Pd/Gorlos-Phos-Catalyzed Cross-Coupling Between Two Different

Aryl Chlorides in the Presence of $B_2 Pin_2$ and Cytotoxicity Studies

of the Products

Xinyu Duan,^a Pengbin Li,^a Guirong Zhu,^b Chunling Fu,^a Qin Chen,^{*b} Xin Huang^{*a} and Shengming Ma^{*ab}

^a Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China.

^b Research Center of Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.

E-mail: chenq@fudan.edu.cn, xinhuangzju@zju.edu.cn; masm@sioc.ac.cn

Supporting Information

General information	S2
Pd/Gorlos-Phos Catalyzed Cross-Coupling Between Two Different Aryl	S3-S27
Chlorides in the Presence of B ₂ Pin ₂	
Cytotoxicity Studies	S28
References	S29-S30
Copies of ¹ H NMR and ¹³ C NMR	S31-S91

General information

¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded in CDCl₃ using a Bruker AM 300 MHz NMR spectrometer (¹H at 300 MHz, ¹³C at 75 MHz, ¹⁹F at 282 MHz). NMR spectra were taken using TMS (¹H, $\delta = 0$), residual CHCl₃ (7.26 ppm) in CDCl₃, and CFCl₃ (¹⁹F CFCl₃, $\delta = 0$) as the internal standards, respectively. IR spectra were recorded with a Perkin–Elmer 983G instrument. Elemental analyses were measured with a Carlo-Erba EA1110 elementary analysis instrument. Mass spectrometry was performed with an HP 5989A system. High-resolution mass spectrometry was determined with a Finnigan MAT 8430 or Bruker APEXIII instrument. Pd(OAc)₂ was purchased from Adamas. Dioxane was distilled from Na wire using benzophenone as the indicator under N₂ before use. Gorlos-Phos'HBF₄ was prepared according to our previous work.¹ Pd/Gorlos-Phos-Catalyzed Cross-Coupling Between Two Different Aryl Chlorides in the Presence of B₂Pin₂

1. Synthesis of methyl 4-(methoxycarbonyl)-4'-cyano-1,1'-biphenyl 2ab

Typical Procedure I: To a flame-dried Schlenk tube were added Pd(OAc)₂ (0.0046 g, 0.02 mmol), Gorlos-Phos'HBF₄ (0.0285 g, 0.06 mmol), B₂Pin₂ (0.3296 g, 1.3 mmol), KOAc (0.2952 g, 3 mmol), and **1a** (0.1786 g, 1.3 mmol)/dioxane (2 mL) sequentially under N₂ atmosphere. The reaction mixture was stirred at 110 °C for 3 h until **1a** was comleptely comsumed as monitored by TLC. The Schlenk tube was then lifted from the oil bath and followed by the quick addition of K₂CO₃ (0.4170 g, 3 mmol) and **1b** (0.1702 g, 1 mmol)/dioxane (2 mL) under N₂ atmosphere. The resulting mixture was heated in an oil bath preheated at 110 °C with stirring. After 24 h, the reaction was complete as monitored by TLC. The resulting mixture was cooled to room temperature, diluted with ethyl acetate (10 mL), and filtered through a short column of silica gel (eluent: ethyl acetate (3 × 10 mL)). After evaporation of the solvent, the crude residual was purified by chromatography (eluent: petroleum ether (60 °C ~ 90 °C)/ethyl acetate/DCM = 20/1/3 (720 mL)) on silica gel to afford **2ab**²

(0.2174 g, 92%): solid; m.p. 143.5-143.7 °C (*n*-hexane/ethyl acetate) (lit.² 142-144 °C (diisopropyl ether)); ¹H NMR (300 MHz, CDCl₃) δ 8.15 (d, J = 8.4 Hz, 2H, ArH), 7.84-7.63 (m, 6H, ArH), 3.96 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 144.4, 143.4, 132.7, 130.3, 130.2, 127.9, 127.2, 118.7, 111.8, 52.3; IR (KBr) v (cm⁻¹) 3045, 2959, 2926, 2849, 2226, 1727, 1718, 1606, 1432, 1391, 1279, 1203, 1182, 1104, 1004; MS (70 ev, EI) m/z (%) 238 (M⁺ + 1, 8.61), 237 (M⁺, 50.86), 206 (100).

Gram scale:

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0225 g, 0.1 mmol), Gorlos-Phos⁻HBF₄ (0.1438 g, 0.3 mmol), B₂Pin₂ (1.6507 g, 6.5 mmol), KOAc (1.4727 g, 15 mmol), **1a** (0.8940 g, 6.5 mmol)/dioxane (10 mL) for the first step, K₂CO₃ (2.0734 g, 15 mmol) and **1b** (0.8527 g, 5mmol)/dioxane (10 mL) for the second step, afforded **2ab** (1.0321 g, 87%) (eluent: petroleum ether (60 °C ~ 90 °C)/ethyl acetate/DCM = 20/1/3 (1440 mL): solid; ¹H NMR (300 MHz, CDCl₃) δ 8.15 (d, *J* = 8.4 Hz, 2H, ArH), 7.90-7.60 (m, 6H, ArH), 3.96 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 144.4, 143.4, 132.7, 130.3, 130.1, 127.9, 127.2, 118.6, 111.8. 52.3.

