S₂Na [M+Na]⁺ 443.0746, found 443.0749.

2-Hydroxy-4'-methoxy-4,5-di(thiophen-3-yl)-[1,1'-biphenyl]-3-carbaldehyde (3q): 15 h, 59.6 mg, 76%, yellow solid. M.p.: 152-154 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.87$ (s, 3H), 6.68 (d, J = 4.8 Hz, 1H), 6.91-6.92 (m, 2H), 7.01 (d, J = 8.4 Hz, 2H), 7.13-7.15 (m, 2H), 7.35 (t, J = 3.6 Hz, 1H), 7.60 (d, J = 8.4 Hz, 2H), 7.70 (s, 1H), 9.83 (s, 1H), 12.55 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 55.5$, 113.9, 119.3, 122.9, 124.9, 126.1, 126.2, 128.5, 128.55, 128.61, 129.8, 130.3, 130.6, 136.0, 138.5, 138.8, 140.4, 159.37, 159.39, 198.2 ppm. HRMS (ESI⁺): calcd for C₂₂H₁₆O₃S₂Na [M+Na]⁺ 415.0433, found 415.0435.

3'-Hydroxy-4''-methoxy-6'-methyl-[1,1':4',1''-terphenyl]-2'-carbaldehyde (3r): 16 h, 43.2 mg, 68%, yellow solid. M.p.: 87-89 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.05 (s, 3H), 3.87 (s, 3H), 7.00-7.02 (m, 2H), 7.26-7.28 (m, 2H), 7.42-7.50 (m, 4H), 7.58-7.60 (m, 2H), 9.59 (s, 1H), 12.33 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 19.4, 55.5, 113.9, 119.1, 127.3, 128.1, 128.6, 129.0, 129.1, 130.0, 130.5, 136.7, 139.4, 144.7, 158.1, 159.2, 198.0 ppm. HRMS (ESI⁺): calcd for C₂₁H₁₉O₃ [M+H]⁺ 319.1329, found 319.1329.

6'-Ethyl-3'-hydroxy-4''-methoxy-[1,1':4',1''-terphenyl]-2'-carbaldehyde (3s): 24 h, 36.0 mg, 54%, viscous yellow oil. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.05$ (t, J = 7.2 Hz, 3H), 2.37 (q, J = 7.2 Hz, 2H), 3.87 (s, 3H), 7.01 (d, J = 8.4 Hz, 2H), 7.26-7.30 (m, 2H), 7.44-7.51 (m, 4H), 7.59 (d, J = 8.4 Hz, 2H), 9.54 (s, 1H), 12.36 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 16.0$, 25.5, 55.5, 113.9, 119.0, 128.1, 128.4, 129.1, 129.5, 130.2, 130.6, 133.7, 136.3, 138.1, 144.2, 158.2, 159.3, 198.1 ppm. HRMS (ESI⁺): calcd for C₂₂H₂₀NaO₃ [M+Na]⁺ 355.1305, found 355.1311.

4'-Hydroxy-6'-phenyl-[1,1':3',1'':4'',1'''-quaterphenyl]-5'-carbaldehyde (3t): 20 h, 75.0 mg, 88%, yellow solid. M.p.: 157-159 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.06-7.08 (m, 2H), 7.17-7.20 (m, 5H), 7.29-7.31 (m, 3H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.66-7.74 (m, 5H), 7.78 (d, *J* = 8.4 Hz, 2H), 9.77 (s, 1H), 12.67 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 118.8, 126.7, 127.2, 127.3, 127.5, 127.9, 128.0, 128.1, 128.9, 129.4, 129.8, 130.0, 131.4, 133.5, 135.3, 135.8, 139.5, 140.0, 140.7, 140.9, 144.4, 159.6, 198.4 ppm. HRMS (ESI⁺): calcd for C₃₁H₂₃O₂ [M+H]⁺ 427.1693, found 427.1697.

