Supporting Information

Palladium-Catalyzed Denitrogenative Cycloadditions and Alkenylations of Benzotriazoles with Alkynes

Yuanhao Wang,^a Zhiguo Wang,^a Xuewei Chen^a and Yefeng Tang*,^{a,b}

^aSchool of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China ^bCollaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, Sichuan University, Chengdu 610041, China

Table of Contents

1. General Information	2
2. General Procedures for the Denitrogenative Formal [2+2+1] Cyclization	2
3. General Procedures for the Denitrogenative Formal [2+2+2] Cyclization	3
4. General Procedures for the Denitrogenative Alkenylation	3
5. Analysis Data of the Denitrogenative Formal [2+2+1] Cyclization Products	3
6. Analysis Data of the Denitrogenative Formal [2+2+2] Cyclization Products	9
7. Analysis Data of the Denitrogenative Alkenylation Products	11
8. NMR Spectra of the Products	15
9. X-ray Crystallographic Structure and Data	50

1. General Information

NMR spectra were recorded on Bruker AV400 instrument. TMS was used as internal standard for ¹H NMR (0 ppm), and solvent signal was used as reference for ¹³C NMR (CDCl₃, 77.16 ppm). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dt = triple doublet, m = multiplet. High-resolution mass spectra (HRMS) were recorded on a Waters Xevo G2 QTOF MS.

Reactions were monitored by Thin Layer Chromatography on plates (GF_{254}) supplied by Yantai Chemicals (China) using UV light as visualizing agent. If not specially mentioned, flash column chromatography uses silica gel (200-300 mesh) supplied by Tsingtao Haiyang Chemicals (China).

Solvent purification was conducted according to Purification of Laboratory Chemicals (Peerrin, D. D.; Armarego, W. L. and Perrins, D. R., Pergamon Press: Oxford, 1980). Yields refer to chromatographically and spectroscopically (¹H NMR) homogeneous materials.

The procedures for preparation of starting materials (benzotriazoles $1a-k^1$) referred to the known literatures listed in the references.

2. General Procedures for the Denitrogenative Formal [2+2+1] Cyclization

A bottom of flask was sequentially charged with N-Tf-benzotriazole (0.30 mmol, 1.0 equiv), alkyne (0.60 mmol, 2.0 equiv), $Pd(TFA)_2$ (5 mg, 0.015 mmol, 0.05 equiv) and $AgBF_4$ (233 mg, 1.2 mmol, 4.0 eq) at N₂ atmosphere. The freshly distilled MeCN (3.0 mL) was added and then the flask was placed in an oil bath preheated to 100 °C. The resulting solution was heated at this temperature for 4-12 hours before being cooled to room temperature and concentrated in vacuo. The residue was directly purified by flash chromatography (SiO₂, hexanes/EtOAc) to give the corresponding product (**3a-q**).

¹ Y. H. Wang, Y. F. Wu, Y. H. Li and Y. F. Tang, Chem. Sci. 2017, 8, 3852.

3. General Procedures for the Denitrogenative Formal [2+2+2] Cyclization

A bottom of flask was sequentially charged with N-Tf-benzotriazole (0.30 mmol, 1.0 equiv), alkyne (0.60 mmol, 2.0 equiv), Pd(PhCN)₂Cl₂ (6 mg, 0.015 mmol, 0.05 equiv) and AgBF₄ (233 mg, 1.2 mmol, 4.0 eq) at N₂ atmosphere. The freshly distilled MeCN (3.0 mL) was added and then the flask was placed in an oil bath preheated to 100 °C. The resulting solution was heated at this temperature for 12-72 hours before being cooled to room temperature and concentrated in vacuo. The residue was directly purified by flash chromatography (SiO₂, hexanes/EtOAc) to give the corresponding product (**4a-h**).

4. General Procedures for the Denitrogenative Alkenylation

A bottom of flask was sequentially charged with N-Tf-benzotriazole (0.30 mmol, 1.0 equiv), alkyne (2.4 mmol, 8.0 equiv), $Pd(dppf)_2Cl_2$ (12.3 mg, 0.015 mmol, 0.05 equiv) and $AgBF_4$ (233 mg, 1.2 mmol, 4.0 eq) at N₂ atmosphere. The freshly distilled MeCN (3.0 mL) was added and then the flask was placed in an oil bath preheated to 100 °C. The resulting solution was heated at this temperature for 2-6 hours before being cooled to room temperature and concentrated in vacuo. The residue was directly purified by flash chromatography (SiO₂, hexanes/EtOAc) to give the corresponding product (**6a-h**).

5. Analysis Data of the Denitrogenative Formal [2+2+1] Cyclization Products (*E*)-1,1,1-trifluoro-*N*-(1,2,3,4-tetraphenylspiro[4.5]deca-1,3,7,9-tetraen-6-

ylidene)methanesulfonamide (3a): The product was obtained as a red solid. Yield: 74%; ¹H NMR (400 MHz, CDCl₃) δ 6.59 (dd, *J* = 8.8 Hz, *J* = 5.6 Hz, 1H), 6.65 (d, *J* = 8.8 Hz, 1H), 6.89-6.92 (m, 8H), 7.05-7.26 (m, 14H); ¹³C (100 MHz,

CDCl₃) δ 72.6, 119.0 (q, J = 317.6 Hz), 123.7, 123.8, 127.5, 127.8, 128.1, 128.2, 129.2, 129.8, 133.9, 134.7, 143.4, 143.8, 147.1, 149.7, 183.5; IR v_{max} (film): 3674.48, 2987.12, 2900.26, 1631.30, 1552.08, 1517.50, 1441.92, 1405.79, 1393.49, 1381.44, 1349.27, 1264.36, 1217.98, 1159.35, 1123.17, 1056.65, 904.12, 798.34 cm⁻¹; HRMS m/z calcd for C₃₅H₂₃F₃NO₂S [M-H]⁺: 578.1402; found: 578.1396.

(E)-1,1,1-trifluoro-N-(10-methyl-1,2,3,4-tetraphenylspiro[4.5]deca-1,3,7,9-tetraen-6-

ylidene)methanesulfonamide (3b): The product was obtained as an orange solid. Yield: 76%; ¹H NMR (400 MHz, CDCl₃) δ 2.06 (s, 3H), 6.41 (d, *J* = 6.0 Hz, 1H), 6.86-6.92 (m, 8H), 6.96 (d, *J* = 9.6 Hz, 1H), 7.02 (d, *J* = 6.4 Hz, 1H), 7.06-7.14 (m, 12H); ¹³C (100 MHz, CDCl₃) δ 19.2, 75.8, 119.1 (q, *J* = 317.4 Hz),

121.6, 123.0, 127.5, 127.8, 128.2, 128.3, 129.0, 129.7, 133.5, 134.9, 146.0, 147.3, 150.0, 154.4, 185.1; IR ν_{max} (film): 3674.58, 2987.20, 2900.35, 1639.75, 1558.57, 1507.47, 1441.46, 1410.82, 1345.96, 1215.75, 1191.91, 1122.73, 1073.91, 961.94 cm⁻¹; HRMS m/z calcd for C₃₆H₂₅F₃NO₂S [M-H]⁺: 592.1558; found: 592.1562.