2. Synthesis of 4-(methoxycarbonyl)-3'-acetyl-1,1'-biphenyl 2bc. (dxy-1-116)

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0043 g, 0.02 mmol), Gorlos-Phos'HBF₄ (0.0285 g, 0.06 mmol), B₂Pin₂ (0.3305 g, 1.3 mmol), KOAc (0.2952 g, 3 mmol), **1b** (0.2267 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₂CO₃ (0.4153 g, 3 mmol) and 1c (0.1600 g, 1mmol)/dioxane (2 mL) for the second step, afforded **2bc**³ (0.2431 g, 95%) (eluent: petroleum ether (60 °C ~ 90 °C)/ethyl acetate (30/1) (310 mL) to petroleum ether (60 °C ~ 90 °C)/ethyl acetate/DCM (300/10/1) (310 mL) to petroleum ether (60 °C ~ 90 °C)/ethyl acetate/DCM (75/5/1)) (320 mL): solid; m.p. 110.3-111.2 °C (*n*-hexane/ethyl acetate) (lit.³ 109-110 °C); ¹H NMR (300 MHz, CDCl₃) δ 8.21 (t, J = 1.7 Hz, 1H, ArH), 8.13 (d, J = 8.7 Hz, 2H, ArH), 8.02-7.94 (m, 1H, ArH), 7.86-7.78 (m, 1H, ArH), 7.69 (d, J = 8.4 Hz, 2H, ArH), 7.57 $(t, J = 7.8 \text{ Hz}, 1\text{H}, \text{ArH}), 3.95 (s, 3\text{H}, \text{OCH}_3), 2.67 (s, 3\text{H}, \text{CH}_3); {}^{13}\text{C} \text{ NMR} (75 \text{ MHz}, 10.0 \text{ MHz})$ CDCl₃) & 197.8, 166.8, 144.5, 140.5, 137.7, 131.8, 130.2, 129.4, 129.2, 128.0, 127.1, 126.9, 52.2, 26.7; IR (KBr) v (cm⁻¹) 3039, 3000, 2959, 1722, 1681, 1608, 1581, 1429, 1403, 1367, 1294, 1247, 1189, 1113, 1019; MS (70 ev, EI) m/z (%) 255 (M⁺ + 1, 10.79), 254 (M⁺, 60.28), 239 (100).

3. Synthesis of 4-(trifluoromethyl)-4'-cyano-1,1'-biphenyl 2ad (dxy-1-132)

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0044 g, 0.02 mmol), Gorlos-Phos'HBF₄ (0.0289 g, 0.06 mmol), B₂Pin₂ (0.3303 g, 1.3 mmol), KOAc (0.2939 g, 3 mmol), **1a** (0.1800 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₂CO₃ (0.4153 g, 3 mmol) and **1d** (0.1840 g, 1mmol)/dioxane (2 mL) for the second step, afforded **2ad**⁴ (0.2168 g, 88%) (eluent: petroleum ether (60 °C ~ 90 °C)/ethyl acetate = 15/1): solid; m. p. 130.6-130.9 °C (*n*-hexane); ¹H NMR (300 MHz, CDCl₃) δ 7.81-7.66 (m, 8H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ 144.1, 142.7 (d, *J* = 1.4 Hz), 132.8, 130.7 (q, *J* = 32.4 Hz), 128.0, 127.6, 126.1 (q, *J* = 3.7 Hz), 124.0 (q, *J* = 270.9 Hz), 118.6, 112.0; ¹⁹F NMR (282 MHz, CDCl₃) δ -63.1; IR (KBr) v (cm⁻¹) 2230, 1617, 1606, 1498, 1394, 1328, 1163, 1125, 1071, 1022, 1007; MS (70 ev, EI) m/z (%) 248 (M⁺ + 1, 15.43), 247 (M⁺, 100).

4. Synthesis of 4'-fluoro-4-(methylsulfonyl)-1,1'-biphenyl 2ef.

(1) The reaction with K₂CO₃ being used in the second step (Dxy-1-143)

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0046 g, 0.02 mmol), Gorlos-Phos'HBF₄ (0.0284 g, 0.06 mmol), B₂Pin₂ (0.3310 g, 1.3 mmol), KOAc (0.2943 g, 3 mmol), **1e** (0.2531 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₂CO₃ (0.4152 g, 3 mmol), and **1f** (0.1352 g, 1 mmol)/dioxane (2 mL) for the second step, afforded impure **2ef** (0.2367 g) (eluent: petroleum ether (60 °C ~ 90 °C)/ethyl acetate/DCM = 5:1:2 (300 mL)), which was further purified by recrystallization to afford **2ef**⁵ (0.1804 g, 72%): solid; m. p. 137.4-139.3 °C (*n*-hexane/DCM) (lit.⁵ 144-146 °C); ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, *J* = 8.1 Hz, 2H, ArH), 7.73 (d, *J* = 8.4 Hz, 2H, ArH), 7.64-7.53 (m, 2H, ArH), 7.18 (t, *J* = 8.6 Hz, 2H, ArH), 3.10 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 163.2 (d, *J* = 246.8 Hz), 145.6, 139.1, 135.2 (d, *J* = 2.8 Hz), 129.1 (d, *J* = 8.3 Hz), 127.9, 127.8, 116.2 (d, *J* = 21.4 Hz), 44.6; ¹⁹F NMR (282 MHz, CDCl₃) δ –113.7; IR (KBr) v (cm⁻¹) 3059, 3010, 2927, 1595, 1519, 1488, 1419, 1389, 1375, 1299, 1265, 1246, 1196, 1180, 1143, 1094, 1076; MS (70 ev, EI) m/z (%) 251 (M⁺ + 1, 16.21), 250 (M⁺, 100).