4'-Hydroxy-4-methoxy-6'-(4-methoxyphenyl)-[1,1':3',1'':4'',1'''-quaterphenyl]-5'-carbaldehyde (**3u**): 20 h, 76.8 mg, 79%, yellow solid. M.p.: 105-107 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.77 (s, 3H), 3.82 (s, 3H), 6.73 (d, *J* = 8.8 Hz, 2H), 6.84 (d, *J* = 8.4 Hz, 2H), 6.98 (d, *J* = 8.8 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 2H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.65-7.71 (m, 5H), 7.78 (d, *J* = 8.4 Hz, 2H), 9.78 (s, 1H), 12.62 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.3, 55.4, 113.5, 113.6, 119.1, 127.2, 127.3, 127.5, 128.0, 128.9, 129.0, 129.8, 131.0, 132.5, 132.6, 133.3, 135.5, 139.6, 140.6, 140.9, 144.2, 158.3, 159.2, 159.3, 198.6 ppm. HRMS (ESI⁺): calcd for C₃₃H₂₆O₄Na [M+Na]⁺ 509.1723, found 509.1719.

4'-Hydroxy-5'-(6-methoxynaphthalen-2-yl)-[1,1':2',1''-terphenyl]-3'-carbaldehyde (3v): 20 h, 77.4 mg, 92%, yellow solid. M.p.: 145-147 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.95 (s, 3H), 7.07-7.09 (m, 2H), 7.17-7.20 (m, 7H), 7.29-7.31 (m, 3H), 7.78-7.83 (m, 4H), 8.07 (s, 1H), 9.78 (s, 1H), 12.66 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.5, 105.7, 118.8, 119.2, 126.6, 126.7, 127.91, 127.95, 127.97, 128.1, 128.3, 129.0, 129.8, 129.9, 130.0, 131.4, 131.7, 133.5, 134.1, 135.8, 139.7, 140.1, 144.2, 158.1, 159.7, 198.4 ppm. HRMS (ESI⁺): calcd for C₃₀H₂₂O₃Na [M+Na]⁺ 453.1467, found 453.1466.

5'-(Benzo[*d*][1,3]dioxol-5-yl)-4'-hydroxy-[1,1':2',1''-terphenyl]-3'-carbaldehyde (3w): 20 h, 67.8 mg, 86%, yellow solid. M.p.: 136-138 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.02$ (s, 2H), 6.91 (d, J = 8.4 Hz, 1H), 7.03-7.05 (m, 2H), 7.11-7.17 (m, 6H), 7.22 (s, 1H), 7.26-7.29 (m, 3H), 7.63 (s, 1H), 9.74 (s, 1H), 12.61 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 101.3$, 108.5, 110.1, 118.7, 123.0, 126.6, 127.9, 128.0, 128.1, 129.4, 129.9, 130.2, 131.4, 133.4, 135.8, 139.4, 140.0, 144.1, 147.3, 147.6, 159.4,

4'-Hydroxy-5'-(4-methoxyphenyl)-6'-(*p***-tolyl)-[1,1':2',1''-terphenyl]-3'-carbaldehyde (3x):** 24 h, 47.9 mg, 51%, yellow solid. M.p.: 120-122 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.10 (s, 3H), 3.76 (s, = 3H), 6.63-6.73 (m, 8H), 6.85 (s, 3H), 7.06 (d, *J* = 8.4 Hz, 2H), 7.12-7.19 (m, 5H), 9.68 (s, 1H), 12.44 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.2, 55.2, 113.3, 117.8, 125.6, 126.9, 127.4, 127.6, 127.8, 127.9, 129.8, 130.5, 131.2, 131.7, 132.1, 133.6, 135.6, 136.2, 136.5, 138.9, 145.1, 150.2, 158.3, 159.8, 197.9 ppm. HRMS (ESI⁺): calcd for C₃₃H₂₇O₃ [M+H]⁺ 471.1955, found 471.1957.