(E)-1,1,1-trifluoro-N-(8-methyl-1,2,3,4-tetraphenylspiro[4.5]deca-1,3,7,9-tetraen-6-

ylidene)methanesulfonamide (3c): The product was obtained as an orange solid. Yield: 80%; ¹H NMR (400 MHz, CDCl₃) δ 2.13 (s, 3H), 6.50 (d, *J* = 9.2 Hz, 1H), 6.65 (d, *J* = 9.2 Hz, 1H), 6.93-6.96 (m, 9H), 7.12-7.17 (m, 12H); ¹³C (100 MHz, CDCl₃) δ 24.3, 71.7, 119.1 (q, *J* = 315.5 Hz), 122.1, 127.4,

127.6, 127.7, 128.0, 128.1, 129.2, 129.8, 133.9, 134.8, 142.5, 143.9, 149.6, 162.0, 182.6; IR ν_{max} (film): 3674.50, 2987.22, 2900.27, 1636.48, 1509.36, 1441.70, 1410.62, 1341.90, 1215.55, 1192.08, 1122.71, 1056.71, 946.62, 831.28 cm⁻¹; HRMS m/z calcd for C₃₆H₂₅F₃NO₂S [M-H]⁺: 592.1558; found: 592.1560.

(E)-N-(8-chloro-1,2,3,4-tetraphenylspiro[4.5]deca-1,3,7,9-tetraen-6-ylidene)-1,1,1-

trifluoromethanesulfonamide (3d): The product was obtained as an orange solid. Yield: 75%; ¹H NMR (400 MHz, CDCl₃) δ 6.64 (d, J = 2.0 Hz, 1H), 6.91-6.97 (m, 9H), 7.05 (d, J = 10.0 Hz, 1H), 7.12-7.19 (m, 12H); ¹³C (100

MHz, CDCl₃) δ 73.5, 118.9 (q, J = 317.4 Hz), 124.8, 127.7, 127.9, 128.0, 128.2, 128.4, 129.1, 129.7, 133.4, 134.4, 136.6, 143.8, 147.5, 149.6, 181.6; IR v_{max} (film): 3674.53, 2987.16, 2900.26, 1624.51, 1556.32, 1527.13, 1488.43, 1441.68, 1406.00, 1354.29, 1264.39, 1196.44, 1125.36, 1074.46, 1027.35, 902.15, 821.80 cm⁻¹; HRMS m/z calcd for C₃₅H₂₂F₃NO₂SCl [M-H]⁺: 612.1012; found: 612.1005.

(E)-1,1,1-trifluoro-N-(8-fluoro-1,2,3,4-tetraphenylspiro[4.5]deca-1,3,7,9-tetraen-6-

ylidene)methanesulfonamide (3e): The product was obtained as an orange solid. Yield: 70%; ¹H NMR (400 MHz, CDCl₃) δ 6.53-6.58 (m, 1H), 6.85-6.97 (m, 10H), 7.10-7.20 (m, 12H); ¹³C (100 MHz, CDCl₃) δ 72.4, 107.0 (d,

J = 21.5 Hz), 118.9 (q, J = 321.0 Hz), 119.9 (d, J = 32.3 Hz), 127.7, 128.1, 128.1, 128.4, 129.1, 129.8, 133.5, 134.4, 143.2, 148.1 (d, J = 14.9 Hz), 150.4, 176.0 (d, J = 284.3 Hz), 183.7; IR v_{max} (film): 3674.51, 2987.19, 2900.24, 1637.20, 1521.29, 1442.29, 1405.64, 1393.54, 1350.09, 1206.26, 1173.31, 1122.33, 1074.65, 1056.59, 1027.25, 845.43 cm⁻¹; HRMS m/z calcd for C₃₅H₂₂F₄NO₂S [M-H]⁺: 596.1386; found: 596.1381.

(E)-1,1,1-trifluoro-N-(1,2,3,4,8-pentaphenylspiro[4.5]deca-1,3,7,9-tetraen-6-

ylidene)methanesulfonamide (3f): The product was obtained as an orange solid. Yield: 74%; ¹H NMR (400 MHz, CDCl₃) δ 6.82 (d, *J* = 9.6 Hz, 1H), 6.97-7.03 (m, 9H), 7.12-7.20 (m, 12H), 7.33 (s, 1H), 7.45-7.55 (m, 5H); ¹³C (100 MHz, CDCl₃) δ 72.0, 119.1 (q, *J* = 317.4 Hz), 119.8, 125.2, 127.5, 127.7,

127.7, 128.1, 128.1, 129.2, 129.3, 129.9, 131.9, 134.0, 134.8, 137.0, 143.5, 144.1, 149.6, 158.7, 182.5; IR v_{max} (film): 3674.96, 3055.24, 1628.04, 1594.67, 1504.23, 1441.54, 1341.25, 1264.63, 1189.61, 1121.35, 1072.51, 1026.03, 947.64, 932.99 cm⁻¹; HRMS m/z calcd for C₄₁H₂₇F₃NO₂S [M-H]⁺: 654.1715; found: 654.1794.

(E)-1,1,1-trifluoro-N-(1,2,3,4,9-pentaphenylspiro[4.5]deca-1,3,7,9-tetraen-6-

ylidene)methanesulfonamide (3g): The product was obtained as an orange solid. Yield: 41%; ¹H NMR (400 MHz, CDCl₃) δ 6.78 (s, 1H), 6.96-6.97 (m, 8H), 7.10-7.21 (m, 13H), 7.35 (d, *J* = 7.6 Hz, 2H), 7.41-7.46 (m, 4H); ¹³C (100

MHz, CDCl₃) δ 72.7, 119.0 (q, J = 317.4 Hz), 124.2, 125.8, 127.5, 127.8, 128.1, 128.2, 128.7, 129.2, 129.2, 129.8, 133.9, 134.7, 136.3, 137.6, 137.9, 144.1, 148.7, 149.5, 183.2; IR v_{max} (film): 3674.60, 2987.24, 2900.30, 1636.66, 1554.82, 1522.11, 1494.01, 1442.00, 1409.41, 1393.46, 1351.59, 1217.95, 1196.36, 1126.80, 1074.63, 1056.64, 1027.24, 908.29, 828.40 cm⁻¹; HRMS m/z calcd for C₄₁H₂₇F₃NO₂S [M-H]⁺: 654.1715; found: 654.1718.