(2) The reaction with K₃PO₄·3H₂O being used in the second step (Dxy-2-062)

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0047 g, 0.02 mmol), Gorlos-Phos'HBF₄ (0.0285 g, 0.06 mmol), B₂Pin₂ (0.3305 g, 1.3 mmol), KOAc (0.2950 g, 3 mmol), **1e** (0.2480 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₃PO₄'3H₂O (0.7981 g, 3 mmol), and **1f** (0.1300 g, 1 mmol)/dioxane (2 mL) for the second step, afforded **2ef**⁵ (0.2179 g, 87%) (eluent: petroleum ether (60 °C ~ 90 °C)/ethyl acetate/DCM = 20:1:3 (480 mL) to 12:1:3 (640 mL)): ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, *J* = 8.1 Hz, 2H, ArH), 7.73 (d, *J* = 8.4 Hz, 2H, ArH), 7.63-7.53 (m, 2H, ArH), 7.19 (t, *J* = 8.6 Hz, 2H, ArH), 3.11 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 163.1 (d, *J* = 246.8 Hz), 145.5, 139.0, 135.1 (d, *J* = 2.8 Hz), 129.1 (d, *J* = 8.3 Hz), 127.9, 127.7, 116.0 (d, *J* = 21.4 Hz), 44. 5; ¹⁹F NMR (282 MHz, CDCl₃) δ -113.6.

5. Synthesis of 4'-formyl-4-(methoxycarbonyl)-1,1'-biphenyl 2bg (dxy-2-007)

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0046 g, 0.02 mmol), Gorlos-Phos'HBF₄ (0.0290 g, 0.06 mmol), B₂Pin₂ (0.3304 g, 1.3 mmol), KOAc (0.2945 g, 3 mmol), **1b** (0.2268 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₂CO₃ (0.4143 g, 3 mmol), and **1g** (0.1406 g, 1 mmol)/dioxane (2 mL) for the second step, afforded **2bg**⁶ (0.1944 g, 81%) (eluent: petroleum ether (60 °C ~ 90 °C)/ ethyl acetate /DCM = 20:1:1 (330 mL) to 16:1:1 (380 mL) to 10:1:1 (240 mL)): solid; m. p. 116.1-119.0°C (*n*-hexane/DCM); ¹H NMR (300 MHz, CDCl₃) δ 10.08 (s, 1H, CHO), 8.14 (d, *J* = 8.1 Hz, 2H, ArH), 7.98 (d, *J* = 8.1 Hz, 2H, ArH), 7.78 (d, *J* = 8.1 Hz, 2H, ArH), 7.70 (d, *J* = 8.1 Hz, 2H, ArH), 3.95 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 191.7, 166.7, 145.8, 144.0, 135.7, 130.3, 130.2, 129.9, 127.9, 127.3, 52.2; IR (KBr) v (cm⁻¹) 2959, 2839, 2740, 1735, 1724, 1685, 1605, 1577, 1558, 1431, 1392, 1282, 1219, 1171, 1102, 1006; MS (70 ev, EI) m/z (%) 241 (M⁺ + 1, 13.31), 240 (M⁺, 84.46), 209 (100).

6. Synthesis of 2'-formyl-4-(methoxycarbonyl)-1,1'-biphenyl 2hb (dxy-2-028)

Following **Typical Procedure I**, the reaction of $Pd(OAc)_2$ (0.0043 g, 0.02 mmol), Gorlos-Phos HBF₄ (0.0286 g, 0.06 mmol), B_2Pin_2 (0.3299 g, 1.3 mmol), KOAc (0.2947 g, 3 mmol), **1h** (0.1880 g, 1.3 mmol)/dioxane (2 mL) for the first step, K_2CO_3

(0.4147 g, 3 mmol), and **1b** (0.1736 g, 1 mmol)/dioxane (2 mL) for the second step, afforded **2hb**⁷ (0.2196 g, 92%) (eluent: petroleum ether (60 °C ~ 90 °C)/ethyl acetate/DCM = 35:1:1 (750 mL)): solid; m. p. 66.5-68.9 °C (*n*-hexane/DCM); ¹H NMR (300 MHz, CDCl₃) δ 9.96 (s, 1H, CHO), 8.15 (d, *J* = 8.1 Hz, 2H, ArH), 8.05 (dd, *J*₁ = 8.0 Hz, *J*₂ = 1.4 Hz, 1H, ArH), 7.67 (td, *J*₁ = 7.5 Hz, *J*₂ = 1.5 Hz, 1H, ArH), 7.46 (t, *J* = 6.5 Hz, 4H, ArH), 3.97 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 191.7, 166.6, 144.6, 142.4, 133.65, 133.62, 130.6, 130.0, 129.8, 129.6, 128.4, 127.9, 52.2; IR (KBr) v (cm⁻¹) 2956, 2859, 2757, 1715, 1694, 1654, 1605, 1593, 1560, 1474, 1431, 1401, 1320, 1283, 1187, 1106, 1021, 1004; MS (70 ev, EI) m/z (%) 241 (M⁺ + 1, 5.06), 240 (M⁺, 38.73), 152 (100).