IV. H/D exchange experiment

H/D exchange in the reaction of **1e** using CD₃OD as the co-solvent without **2a**: A solution of $[Cp*RhCl_2]_2$ (3.1 mg, 2.5 mol%), AgSbF₆ (6.8 mg, 10 mol%), **1e** (96.3 mg, 0.3 mmol), AgOAc (66.4 mg, 0.4 mmol), H₂O (0.1 mol) in the mixture of DCE (1.8 mL) and CD₃OD (0.2 mL) was sealed with a teflon-coated screw cap and the reaction was stirred at 90 °C for 12 h under N₂. At the end of the reaction, the mixture was filtered through a celite pad and washed with DCM. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel column (PE/EA) to provide recovered **1e** (41.4 mg, 60%) as an off-white solid. The D-incorporation in recovered **1e** was estimated by ¹H NMR spectroscopy, and 55% of α-arylvinylic C–H and 65% of 2-(dimethylamino)vinylic C–H were deuterated, respectively.

V.Transformation of 3a into compounds 4-7

1. The reaction of 3a with TsCl⁵

To a rapidly stirred solution of **3a** (38.0 mg, 0.1 mmol) in DCM (2 mL) was added Et₃N (0.3 mL). The mixture was cooled to 0 °C, and a solution of TsCl (22.8 mg, 1.2 eq.) in DCM (1 mL) was added dropwise. The mixture was allowed to warm to room temperature and stirred overnight. The resulting solution was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel column (PE/EA = 10:1-5:1, v/v) to provide sulfonate **4** (50.7 mg, 95% yield) as a white solid.

3'-formyl-5'-(4-methoxyphenyl)-[1,1':2',1''-terphenyl]-4'-yl 4-methylbenzenesulfonate (4): 50.7 mg, 95%, a white solid. M.p.: 161-163 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.38 (s, 3H),

3.84 (s, 3H), 6.75 (d, J = 8.4 Hz, 2H), 7.03-7.26 (m, 14H), 7.37 (d, J = 8.4 Hz, 2H), 7.48 (s, 1H), 9.89 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 20.8$, 54.4, 112.7, 126.2, 126.9, 127.0, 127.1, 127.3, 127.7, 128.4, 128.8, 129.7, 130.2, 131.3, 131.9, 134.88, 134.91, 135.1, 140.5, 141.0, 144.0, 158.4, 190.3 ppm. HRMS (ESI+): calcd for C₃₃H₂₆O₅SNa [M+Na]⁺ 557.1393, found 557.1396.

2. The reaction of 3a with NH₂OH·HCl⁶

A solution of **3a** (38.0 mg, 0.1 mmol), NH₂OH·HCl (1.5 eq.), NaHCO₃ (2.0 eq.) in DCM (1 mL)/EtOH (3 mL) was stirred at room temperature for 3h. The resulting solution was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel column (PE/EA = 5:1-2:1, v/v) to provide oxime **5** (35.5 mg, 90% yield) as a white solid.

4'-hydroxy-5'-(4-methoxyphenyl)-[1,1':2',1''-terphenyl]-3'-carbaldehyde oxime: 73.6 mg, 88%, yellow solid. M.p.: 233-235 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.86 (s, 3H), 6.99-7.04 (m, 4H), 7.08-7.14 (m, 5H), 7.24-7.26 (m, 3H), 7.42 (s, 1H), 7.44 (s, 1H), 7.62 (d, *J* = 8.8 Hz, 2H), 9.12 (s, 1H), 11.03 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.5, 113.8, 115.1, 126.2, 127.4, 127.7, 128.1, 128.6, 129.99, 130.04, 130.6, 131.2, 133.6, 134.1, 137.8, 140.9, 141.1, 153.2, 154.4, 159.0 ppm. HRMS (ESI+): calcd for C₂₆H₂₁NO₃Na [M+Na]⁺ 418.1414, found 418.1413.

3. The reaction of 3a with acrylaldehyde to form 2*H*-chromene product 6⁷

A solution of **3a** (38.0 mg, 0.1 mmol), acrylaldehyde (1.2 eq.), K_2CO_3 (2.0 eq.) in dioxane (1 mL) was stirred at 100 °C for 3h under N₂ atmosphere. The resulting solution was concentrated under reduced

pressure and the residue was purified by flash chromatography on silica gel column (PE/EA = 10:1-5:1, v/v) to provide 2*H*-chromene **6** (73.6 mg, 88% yield) as a yellow solid.