(E)-1,1,1-trifluoro-N-(8-(naphthalen-2-yl)-1,2,3,4-tetraphenylspiro[4.5]deca-1,3,7,9-tetraen-

6-ylidene)methanesulfonamide (3h): The product was obtained as an orange solid. Yield: 95%; ¹H NMR (400 MHz, CDCl₃) δ 6.86 (d, J = 9.2 Hz, 1H), 6.97-6.99 (m, 4H), 7.02-7.04 (m, 4H), 7.11-7.21 (m, 13H), 7.47 (s, 1H), 7.58-7.61 (m, 3H), 7.88-7.94 (m, 3H), 8.08 (s, 1H);

¹³C (100 MHz, CDCl₃) δ 72.1, 119.2 (q, J = 317.3 Hz), 119.8, 123.9, 125.1, 127.3, 127.5, 127.7, 127.9, 128.1, 128.2, 128.5, 128.6, 129.2, 129.3, 129.3, 129.9, 133.0, 134.0, 134.9, 134.9, 143.5, 144.3, 149.6, 158.4, 182.3; IR v_{max} (film): 3674.45, 2987.14, 2900.26, 1621.55, 1501.61, 1441.18, 1406.55, 1393.41, 1342.49, 1241.29, 1201.04, 1120.89, 1065.87, 1056.63, 1027.31, 931.99, 857.88 cm⁻¹; HRMS m/z calcd for C₄₅H₂₉F₃NO₂S [M-H]⁺: 704.1949; found: 704.1951.

(E)-1,2,3,4-tetraphenyl-10-(((trifluoromethyl)sulfonyl)imino)spiro[4.5]deca-1,3,6,8-tetraene-7-

carboxylate (3i): The product was obtained as an orange solid. Yield: 70%;

¹H NMR (400 MHz, CDCl₃) δ 3.89 (s, 3H), 6.75 (d, J = 9.2 Hz, 1H), 6.90-

6.93 (m, 8H), 7.04 (d, J = 9.6 Hz, 1H), 7.10-7.20 (m, 12H), 7.66 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 53.5, 72.6, 119.0 (q, J = 317.5 Hz), 122.2, 124.7, 127.6, 127.9, 128.1, 128.3, 129.0, 129.8, 133.7, 134.5, 143.2, 144.2, 144.8, 149.9, 164.5, 183.8; IR v_{max}(film): 3674.49, 2987.16, 2900.27, 1730.65, 1634.83, 1525.86, 1441.37, 1406.15, 1381.53, 1358.21, 1253.88, 1218.71, 1125.36, 1074.71, $1027.37, 830.11 \text{ cm}^{-1}$; HRMS m/z calcd for C₃₇H₂₅F₃NO₄S [M-H]⁺: 636.1456; found: 636.1468.

(E)-1,1,1-trifluoro-N-(1,2,3,4-tetra-p-tolylspiro[4.5]deca-1,3,7,9-tetraen-6-

methyl

ylidene)methanesulfonamide (3j): The product was obtained as a dark red solid. Yield: 68%; ¹H NMR (400 MHz, CDCl₃) δ 2.21 (s, 6H), 2.24 (s, 6H), 6.53-6.63 (m, 2H), 6.77-6.80 (m, 8H), 6.87-6.91 (m, 8H), 7.02-7.14 (m, 2H); ¹³C (100 MHz, CDCl₃) δ 21.3, 21.4, 72.7, 119.1 (q, *J* = 317.0 Hz), 123.4, 123.7, 128.8, 128.8,

129.0, 129.7, 131.3, 132.1, 136.9, 137.3, 143.0, 144.1, 147.0, 149.5, 184.0; IR v_{max} (film): 3674.47, 2987.15, 2900.26, 1630.90, 1552.18, 1515.78, 1450.45, 1405.59, 1393.51, 1381.41, 1352.04, 1219.53, 1196.10, 1125.45, 1065.78, 1027.45, 903.27 cm⁻¹; HRMS m/z calcd for C₃₉H₃₃F₃NO₂S [M+H]⁺: 636.2196; found: 636.2194.

(E)-1,1,1-trifluoro-N-(1,2,3,4-tetrakis(4-methoxyphenyl)spiro[4.5]deca-1,3,7,9-tetraen-6-

ylidene)methanesulfonamide (3k): The product was obtained as a brown solid. Yield: 75%; ¹H NMR (400 MHz, CDCl₃) δ 3.75 (d, *J* = 9.6 Hz, 12H), 6.59 (dd, *J* = 8.8 Hz, *J* = 6.0 Hz, 1H), 6.64-6.69 (m, 9H), 6.83-6.86 (m, 8H), 7.07 (d, *J* = 10.0 Hz, 1H), 7.17 (dd, *J* = 9.6 Hz, *J* = 5.6 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ

55.2, 55.2, 72.7, 113.5, 123.3, 123.6, 126.8, 127.5, 130.4, 131.2, 142.1, 144.5, 147.2, 148.7, 158.7, 158.8, 184.3; IR v_{max} (film): 3674.53, 2987.16, 2900.25, 1405.74, 1393.48, 1381.83, 1249.47, 1229.33, 1065.79, 1056.62, 1027.48, 891.70 cm⁻¹; HRMS m/z calcd for C₃₉H₃₁F₃NO₆S [M-H]⁺: 698.1902; found: 698.1910.

(E)-1,1,1-trifluoro-N-(1,2,3,4-tetrakis(4-fluorophenyl)spiro[4.5]deca-1,3,7,9-tetraen-6-

ylidene)methanesulfonamide (31): The product was obtained as an orange solid. Yield: 81%; ¹H NMR (400 MHz, CDCl₃) δ 6.61-6.67 (m, 2H), 6.83-6.92 (m, 16H), 7.09 (d, *J* = 9.6 Hz, 1H), 7.16-7.21 (m, 1H); ¹³C (100 MHz, CDCl₃) δ 72.5, 115.4 (d, *J* = 2.7 Hz), 115.7 (d, *J* = 2.7 Hz), 119.0 (q, *J* = 317.4 Hz), 123.8, 124.1, 129.5

(d, J = 3.5 Hz), 130.1 (d, J = 3.4 Hz), 130.8 (d, J = 8.1 Hz), 131.5 (d, J = 8.0 Hz), 142.4, 143.2, 147.2, 148.4, 162.3 (d, J = 247.4 Hz), 163.5, 182.9; IR v_{max} (film): 3674.61, 2987.20, 2900.29, 1630.47, 1598.80, 1552.89, 1500.58, 1404.17, 1350.48, 1217.43, 1192.14, 1156.81, 1122.94, 1094.51, 904.82 cm⁻¹; HRMS m/z calcd for C₃₅H₁₉F₇NO₂S [M-H]⁺: 650.1103; found: 650.1025.