- 7. Synthesis of 3,5-dimethoxy-4'-methyl-1,1'-biphenyl 2ij. (dxy-1-182, dxy-2-035)
- (1) The reaction with K₂CO₃ being used in the second step

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0045 g, 0.02 mmol), Gorlos-Phos⁻HBF₄ (0.0285 g, 0.06 mmol), B₂Pin₂ (0.3301 g, 1.3 mmol), KOAc (0.2944 g, 3 mmol), **1i** (0.1650 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₂CO₃ (0.4144 g, 3 mmol), and **1j** (0.1757 g, 1 mmol)/dioxane (2 mL) for the second step, afforded **2ij**⁸ (0.1682 g, 74%) (petroleum ether (60 °C ~ 90 °C)/ethyl ether = 80:1 (240 mL) to 60:1 (240 mL)): solid; m. p. 53.7-55.7 (*n*-hexane/DCM) (lit.⁸ 55-56 °C (hexane)); ¹H NMR (300 MHz, CDCl₃) δ 7.48 (d, J = 8.1 Hz, 2H, ArH), 7.23 (d, J = 6.6 Hz, 2H, ArH), 6.72 (d, J = 2.4 Hz, 2H, ArH), 6.45 (t, J = 2.3 Hz, 1H, ArH), 3.84 (s, 6H, 2×OCH₃), 2.39 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 161.0, 143.4, 138.3, 137.3, 129.4, 127.0, 105.2, 99.0, 55.3, 21.0; IR (KBr) v (cm⁻¹) 3015, 2981, 2955, 2934, 2835, 1592, 1568, 1516, 1453, 1424, 1399, 1352, 1323, 1313, 1220, 1205, 1151, 1114, 1070, 1060, 1034; MS (70 ev, EI) m/z (%) 229 (M⁺ + 1, 18.50), 228 (M⁺, 100).

(2) The reaction with K_3PO_4 ⁻³ H_2O being used in the second step

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0045 g, 0.02 mmol), Gorlos-Phos'HBF₄ (0.0283 g, 0.06 mmol), B₂Pin₂ (0.3312 g, 1.3 mmol), KOAc (0.2949 g, 3 mmol), **1i** (0.1654 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₃PO₄'3H₂O (0.7984 g, 3 mmol), and **1j** (0.1761 g, 1 mmol)/dioxane (2 mL) for the second step, afforded **2ij**⁸ (0.1981 g, 87%) (petroleum ether (60 °C ~ 90 °C)/ ethyl acetate = 45:1 (300 mL)): ¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, *J* = 8.1 Hz, 2H, ArH), 7.23 (d, *J* = 7.8 Hz, 2H, ArH), 6.72 (d, *J* = 2.4 Hz, 2H, ArH), 6.45 (t, *J* = 2.3 Hz, 1H, ArH), 3.84 (s, 6H, 2 × OCH₃), 2.39 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 161.0, 143.3, 138.2, 137.3, 129.4, 127.0, 105.2, 99.0, 55.3, 21.0.

8. Synthesis of 4'-tert-Butyl-3-methoxy-1,1'-biphenyl 2kl. (dxy-2-016)

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0045 g, 0.02 mmol), Gorlos-Phos'HBF₄ (0.0288 g, 0.06 mmol), B₂Pin₂ (0.3305 g, 1.3 mmol), KOAc (0.2943 g, 3 mmol), **1k** (0.2253 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₂CO₃ (0.4143 g, 3 mmol), and **1l** (0.1451 g, 1 mmol)/dioxane (2 mL) for the second step, afforded **2kl**⁹ (0.2253 g, 92%, purity = 98%) (petroleum ether (60 °C ~ 90 °C)/ ethyl acetate = 200:1 (800 mL)): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.54 (d, *J* = 8.7 Hz, 2H, ArH), 7.47 (d, *J* = 8.7 Hz, 2H, ArH), 7.35 (t, *J* = 7.8 Hz, 1H, ArH), 7.21-7.11 (m, 2H, ArH), 6.88 (ddd, *J*₁ = 8.1 Hz, *J*₂ = 2.6 Hz, *J*₃ = 0.9 Hz, 1H, ArH), 3.86 (s, 3H, OCH₃), 1.36 (s, 9H, 3×CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 159.8, 150.4, 142.6, 138.1, 129.7, 126.8, 125.7, 119.5, 112.7, 112.3, 55.2, 34.5, 31.3; IR (neat) v (cm⁻¹) 3028, 2962, 2904, 2867, 2830, 1600, 1584, 1560, 1517, 1481, 1463, 1397, 1362, 1296, 1269, 1222, 1213, 1178, 1111, 1054, 1033, 1010; MS (70 ev, EI) m/z (%) 241 (M⁺ + 1, 7.05), 240 (M⁺, 37.78), 225 (100).

9. Synthesis of 3,5-dimethoxy-1,1'-biphenyl 2mj (dxy-1-183)

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0045 g, 0.02 mmol), Gorlos-Phos'HBF₄ (0.0285 g, 0.06 mmol), B₂Pin₂ (0.3305 g, 1.3 mmol), KOAc (0.2947 g, 3 mmol), **1m** (0.1465 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₂CO₃ (0.4145 g, 3 mmol), and **1j** (0.1766 g, 1 mmol)/dioxane (2 mL) for the second step, afforded **2mj**¹⁰ (0.1747 g, 81%) (eluent: petroleum ether (60 °C ~ 90 °C)/ether = 80:1 (400 mL): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.61-7.55 (m, 2H, ArH), 7.47-7.32 (m, 3H, ArH), 6.74 (d, *J* = 2.4 Hz, 2H, ArH), 6.47 (t, *J* = 2.3 Hz, 1H, ArH), 3.85 (s, 6H, 2×OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 161.0, 143.5, 141.2, 128.7, 127.5, 127.2, 105.4, 99.2, 55.4; IR (neat) v (cm⁻¹) 3000, 2955, 2937, 2837, 1596, 1575, 1500, 1463, 1417, 1352, 1335, 1218, 1205, 1155, 1066, 1025; MS (70 ev, EI) m/z (%) 215 (M⁺+1, 16.48), 214 (M⁺, 100).

```
10. Synthesis of 3'-methoxy-2-methyl-1,1'-biphenyl 2no (dxy-3-037)
```