8-(4-methoxyphenyl)-5,6-diphenyl-2H-chromene-3-carbaldehyde: 41.8 mg, 88%, yellow solid. M.p.: 112-114 °C. ¹H NMR (400 MHz, CDCl3): δ = 3.87 (s, 3H), 5.01 (s, 2H), 6.99 (d, J = 8.0 Hz, 2H), 7.06-7.17 (m, 8H), 7.30 (brs, 3H), 7.48 (s, 1H), 7.55 (d, J = 7.2 Hz, 2H), 9.45 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 55.5, 62.4, 113.8, 120.6, 126.5, 127.6, 127.9, 128.1, 129.0, 129.2, 129.9, 130.6, 131.31, 131.34, 135.2, 135.7, 137.4, 139.6, 140.6, 141.3, 152.6, 159.3, 190.0 ppm. HRMS (ESI+): calcd for C₂₉H₂₂O₃Na [M+Na]⁺ 441.1460, found 441.1460.

The reaction of 3a with dimethyl malonate to form 2*H*-chromen-2-one product 7⁸ 4.

A solution of **3a** (38.0 mg, 0.1 mmol), dimethyl malonate (1.2 eq.), piperidine (5 mol%) in DCM (1 mL)/CH₃CN) (2 mL) was stirred at room temperature for 12 h. The resulting solution was concentrated under reduced pressure to provide 2*H*-chromen-2-one 7 (42.0 mg, 91% yield) as a yellow solid through recrystallization (PE/DCM).

methyl 8-(4-methoxyphenyl)-2-oxo-5,6-diphenyl-2H-chromene-3-carboxylate: 42.0 mg, 91%, yellow solid. M.p.: 233-235 °C. ¹H NMR (400 MHz, CDCl3): δ = 3.87 (s, 3H), 3.88 (s, 3H), 7.03-7.13 (m, 6H), 7.18-7.20 (m, 3H), 7.32-34 (m, 3H), 7.64 (d, J = 8.8 Hz, 2H), 7.75 (s, 1H), 8.44 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 53.0, 55.5, 114.3, 117.5, 117.6, 127.1, 127.4, 128.1, 128.2, 128.5, 129.0, 129.8, 130.9, 131.2, 135.9, 137.0, 138.2, 139.7, 139.8, 148.5, 159.8, 164.2 ppm. HRMS (ESI+): calcd for C₃₀H₂₂O₅Na [M+Na]⁺ 485.1359, found 485.1358.

VI. References

- 1. J. W. Kang, K. Moseley, P. M. Maitlis, J. Am. Chem. Soc., 1969, 91, 5970.
- D. Kumar, D. N. Kommi, P. Chopra, M. I. Ansari, A. K. Chakraborti, *Eur. J. Org. Chem.*, 2012, 6407.
- (a) K. Park, G. Bae, J. Moon, J. Choe, K. H. Song, S. Lee, J. Org. Chem., 2010, 75, 6244; (b) X. Tang, S. Woodward, N. Krause, Eur. J. Org. Chem., 2009, 2836.
- 4. Y. Zhao, S. Li, X. Zheng, J. Tang, Z. She, G. Gao, J. You, Angew. Chem., Int. Ed., 2017, 56, 4286.
- 5. H.-Y. Chen, M.-Y. Liu, A. K. Sutar, C.-C. Lin, Inorg. Chem., 2010, 49, 665.
- J. Zhu, Y. Ye, M. Ning, A. Mandi, Y. Feng, Q. Zou, T. Kurtan, Y. Leng, J. Shen, *Chem. Med. Chem.*, 2013, 8, 1210.
- P. Panda, S. Nayak, S. K. Sahoo, S. Mohapatra, D. Nayak, R. Pradhan, C. N. Kundu, *RSC Adv.*, 2018, *8*, 16802.
- 8. S. Zhou, J. Wang, L. Wang, C. Song, K. Chen, J. Zhu, Angew. Chem. Int. Ed. 2016, 55, 9384.

S18