(E)-1,1,1-trifluoro-N-(1,2,3,4-tetra-m-tolylspiro[4.5]deca-1,3,7,9-tetraen-6-

ylidene)methanesulfonamide (3m): The product was obtained as an orange solid. Yield: 56%; ¹H NMR (400 MHz, CDCl₃) δ 2.11 (s, 6H), 2.13 (s, 6H), 6.54 (ddd, *J* = 8.0 Hz, *J* = 5.6 Hz, *J* = 1.2 Hz, 1H), 6.61 (dt, *J* = 8.8 Hz, *J* = 1.2 Hz, 1H), 6.70-6.73 (m, 8H), 6.90-7.00 (m, 8H), 7.03-7.11 (m, 2H); ¹³C (100 MHz, 100 MHz).

CDCl₃) δ 21.4, 21.4, 72.7, 119.1 (q, J = 317.3 Hz), 123.4, 123.7, 126.3, 126.9, 127.8, 127.9, 128.0, 128.4, 129.8, 130.5, 134.0, 134.8, 137.3, 137.5, 143.3, 144.0, 146.9, 149.8, 183.9; IR v_{max} (film): 3674.55, 2987.12, 2900.34, 1630.51, 1600.49, 1551.20, 1514.98, 1482.26, 1451.45, 1406.80, 1393.52, 1347.89, 1264.76, 1218.12, 1189.21, 1158.95, 1122.59, 1065.79, 1056.40, 982.41, 904.64, 883.55 cm⁻¹; HRMS m/z calcd for C₃₉H₃₃F₃NO₂S [M+H]⁺: 636.2184; found: 636.2191.

(*E*)-1,1,1-trifluoro-*N*-(1,2,3,4-tetrakis(3-fluorophenyl)spiro[4.5]deca-1,3,7,9-tetraen-6ylidene)methanesulfonamide (3n): The product was obtained as an orange solid. Yield: 77%; ¹H

NMR (400 MHz, CDCl₃) δ 6.56-6.70 (m, 10H), 6.85-6.92 (m, 4H), 7.08-7.20 (m, 6H); ¹³C (100 MHz, CDCl₃) δ 72.2, 115.2 (d, *J* = 21.0 Hz), 115.4 (d, *J* = 21.0 Hz), 115.8 (d, *J* = 22.0 Hz), 116.4 (d, *J* = 22.0 Hz), 119.0 (q, *J* = 317.0 Hz), 123.9, 124.5, 124.8 (d, *J* = 3.0 Hz), 125.4 (d, *J* = 3.0 Hz), 130.1 (d, *J* = 8.5 Hz), 130.2

(d, J = 8.4 Hz), 135.1 (d, J = 8.0 Hz), 135.9 (d, J = 8.0 Hz), 141.5, 143.9 (d, J = 2.0 Hz), 147.1, 148.5 (d, J = 2.0 Hz), 161.4 (d, J = 245.4 Hz), 162.6 (d, J = 245.2 Hz), 182.1; IR v_{max} (film): 3674.56, 2987.20, 2900.27, 1632.29, 1606.56, 1580.68, 1554.14, 1519.25, 1479.36, 1434.66, 1393.50, 1350.05, 1264.83, 1248.61, 1218.29, 1190.52, 1157.14, 1122.18, 1075.97, 1056.76, 914.20, 891.20 cm⁻¹; HRMS m/z calcd for C₃₅H₂₁F₇NO₂S [M+H]⁺: 652.1181; found: 652.1185.

(E)-N-(1,3-dihexyl-2,4-diphenylspiro[4.5]deca-1,3,7,9-tetraen-6-ylidene)-1,1,1-

trifluoromethanesulfonamide (30): The product was obtained as a red solid. Yield: 43%; ¹H NMR (400 MHz, CDCl₃) δ 0.75 (t, *J* = 7.2 Hz, 3H), 0.81 (t, *J* = 7.2 Hz, 3H), 0.94-1.09 (m, 12H), 1.14-1.20 (m, 4H), 1.93-2.06 (m, 2H), 2.15-2.25

(m, 2H), 6.39 (d, J = 9.2 Hz, 1H), 6.57 (dd, J = 9.2 Hz, J = 6.4 Hz, 1H), 7.08-7.10 (m, 3H), 7.20-7.30 (m, 6H), 7.36-7.40 (m, 1H), 7.43-7.46 (m, 2H); ¹³C (100 MHz, CDCl₃) δ 14.1, 14.1, 22.3, 22.5, 26.8, 27.4, 28.4, 28.8, 29.2, 29.5, 31.2, 31.3, 72.6, 119.0 (q, J = 317.4 Hz), 122.6, 123.4, 127.6, 127.6, 128.3, 128.5, 128.9, 129.0, 134.8, 135.9, 140.2, 144.9, 145.3, 147.3, 150.0, 150.1, 183.9; IR v_{max} (film): 3674.57, 2956.22, 2923.93, 1630.43, 1551.26, 1516.61, 1491.92, 1441.96, 1393.55, 1350.70, 1218.66, 1191.81, 1158.55, 1124.44, 1073.49, 1056.72, 907.07 cm⁻¹; HRMS m/z calcd for C₃₅H₃₉F₃NO₂S [M-H]⁺: 594.2732; found: 594.2659.

Note: Theoretically, the above reaction may lead to the formation of three possible regio-isomers **30**, **30'** and **30''**. For **30'** and **30''**, their ¹H-NMR and ¹³C-NMR spectra should be simpler than that of **30**, since the two alkene moieties (in red and blue) are chemically equivalent. However, in practice, the alkene moieties of the obtained product show two groups of signals in the ¹H-NMR and ¹³C-NMR spectra, which indicate that they bear different chemical environment. As a result, the product could be assigned to be **30**.