Following Typical Procedure I, the reaction of Pd(OAc)₂ (0.0046 g, 0.02 mmol),

Gorlos-PhosHBF₄ (0.0285 g, 0.06 mmol), B₂Pin₂ (0.3303 g, 1.3 mmol), KOAc (0.2946 g, 3 mmol), **1n** (0.1892 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₂CO₃ (0.4146 g, 3 mmol) and **1o** (0.1278 g, 1 mmol)/dioxane (2 mL) for the second step, afforded **2no**¹¹ (0.1844 g, 92%) (eluent: petroleum ether (60 °C ~ 90 °C) (500 mL)): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.31-7.14 (m, 5H, ArH), 6.94-6.80 (m, 3H, ArH), 3.76 (s, 3H, OCH₃), 2.26 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 159.3, 143.3, 141.8, 135.2, 130.2, 129.6, 129.0, 127.2, 125.7, 121.6, 114.8, 112.2, 55.0, 20.3; IR (neat) v (cm⁻¹) 3061, 3014, 2954, 2834, 1599, 1581, 1476, 1464, 1423, 1317, 1297, 1277, 1221, 1212, 1178, 1046, 1023; MS (70 ev, EI) m/z (%) 199 (M⁺ + 1 , 29.96), 198 (M⁺, 100).

11. Synthesis of N-(4'-butyl-[1,1'-biphenyl]-4-yl)acetamide 2pq (dxy-3-046)

Following **Typical Procedure I**, the reaction of $Pd(OAc)_2$ (0.0043 g, 0.02 mmol), Gorlos-Phos HBF₄ (0.0286 g, 0.06 mmol), B₂Pin₂ (0.3304 g, 1.3 mmol), KOAc (0.2943 g, 3 mmol), **1p** (0.2195 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₂CO₃ (0.4148 g, 3 mmol) and **1q** (0.1693 g, 1 mmol)/dioxane (2 mL) for the second step, afforded **2pq** (0.2491 g, 93%) (eluent: petroleum ether (60 °C ~ 90 °C)/ethyl

acetate/DCM = 2/1/1 (400 mL)): solid; m.p. 172.9-173.4 °C (*n*-hexane/DCM); ¹H NMR (300 MHz, CDCl₃) δ 7.71 (br, 1H, NH); 7.60-7.42 (m, 6H, ArH), 7.22 (d, *J* = 8.1 Hz, 2H, ArH), 2.64 (t, *J* = 7.8 Hz, 2H, CH₂), 2.18 (s, 3H, COCH₃), 1.70-1.54 (m, 2H, CH₂), 1.46-1.30 (m, 2H, CH₂), 0.94 (t, *J* = 7.4 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 169.0, 141.8, 137.6, 137.0, 128.8, 127.2, 126.5, 120.5, 35.2, 33.5, 24.3, 22.3, 13.9; IR (KBr) v (cm⁻¹) 3302, 2959, 2925, 2855, 1661, 1603, 1570, 1543, 1499, 1421, 1398, 1384, 1317; MS (70 ev, EI) m/z (%) 268 (M⁺ + 1, 15.88), 267 (M⁺, 85.24), 182 (100); Anal. Calcd for C₁₈H₂₁NO: C 80.86, H 7.92, N 5.24; Found: C 80.83, H 7.67, N 5.14.

12. Synthesis of *N*,*N*-diethyl-3'-methyl-[1,1'-biphenyl]-4-amine 2rs (dxy-3-044)

Following **Typical Procedure I**, the reaction of $Pd(OAc)_2$ (0.0047 g, 0.02 mmol), Gorlos-Phos HBF₄ (0.0289 g, 0.06 mmol), B₂Pin₂ (0.3305 g, 1.3 mmol), KOAc (0.2948 g, 3 mmol), **1r** (0.2390 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₂CO₃ (0.4148 g, 3 mmol) and **1s** (0.1267 g, 1 mmol)/dioxane (2 mL) for the second step. The crude residue was first purified by chromatography on silica gel (eluent: petroleum ether/ DCM = 8/1 (720 mL)) to afford impure **2rs** (0.1758 g), which was

further purified by chromatography on silica gel (eluent: petroleum ether (60 °C ~ 90 °C) / ethyl acetate = 400/1 (800 mL)) to afford **2rs** (0.1515 g, purity = 95%, 60%): solid; m.p. 53.7-54.5 °C (*n*-hexane/DCM); ¹H NMR (300 MHz, CDCl₃) δ 7.46 (d, *J* = 9.0 Hz, 2H, ArH), 7.39-7.31 (m, 2H, ArH), 7.30-7.22 (m, 1H, ArH), 7.10-7.00 (m, 1H, ArH), 6.72 (d, *J* = 9.0 Hz, 2H, ArH), 3.36 (q, *J* = 7.1 Hz, 4H, CH₂ × 2), 2.39 (s, 3H, CH₃), 1.17 (t, *J* = 7.1 Hz, 6H, CH₃ × 2); ¹³C NMR (75 MHz, CDCl₃) δ 147.1, 141.3, 138.0, 128.5, 128.1, 127.9, 126.9, 126.5, 123.2, 111.9, 44.3, 21.6, 12.6; IR (neat) v (cm⁻¹) 2970, 2928, 1612, 1524, 1485, 1398, 1374, 1356, 1267, 1200, 1155, 1092, 1077, 1010; MS (70 ev, EI) m/z (%) 240 (M⁺ + 1, 8.10), 239 (M⁺, 47.95), 224 (100); HRMS calcd for C₁₇H₂₁N (M⁺): 239.1674, found: 239.1678.