6. Analysis Data of the Denitrogenative Formal [2+2+2] Cyclization Products

1,1,1-trifluoro-N-(5,6,7,8-tetraphenylnaphthalen-1-

yl)methanesulfonamide (4a): The product was obtained as a yellow solid. Yield: 92%; ¹H NMR (400 MHz, CDCl₃) δ 6.78-6.88 (m, 10H), 7.21-7.41 (m, 12H), 7.63 (d, *J* = 8.4 Hz, 1H), 7.70 (d, *J* = 7.6 Hz, 1H); ¹³C (100 MHz, CDCl₃)

δ 119.7 (q, J = 319.4 Hz), 121.3, 121.3, 124.8, 125.6, 125.7, 126.7, 126.8, 126.9, 127.2, 127.8, 128.3, 129.1, 130.6, 130.8, 131.0, 131.1, 131.2, 134.1, 134.1, 139.4, 139.6, 139.8, 139.9, 140.2, 142.0; IR v_{max} (film): 3674.49, 3272.36, 2987.09, 2900.28, 1491.45, 1441.46, 1393.59, 1339.87, 1264.10, 1217.50, 1199.20, 1139.41, 1073.80, 1056.59, 1027.56, 963.45, 894.97 cm⁻¹; HRMS m/z calcd for C₃₅H₂₃F₃NO₂S [M-H]⁺: 578.1402; found: 578.1401.

1,1,1-trifluoro-*N***-(3-methyl-5,6,7,8-tetraphenylnaphthalen-1**yl)methanesulfonamide (4b): The product was obtained as a yellow solid. Yield: 83%; ¹H NMR (400 MHz, CDCl₃) δ 2.40 (s, 3H), 6.76-6.86 (m, 10H),

7.19-7.37 (m, 12H), 7.53 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 21.8, 119.7 (q, J = 321.3 Hz), 123.0, 123.2, 125.6, 126.1, 126.7, 126.7, 126.8, 127.8, 128.2, 129.1, 130.4, 130.8, 131.0, 131.2, 131.3, 133.9, 134.2, 135.6, 139.1, 139.6, 139.7, 139.8, 140.1, 140.3, 141.0; IR ν_{max} (film): 3674.49, 3271.19, 2987.09, 2900.30, 1493.16, 1441.34, 1405.70, 1393.69, 1382.25, 1346.08, 1249.70, 1225.09, 1196.08, 1139.36, 1065.83, 1056.38, 1027.47, 892.59 cm⁻¹; HRMS m/z calcd for C₃₆H₂₅F₃NO₂S [M-H]⁺: 592.1558; found: 592.1569.

1,1,1-trifluoro-N-(4-methoxy-5,6,7,8-tetraphenylnaphthalen-1-

yl)methanesulfonamide (4c): The product was obtained as a white solid. Yield: 95%; ¹H NMR (400 MHz, CDCl₃) δ 3.39 (s, 3H), 6.13 (s, 1H), 6.70-6.85 (m, 11H), 7.04-7.12 (m, 5H), 7.17 (d, *J* = 7.2 Hz, 2H), 7.26-7.31 (m, 3H), 7.53 (d, *J*

= 8.4 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 55.7, 105.8, 119.7 (q, *J* = 321.3 Hz), 122.4, 125.1, 125.4, 125.5, 125.6, 125.9, 126.3, 126.5, 126.6, 127.7, 128.9, 129.1, 129.6, 130.7, 131.0, 131.3, 134.2, 137.8, 139.7, 139.9, 140.6, 140.9, 142.3, 143.5, 157.2; IR *v*_{max} (film): 3674.45, 3293.01, 2987.13, 2900.30, 1601.54, 1569.65, 1490.63, 1451.96, 1441.39, 1409.94, 1393.38, 1382.20, 1320.20, 1260.48, 1223.07, 1195.57, 1138.68, 1066.61, 1045.66, 1027.69, 904.16 cm⁻¹; HRMS m/z calcd for C₃₆H₂₅F₃NO₃S [M-H]⁺: 608.1507; found: 608.1523.

methyl 5,6,7,8-tetraphenyl-4-((trifluoromethyl)sulfonamido)-1naphthoate (4d): The product was obtained as a white solid. Yield: 79%; ¹H NMR (400 MHz, CDCl₃) δ 3.90 (s, 3H), 6.75-6.88 (m, 10H), 7.19-7.35 (m, 10H), 8.23 (s, 1H), 8.38 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 52.6, 119.7 (q, *J* =

320.9 Hz), 120.7, 125.9, 126.0, 126.8, 126.9, 127.0, 127.2, 127.3, 127.9, 128.5, 129.2, 129.7, 130.7, 130.9, 131.0, 131.2, 133.5, 134.2, 138.5, 139.2, 139.5, 139.6, 140.7, 141.4, 144.2, 166.2; IR v_{max} (film): 3674.47, 3267.68, 2987.12, 2900.26, 1723.70, 1439.39, 1405.87, 1393.65, 1380.84, 1262.32, 1224.96, 1140.04, 1065.80, 1056.25, 1027.36, 891.88 cm⁻¹; HRMS m/z calcd for C₃₇H₂₅F₃NO₄S [M-H]⁺: 636.1456; found: 636.1458.

1,1,1-trifluoro-N-(5,6,7,8-tetraphenylphenanthren-9-

yl)methanesulfonamide (4e): The product was obtained as a white solid. Yield: 52%; ¹H NMR (400 MHz, CDCl₃) δ 6.42 (s, 1H), 6.70-6.73 (m, 4H), 6.87-6.90 (m, 5H), 7.02-7.09 (m, 3H), 7.17-7.18 (m, 5H), 7.31-7.32 (m, 3H), 7.42 (t, *J* =

7.2 Hz, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.86 (s, 1H); ¹³C (100 MHz, CDCl₃) δ 119.7 (q, J = 321.5 Hz), 124.3, 125.6, 125.6, 125.7, 126.6, 126.7, 126.8, 126.9, 128.0, 128.2, 128.3, 128.4, 129.2, 129.2, 130.0, 131.1, 131.2, 131.3, 131.6, 132.1, 134.7, 138.8, 139.4, 140.0, 140.3, 141.2, 142.8; IR ν_{max} (film): 3674.48, 3283.55, 2987.12, 2900.29, 1494.08, 1441.36, 1404.09, 1393.75, 1328.27, 1227.10, 1197.37, 1139.72, 1065.98, 1056.20, 1027.49, 928.14 cm⁻¹; HRMS m/z calcd for C₃₉H₂₅F₃NO₂S [M-H]⁺: 628.1558; found: 628.1571.

1,1,1-trifluoro-N-(4,5,6,7,8-pentaphenylnaphthalen-1-

yl)methanesulfonamide (4f): The product was obtained as a white solid. Yield: 91%; ¹H NMR (400 MHz, CDCl₃) δ 6.57 (d, *J* = 7.2 Hz, 2H), 6.61-6.67 (m, 6H), 6.73-6.75 (m, 2H), 6.78-6.80 (m, 3H), 6.86-6.87 (m, 3H), 6.95 (m, 5H), 7.26-

7.34 (m, 5H), 7.63 (d, J = 7.6 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 119.7 (q, J = 321.3 Hz), 121.2, 125.4, 125.6, 125.7, 125.8, 126.5, 126.5, 126.7, 127.2, 127.3, 128.2, 129.1, 129.6, 129.9, 130.1, 131.0, 131.1, 131.1, 132.5, 133.1, 133.7, 139.6, 139.7, 139.8, 140.3, 140.8, 140.9, 141.3, 141.4, 143.7; IR ν_{max} (film): 3674.50, 3274.55, 2987.14, 2900.31, 1598.56, 1489.76, 1441.30, 1409.85, 1393.50, 1381.00, 1314.30, 1225.00, 1194.14, 1138.44, 1066.14, 1056.65, 1027.39, 975.23, 900.33 cm⁻¹; HRMS m/z calcd for C₄₁H₂₇F₃NO₂S [M-H]⁺: 654.1715; found: 654.1730.

1,1,1-trifluoro-*N*-(5,6,7,8-tetraphenyl-[1,2'-binaphthalen]-4yl)methanesulfonamide (4g): The product was obtained as a white solid. Yield: 77%; ¹H NMR (400 MHz, CDCl₃) δ 6.30-6.37 (m, 2H), 6.46-6.53 (m, 2H), 6.59-6.66 (m, 4H), 6.76 (m, 5H), 6.87 (m, 3H), 7.13

(d, J = 8.4 Hz, 1H), 7.29-7.42 (m, 9H), 7.60-7.68 (m, 3H); ¹³C (100 MHz, CDCl₃) δ 119.8 (q, J = 321.2 Hz), 121.2, 125.3, 125.4, 125.5, 125.7, 125.8, 126.0, 126.3, 126.5, 126.8, 126.8, 127.3, 127.4, 127.6, 128.3, 128.9, 129.2, 129.7, 130.3, 131.0, 131.1, 131.7, 132.0, 132.6, 132.6, 133.3, 133.8, 139.6, 139.8, 139.8, 140.4, 140.7, 141.0, 141.0, 141.1, 141.5; IR v_{max} (film): 3674.50, 3273.16, 2970.40, 2900.45, 1599.55, 1490.13, 1441.05, 1411.12, 1393.29, 1380.69, 1312.81, 1223.79, 1197.33, 1138.89, 1073.70, 1056.61, 1027.62, 987.13, 904.08 cm⁻¹; HRMS m/z calcd for C₄₅H₂₉F₃NO₂S [M-H]⁺: 704.1871; found: 704.1874.

1,1,1-trifluoro-*N*-(5,6,7,8-tetrakis(4-fluorophenyl)naphthalen-1yl)methanesulfonamide (4h): The product was obtained as a white solid. Yield: 87%; ¹H NMR (400 MHz, CDCl₃) δ 6.61-6.66 (m, 4H), 6.69 (dd, *J* = 8.4 Hz, *J* = 5.6 Hz, 2H), 6.75 (dd, *J* = 7.6 Hz, *J* = 5.6 Hz, 2H), 6.99 (t, *J* = 8.4 Hz, 2H), 7.06

(t, J = 8.4 Hz, 2H), 7.15 (dd, J = 7.6 Hz, J = 5.6 Hz, 2H), 7.20 (dd, J = 7.6 Hz, J = 5.6 Hz, 2H), 7.44 (t, J = 8.0 Hz, 1H), 7.61 (d, J = 8.8 Hz, 1H), 7.68 (d, J = 7.2 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 114.2 (d, J = 21.3 Hz), 114.3 (d, J = 21.3 Hz), 115.1 (d, J = 21.3 Hz), 116.4 (d, J = 21.4 Hz), 119.6 (q, J = 321.0 Hz), 122.8, 125.6, 126.1, 127.4, 130.4, 132.3 (d, J = 7.8 Hz), 132.3 (d, J = 8.1 Hz), 132.4 (d, J = 8.1 Hz), 132.6 (d, J = 7.9 Hz), 133.8, 134.3, 134.9 (d, J = 3.5 Hz), 135.3 (d, J = 3.6Hz), 135.6 (d, J = 3.5 Hz), 135.9 (d, J = 3.7 Hz), 139.1, 139.3, 141.4, 161.0 (d, J = 244.7 Hz), 161.9 (d, J = 245.4 Hz), 162.3 (d, J = 248.7 Hz); IR v_{max} (film): 3674.44, 3290.08, 2987.09, 2900.26, 1603.76, 1508.12, 1450.52, 1405.42, 1393.47, 1381.03, 1221.97, 1156.14, 1139.19, 1065.80, 1056.61, 892.28 cm⁻¹; HRMS m/z calcd for C₃₅H₁₉F₇NO₂S [M-H]⁺: 650.1103; found: 650.1025.

7. Analysis Data of the Denitrogenative Alkenylation Products

(*E*)-1,1,1-trifluoro-*N*-(2-styrylphenyl)methanesulfonamide (6a): The product was obtained as a white solid. Yield: 72%; ¹H NMR (400 MHz, CDCl₃) δ 6.66 (s, 1H), 7.09 (d, *J* = 16.0 Hz, 1H), 7.26 (d, *J* = 6.4 Hz, 1H), 7.31-7.42 (m,

5H), 7.45 (dd, *J* = 8.0 Hz, *J* = 1.6 Hz, 1H), 7.51-7.54 (m, 2H), 7.69 (dd, *J* = 9.6 Hz, *J* = 1.6 Hz, 1H); 11 ¹³C (100 MHz, CDCl₃) δ 119.9 (q, J = 320.3 Hz), 121.9, 126.9, 127.0, 127.0, 127.2, 128.7, 128.8, 128.9, 129.1, 130.8, 133.8, 134.3, 136.6; IR ν_{max} (film): 3284.16, 2987.47, 1496.67, 1411.79, 1365.73, 1222.57, 1192.62, 1138.74, 960.86 cm⁻¹; HRMS m/z calcd for C₁₅H₁₁F₃NO₂S [M-H]⁺: 326.0485; found: 326.0483.