13. Synthesis of 3,5-dimethoxy-4'-benzoyl-1,1'-biphenyl 2tj. (dxy-1-175)

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0047 g, 0.02 mmol), Gorlos-Phos HBF₄ (0.0286 g, 0.06 mmol), B₂Pin₂ (0.3301 g, 1.3 mmol), KOAc (0.2948 g, 3 mmol), **1t** (0.2822 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₂CO₃ (0.4147 g, 3 mmol), and **1j** (0.1761 g, 1 mmol)/dioxane (2 mL) for the second step afforded **2tj** (0.2536 g, 80%) (eluent: petroleum ether (60 °C ~ 90 °C)/ethyl acetate/DCM = 20:1:2 (550 mL)): solid; m. p. 107-108 °C (*n*-hexane/ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 7.91-7.80 (m, 4H, ArH), 7.71-7.65 (m, 2H, ArH), 7.63-7.56 (m, 1H, ArH), 7.54-7.46 (m, 2H, ArH), 6.77 (d, *J* = 2.4 Hz, 2H, ArH), 6.51 (t, J = 2.4 Hz, 1H, ArH), 3.85 (s, 6H, OCH₃ × 2); ¹³C NMR (75 MHz, CDCl₃) δ 196.2, 161.1, 145.1, 142.1, 137.6, 136.4, 132.3, 130.6, 129.9, 128.2, 127.0, 105.5, 99.9, 55.4; IR (KBr) v (cm⁻¹) 3054, 3013, 2958, 2936, 2836, 1657, 1597, 1455, 1428, 1399, 1353, 1318, 1274, 1206, 1158, 1083, 1068, 1038; MS (70 eV, EI) m/z (%): 319 (M⁺ + 1, 23.93), 318 (M⁺, 100); Anal. Calcd for C₂₁H₁₈O₃: C 79.22, H 5.70. Found: C 79.21, H 5.74.

14. Synthesis of *N*-(4-(1-naphthalenyl)phenyl)acetamide 2uq (dxy-1-169)

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0046 g, 0.02 mmol), Gorlos-PhosHBF₄ (0.0285 g, 0.06 mmol), B₂Pin₂ (0.3299 g, 1.3 mmol), KOAc (0.2948 g, 3 mmol), **1u** (0.2111 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₂CO₃ (0.4150 g, 3 mmol), and **1q** (0.1733 g, 1 mmol)/dioxane (2 mL) for the second step, afforded impure **2uq** (0.2619 g) (eluent: petroleum ether (60 °C ~ 90 °C)/ethyl acetate/DCM = 10:1:1 (240 mL) to 3:1:1 (300 mL) to 1:1:1 (300 mL)), which was further purified by recrystallization to afford pure **2uq**¹² (0.1861 g, 71%): solid; m. p. 205.4-206.4 °C (DCM/ethyl acetate) (lit.¹¹ 198-199 °C (petroleum/benzene)); ¹H NMR (300 MHz, CDCl₃) δ 7.90-7.80 (m, 3H, ArH), 7.63 (d, *J* = 8.4 Hz, 2H, ArH), 7.55-7.35 (m, 7H, ArH + NH), 2.24 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 168.5, 139.5, 137.0, 136.7, 133.8, 131.6, 130.6, 128.3, 127.6, 126.9, 126.0, 125.9, 125.8, 125.3, 119.8, 24.6; IR (KBr) v (cm⁻¹) 3228, 3096, 3049, 1655, 1589, 1541, 1519, 1504. 1395, 1366, 1311, 1295, 1263, 1180. 1105, 1025; MS (70 ev, EI) m/z (%) 262 (M⁺ + 1, 17.03), 261 (M⁺, 82.98), 219 (100);

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0048 g, 0.02 mmol), Gorlos-PhosHBF₄ (0.0288 g, 0.06 mmol), B₂Pin₂ (0.3305 g, 1.3 mmol), KOAc (0.2947 g, 3 mmol), **1u** (0.2117 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₂CO₃ (0.4143 g, 3 mmol), and **1v** (0.1589 g, 1 mmol)/dioxane (2 mL) for the second step, afforded **2uv**¹³ (0.2293 g, 93%) (eluent: petroleum ether (60 °C ~ 90 °C) (300 mL) to ethyl acetate/DCM = 1:2 (300 mL)): solid; m. p. 181.7-182.2 °C (ethyl acetate); ¹H NMR (300 MHz, CDCl₃) δ 8.03-7.79 (m, 5H, ArH), 7.65-7.36 (m, 6H, ArH), 6.28 (brs, 2H, NH₂); ¹³C NMR (75 MHz, CDCl₃) δ 169.3, 144.7, 139.0, 133.8, 132.2, 131.3, 130.3, 128.4, 128.2, 127.4, 126.9, 126.3, 126.0, 125.6, 125.3; IR (KBr) v (cm⁻¹) 3338, 3179, 1642, 1614, 1554, 1414, 1397, 1019; MS (70 ev, EI) m/z (%) 248 (M⁺ + 1, 18.64), 247 (M⁺, 100).