(*E*)-1,1,1-trifluoro-*N*-(2-(4-methylstyryl)phenyl)methanesulfonamide (6b): The product was obtained as a white solid. Yield: 54%; ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3H), 6.63 (s, 1H), 7.06 (d, *J* = 16.4 Hz, 1H), 7.20

(d, J = 8.0 Hz, 2H), 7.23 (d, J = 16.4 Hz, 1H), 7.31 (dt, J = 7.6 Hz, J = 2.0 Hz, 1H), 7.36 (dt, J = 7.6 Hz, J = 2.0 Hz, 1H), 7.42 (dd, J = 6.0 Hz, J = 2.0 Hz, 2H), 7.46 (dd, J = 7.6 Hz, J = 2.0 Hz, 1H), 7.66 (dd, J = 8.0 Hz, J = 2.0 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 21.5, 119.9 (q, J = 320.4 Hz), 120.8, 126.9, 127.0, 127.1, 128.6, 128.8, 129.8, 130.7, 133.8, 133.8, 134.4, 138.8; IR v_{max} (film): 3674.49, 3260.38, 2987.37, 2900.30, 1513.79, 1487.44, 1454.55, 1411.14, 1356.79, 1188.95, 1136.12, 1065.89, 965.26, 939.08 cm⁻¹; HRMS m/z calcd for C₁₆H₁₃F₃NO₂S [M-H]⁺: 340.0631; found: 340.0632.

(E)-N-(2-(4-(tert-butyl)styryl)phenyl)-1,1,1-trifluoromethanesulfonamide (6c): The product

was obtained as a white solid. Yield: 65%; ¹H NMR (400 MHz, CDCl₃) δ 1.34 (s, 9H), 6.69 (s, 1H), 7.07 (d, J = 16.4 Hz, 1H), 7.24 (d, J = 16.0Hz, 1H), 7.30 (dt, J = 8.0 Hz, J = 2.0 Hz, 1H), 7.36 (dt, J = 7.6 Hz, J =

2.0 Hz, 1H), 7.40-7.46 (m, 5H), 7.66 (dd, J = 7.6 Hz, J = 1.6 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 31.4, 34.9, 119.9 (q, J = 320.5 Hz), 121.0, 126.0, 126.7, 126.9, 127.1, 128.6, 128.8, 130.7, 133.6, 133.8, 134.4, 152.1; IR ν_{max} (film): 3281.84, 2962.26, 1484.79, 1411.26, 1363.56, 1189.32, 1138.34, 1108.70, 1089.78, 961.48 cm⁻¹; HRMS m/z calcd for C₁₉H₁₉F₃NO₂S [M-H]⁺: 382.1100; found: 382.1103.

(E)-1,1,1-trifluoro-N-(2-(4-fluorostyryl)phenyl)methanesulfonamide

(6d): The product was obtained as a white solid. Yield: 76%; ¹H NMR (400

MHz, CDCl₃) δ 6.65 (s, 1H), 7.03-7.11 (m, 3H), 7.21 (d, *J* = 16.0 Hz, 1H),

7.33 (dt, J = 7.6 Hz, J = 2.0 Hz, 1H), 7.38 (dt, J = 7.6 Hz, J = 1.6 Hz, 1H), 7.44 (dd, J = 7.6 Hz, J = 1.6 Hz, 1H), 7.46-7.52 (m, 2H), 7.66 (dd, J = 7.6 Hz, J = 1.6 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 116.1 (d, J = 21.6 Hz), 119.9 (q, J = 320.3 Hz), 121.8 (d, J = 2.5 Hz), 126.9, 127.4, 128.6 (d, J = 8.0 Hz), 128.9, 129.0, 130.8, 132.4, 132.8 (d, J = 3.5 Hz), 134.3, 163.0 (d, J = 247.2 Hz); IR v_{max} (film): 12

3674.41, 3285.69, 2987.28, 2900.25, 1598.45, 1508.02, 1409.09, 1366.42, 1189.18, 1157.76, 1135.27, 1065.85, 960.86, 937.75 cm⁻¹; HRMS m/z calcd for C₁₅H₁₀F₄NO₂S [M-H]⁺: 344.0384; found: 344.0383.

(*E*)-1,1,1-trifluoro-*N*-(2-(3-methylstyryl)phenyl)methanesulfonamide (6e): The product was obtained as a white solid. Yield: 68%; ¹H NMR (400 MHz, CDCl₃) δ 2.39 (s, 3H), 6.66 (s, 1H), 7.05 (d, *J* = 16.0 Hz, 1H), 7.14 (d, *J* = 7.2 Hz, 1H), 7.25-7.34 (m, 5H), 7.37 (dt, *J* = 7.6 Hz, *J* = 1.6 Hz, 1H), 7.45

(dd, J = 7.6 Hz, J = 1.6 Hz, 1H), 7.66 (dd, J = 7.6 Hz, J = 1.6 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 21.6, 119.9 (q, J = 320.3 Hz), 121.6, 124.1, 127.0, 127.0, 127.7, 128.7, 128.8, 128.9, 129.6, 130.8, 134.0, 134.3, 136.5, 138.7; IR v_{max} (film): 3674.48, 3279.03, 2987.37, 1489.04, 1409.47, 1366.19, 1219.50, 1191.64, 1137.68, 1088.86, 1046.67, 959.14 cm⁻¹; HRMS m/z calcd for C₁₆H₁₃F₃NO₂S [M-H]⁺: 340.0635; found: 340.0633.

(*E*)-1,1,1-trifluoro-*N*-(2-(3-fluorostyryl)phenyl)methanesulfonamide (6f): The product was obtained as a white solid. Yield: 51%; ¹H NMR (400 MHz, CDCl₃) δ 6.63 (s, 1H), 7.00-7.07 (m, 2H), 7.21 (dt, *J* = 10.0 Hz, *J* = 2.4 Hz, 1H), 7.28-7.42 (m, 5H), 7.46 (dd, *J* = 7.6 Hz, *J* = 1.6 Hz, 1H), 7.69 (dd,

J = 7.6 Hz, J = 1.6 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 113.4 (d, J = 21.8 Hz), 115.4 (d, J = 21.4 Hz), 120.0 (q, J = 320.4 Hz), 122.8 (d, J = 2.7 Hz), 123.5, 126.9, 127.6, 129.0, 129.1, 130.5 (d, J = 8.3 Hz), 131.0, 132.0 (d, J = 2.6 Hz), 134.1, 139.0 (d, J = 7.7 Hz), 163.3 (d, J = 244.5 Hz); IR v_{max} (film): 3289.03, 1609.66, 1583.43, 1490.77, 1415.11, 1366.08, 1220.96, 1197.36, 1140.06, 959.95 cm⁻¹; HRMS m/z calcd for C₁₅H₁₀F₄NO₂S [M-H]⁺: 344.0391; found: 344.0388.