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0046 g, 0.02 mmol), Gorlos-Phos'HBF₄ (0.0286 g, 0.06 mmol), B₂Pin₂ (0.3306 g, 1.3 mmol), KOAc (0.2951 g, 3 mmol), **1w** (0.2387 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₂CO₃ (0.4154 g, 3 mmol), and 1t (0.2182 g, 1 mmol)/dioxane (2 mL) for the second step, afforded 2wt (0.2749 g, 85%) (eluent: petroleum ether (60 °C ~ 90 °C)/ethyl acetate/DCM = 10:1:1 (360 mL) to 6:1:1 (400 mL) to 5:1:1 (560 mL)): solid; m. p. 123.4-124.5 °C (hexane/DCM); ¹H NMR (300 MHz, CDCl₃) δ 8.32 (s, 1H, ArH), 8.07 (d, J = 8.1 Hz, 1H, ArH), 8.00-7.73 (m, 8H, ArH), 7.61 (t, J = 7.4 Hz, 1H, ArH), 7.51 (t, J = 7.4 Hz, 2H, ArH), 7.31 (d, J = 8.7 Hz, 1H, ArH), 2.77 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 196.2, 159.8, 148.0, 144.4, 140.7, 137.7, 136.6, 135.8, 132.4, 130.8, 129.9, 128.3, 128.2, 127.2, 126.9, 126.0, 124.9, 122.3, 25.4; IR (KBr) v (cm⁻¹) 3065, 2919, 1658, 1620, 1602, 1573, 1521, 1493, 1444, 1401, 1362, 1315, 1286, 1277, 1216, 1201, 1154, 1124, 1070, 1025; MS (70 ev, EI) m/z (%) 324 (M⁺ + 1, 32.97), 323 (M⁺, 100); Anal. Calcd for C₂₃H₁₇NO: C 85.42, H 5.30, N 4.33. Found: C 85.40, H 5.44, N 4.12.

17. Synthesis of 3-phenylpyridine 2xm (dxy-2-009)

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0044 g, 0.02 mmol), Gorlos-Phos'HBF₄ (0.0289 g, 0.06 mmol), B₂Pin₂ (0.3306 g, 1.3 mmol), KOAc (0.2944 g, 3 mmol), **1x** (0.1425 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₂CO₃ (0.4148 g, 3 mmol), and **1m** (0.1130 g, 1 mmol)/dioxane (2 mL) for the second step, afforded **2xm**¹⁴ (0.1356 g, 87%) (eluent: petroleum ether (60 °C ~ 90 °C)/ethyl acetate /DCM = 10:1:1 (240 mL) to 8:1:1 (300 mL) to 5:1:1 (420 mL)): liquid; ¹H NMR (300 MHz, CDCl₃) δ 8.85 (d, *J* = 2.1 Hz, 1H, ArH), 8.59 (dd, *J*₁ = 5.0 Hz, *J*₂ = 1.7 Hz, 1H, ArH), 7.90-7.80 (m, 1H, ArH), 7.62-7.52 (m, 2H, ArH), 7.51-7.29 (m, 4H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ 148.4, 148.3, 137.7, 136.5, 134.2, 129.0, 128.0, 127.0, 123.4; IR (neat) v (cm⁻¹) 3406, 3055, 3031, 1582, 1566, 1473, 1450, 1408, 1336. 1274, 1235, 1188, 1126, 1107, 1074, 1023, 1006; MS (70 ev, EI) m/z (%) 156 (M⁺ + 1, 11.64), 155 (M⁺, 100).

18. Synthesis of methyl 4-(1-benzyl-1H-indol-5-yl)benzoate 2by. (dxy-2-010)

Gorlos-Phos'HBF₄ (0.0285 g, 0.06 mmol), B₂Pin₂ (0.3301 g, 1.3 mmol), KOAc (0.2950 g, 3 mmol), **1b** (0.2268 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₂CO₃ (0.4150 g, 3 mmol), and 1y (0.2418 g, 1 mmol)/dioxane (2 mL) for the second step, afforded **2by** (0.2832 g, 83%) (eluent: petroleum ether (60 °C ~ 90 °C)/diethyl ether/DCM = 40:1:12 (580 mL)): solid; m. p. 123.8-126.3 °C (hexane/DCM); 1 H NMR (300 MHz, CDCl₃) δ 8.08 (d, J = 8.7 Hz, 2H, ArH), 7.90 (d, J = 1.2 Hz, 1H, ArH), 7.79 (d, J = 6.9 Hz, 2H, ArH), 7.43 (dd, $J_1 = 8.7$ Hz, $J_2 = 1.7$ Hz, 1H, ArH), 7.37-7.24 (m, 4H, ArH), 7.16 (d, J = 3.0 Hz, 1H, ArH), 7.13-7.04 (m, 2H, ArH), 6.61 $(d, J = 2.4 \text{ Hz}, 1\text{H}, \text{ArH}), 5.32 (s, 2\text{H}, \text{CH}_2), 3.92 (s, 3\text{H}, \text{OCH}_3);$ ¹³C NMR (75 MHz, CDCl₃) § 167.2, 147.0, 137.2, 136.2, 131.7, 130.0, 129.2, 128.8, 127.8, 127.7, 127.0, 126.7, 121.4, 119.8, 110.1, 102.3, 52.0, 50.2; IR (KBr) v (cm⁻¹) 3127, 3088, 3026, 2946, 2856, 2839, 1717, 1605, 1506, 1491, 1478, 1450, 1434, 1411, 1384, 1353, 1336, 1317, 1280, 1263, 1193, 1152, 1111, 1077, 1019; MS (70 ev, EI) m/z (%) 342 (M⁺ + 1, 24.98), 341 (M^+ , 100); Anal. Calcd for C₂₃H₁₉NO₂: C 80.92, H 5.61, N 4.10. Found: C 80.71, H 5.66, N 3.87.