(*E*)-1,1,1-trifluoro-*N*-(2-(2-methylstyryl)phenyl)methanesulfonamide (6g): The product was obtained as a white solid. Yield: 54%; ¹H NMR (400 MHz, CDCl₃) δ 2.43 (s, 3H), 6.69 (s, 1H), 7.16 (d, *J* = 16.0 Hz, 1H), 7.19-

7.25 (m, 3H), 7.30-7.35 (m, 2H), 7.38 (dt, J = 7.6 Hz, J = 1.6 Hz, 1H), 7.59 (m, 1H), 7.67 (dd, J = 7.6 Hz, J = 2.0 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 20.0, 119.9 (q, J = 320.6 Hz), 123.3, 125.7, 126.6, 126.9, 127.3, 128.6, 128.8, 128.8, 130.7, 130.9, 131.8, 134.5, 135.7, 136.3; IR v_{max} (film): 3674.54, 3277.73, 2987.23, 2900.30, 1491.62, 1409.49, 1364.92, 1190.62, 1136.84, 1090.17, 1045.77, 960.10 cm⁻¹; HRMS m/z calcd for C₁₆H₁₃F₃NO₂S [M-H]⁺: 340.0631; found: 340.0632.

(*E*)-1,1,1-trifluoro-*N*-(2-(2-fluorostyryl)phenyl)methanesulfonamide (6h): The product was obtained as a white solid. Yield: 82%; ¹H NMR (400 MHz, CDCl₃) δ 6.71 (s, 1H), 7.10 (ddd, *J* = 10.8 Hz, *J* = 8.4 Hz, *J* = 1.2 Hz,

1H), 7.18 (dt, J = 7.6 Hz, J = 1.2 Hz, 1H), 7.24 (d, J = 16.4 Hz, 1H), 7.27-7.33 (m, 1H), 7.35 (dd, J = 7.6 Hz, J = 2.0 Hz, 1H), 7.37-7.42 (m, 2H), 7.46 (dd, J = 8.0 Hz, J = 1.6 Hz, 1H), 7.59 (dt, J = 8.0 Hz, J = 1.6 Hz, 1H), 7.59 (dt, J = 8.0 Hz, J = 1.6 Hz, 1H), 7.71 (dd, J = 8.0 Hz, J = 1.6 Hz, 1H); ¹³C (100 MHz, CDCl₃) δ 116.1 (d, J = 22.0 Hz), 119.9 (q, J = 320.3 Hz), 124.4 (d, J = 5.7 Hz), 124.6 (d, J = 3.6 Hz), 126.1 (d, J = 3.3 Hz), 127.0, 127.4, 127.7 (d, J = 3.3 Hz), 129.0, 129.1, 129.9, 130.0, 130.9, 134.4, 160.8 (d, J = 249.1 Hz); IR v_{max} (film): 3674.52, 3284.49, 2987.28, 2900.27, 1491.89, 1455.45, 1409.89, 1365.46, 1190.00, 1136.00, 1091.42, 1049.20, 962.41, 939.71 cm⁻¹; HRMS m/z calcd for C₁₅H₁₀F₄NO₂S [M-H]⁺: 344.0361; found: 344.0364.

8. NMR Spectra of the Denitrogenative Formal [2+2+1] Cyclization Products

¹³C NMR Spectrum for **3a** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **3b** (CDCl₃, 100 MHz)

---0.000

-2.055

 ^{13}C NMR Spectrum for 3c (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **3d** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **3e** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **3f** (CDCl₃, 100 MHz)

7,488 7,447 7,447 7,428 7,428 7,428 7,428 7,428 7,236 7,235 7,235 7,235 7,235 7,235 7,235 7,164 7,164 7,164 7,164 7,164 7,111 7,237 6,593 6,593

¹³C NMR Spectrum for **3g** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **3h** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **3i** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **3j** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **3k** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **3l** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **3m** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **3n** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **30** (CDCl₃, 100 MHz)

DEPT-90 NMR Spectrum for 30 (CDCl₃, 100 MHz)

DEPT-135 NMR Spectrum for 30 (CDCl₃, 100 MHz)

HSQC NMR Spectrum for **30** (CDCl₃)

7. 000 7. 004 7. 004 7. 004 7. 303 7. 303 7. 203 7.

¹H NMR Spectrum for 4a (CDCl₃, 400 MHz)

¹³C NMR Spectrum for **4a** (CDCl₃, 100 MHz)

DEPT-45 NMR Spectrum for 4a (CDCl₃, 100 MHz)

DEPT-135 NMR Spectrum for 4a (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **4b** (CDCl₃, 100 MHz)

-3.392

 ^{13}C NMR Spectrum for 4c (CDCl₃, 100 MHz)

¹³C NMR Spectrum for 4d (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **4e** (CDCl₃, 100 MHz)

100 90 f1 (ppm)

¹³C NMR Spectrum for 4g (CDCl₃, 100 MHz)

7, 689 7, 7, 7, 7, 889 7, 7, 898 7, 489 7, 489 7, 489 7, 489 7, 489 7, 489 7, 489 7, 489 7, 489 7, 489 7, 489 7, 198 7, 1

¹³C NMR Spectrum for **4h** (CDCl₃, 100 MHz)

¹H NMR Spectrum for **6a** (CDCl₃, 400 MHz)

¹³C NMR Spectrum for **6a** (CDCl₃, 100 MHz)

¹H NMR Spectrum for **6b** (CDCl₃, 400 MHz)

¹H NMR Spectrum for **6c** (CDCl₃, 400 MHz)

¹³C NMR Spectrum for **6c** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **6d** (CDCl₃, 100 MHz)

¹H NMR Spectrum for **6e** (CDCl₃, 400 MHz)

¹³C NMR Spectrum for **6e** (CDCl₃, 100 MHz)

¹H NMR Spectrum for **6f** (CDCl₃, 400 MHz)

¹³C NMR Spectrum for **6f** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **6g** (CDCl₃, 100 MHz)

¹³C NMR Spectrum for **6h** (CDCl₃, 100 MHz)

9. X-ray Crystallographic Structure and Data

Compound	3a
formula	$C_{35}H_{24}F_{3}NO_{2}S$
FW	579.61
crystal system	monoclinic
space group	P 1 21/n 1
a/Å	9.1091 (2)
b/Å	14.3255 (3)
c/Å	22.0866 (5)
α/deg	90
β/deg	101.388 (2)
γ/deg	90
$V/Å^3$	2825.39 (11)
Ζ	4
$D_{\rm c}/{ m g~cm^{-3}}$	1.363
μ/mm^{-1}	1.473
$R_1^a(I>2\sigma)$	0.0349 (5034)
wR_2^b (all data)	0.0910 (5423)
GOF	1.038