19. Synthesis of 7-(1-benzyl-1*H*-indol-5-yl)-2-methylquinoline 2wy (dxy-2-018)

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0046 g, 0.02 mmol), Gorlos-Phos HBF₄ (0.0283 g, 0.06 mmol), B₂Pin₂ (0.3304 g, 1.3 mmol), KOAc

(0.2950 g, 3 mmol), **1w** (0.2386 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₂CO₃ (0.4152 g, 3 mmol), and **1y** (0.2422 g, 1 mmol)/dioxane (2 mL) for the second step, afforded **2wy** (0.2490 g, 71%) (eluent: petroleum ether (60 °C ~ 90 °C)/ethyl acetate/DCM = 10:1:2 (520 mL) to 9:1:2 (360 mL) to 8:1:2 (440 mL)): solid; m. p. 154.4-155.4 °C (hexane/DCM); ¹H NMR (300 MHz, CDCl₃) δ 8.30 (s, 1H, ArH), 8.06-7.98 (m, 2H, ArH), 7.86-7.76 (m, 2H, ArH), 7.60 (dd, J_1 = 8.6 Hz, J_2 = 1.7 Hz, 1H, ArH), 7.42-7.08 (m, 8H, ArH), 6.63 (d, J = 3.3 Hz, 1H, ArH), 5.33 (s, 2H, CH₂), 2.75 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 159.2, 148.2, 143.4, 137.3, 136.0, 135.8, 132.1, 129.2, 129.1, 128.8, 127.62, 127.60, 126.7, 125.85, 125.80, 125.0, 121.6, 121.4, 119.9, 110.1, 102.2, 50.1, 25.4; IR (KBr) v (cm⁻¹) 1616, 1600, 1512, 1495, 1482, 1452, 1439, 1413, 1390, 1371, 1355, 1345, 1305, 1287, 1184, 1169, 1126, 1079, 1055, 1027; MS (70 ev, EI) m/z (%) 349 (M⁺ + 1, 15.47), 348 (M⁺, 55.81), 91 (100); Anal. Calcd for C₂₅H₂₀N₂: C 86.17, H 5.79, N 8.04. Found: C 86.17, H 5.87, N 7.99.

20. Synthesis of 1-benzyl-5-(3-pyridinyl)-1*H*-indole 2xy (dxy-2-056)

Following **Typical Procedure I**, the reaction of $Pd(OAc)_2$ (0.0043 g, 0.02 mmol), Gorlos-Phos HBF₄ (0.0283 g, 0.06 mmol), B_2Pin_2 (0.3294 g, 1.3 mmol), KOAc (0.2955 g, 3 mmol), **1x** (0.1480 g, 1.3 mmol)/dioxane (2 mL) for the first step, K₃PO₄·3H₂O (0.7979 g, 3 mmol), and **1y** (0.2419 g, 1 mmol)/dioxane (2 mL) for the

second step, afforded **2xy** (0.2180 g, 77%) (eluent: petroleum ether (60 °C ~ 90 °C)/ethyl acetate/DCM = 6:1:1 (400 mL) to 4:1:1 (450 mL)): solid; m. p. 132.7-135.5 °C (hexane/DCM); ¹H NMR (300 MHz, CDCl₃) δ 8.90 (s, 1H, ArH), 8.54 (d, *J* = 4.5 Hz, 1H, ArH), 7.90 (dt, *J*₁ = 8.1 Hz, *J*₂ = 2.0 Hz, 1H, ArH), 7.86 (t, *J* = 1.2 Hz, 1H, ArH), 7.43-7.23 (m, 6H, ArH), 7.19 (d, *J* = 3.0 Hz, 1H, ArH), 7.17-7.10 (m, 2H, ArH), 6.63 (d, *J* = 3.0 Hz, 1H, ArH), 5.35 (s, 2H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 148.5, 147.4, 137.9, 137.2, 136.1, 134.4, 129.5, 129.33, 129.27, 128.8, 127.7, 126.7, 123.4, 121.2, 119.7, 110.3, 102.2, 50.2; IR (KBr) v (cm⁻¹) 1620, 1584, 1575, 1508, 1498, 1467, 1454, 1439, 1413, 1391, 1350, 1332, 1310, 1290, 1270, 1261, 1201, 1184, 1177, 1075, 1042, 1025, 1014; MS (70 ev, EI) m/z (%) 284 (M⁺, 37.41), 91(100); Anal. Calcd for C₂₀H₁₆N₂: C 84.48, H 5.67, N 9.85; Found: C 84.26, H 5.74, N 9.79.

21. Synthesis of 1,3-diphenylbenzene 4mam (dxy-1-134)

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0048 g, 0.02 mmol), Gorlos-Phos'HBF₄ (0.0286 g, 0.06 mmol), B₂Pin₂ (0.6596 g, 2.6 mmol), KOAc (0.5883 g, 6 mmol), **1m** (0.2934 g, 2.6 mmol)/dioxane (4 mL) for the first step, K_2CO_3 (0.8297 g, 6 mmol), and **3a** (0.1466 g, 1 mmol)/dioxane (4 mL) for the second step, afforded **4mam**¹⁵ (0.2113 g, 92%) (eluent: petroleum ether (60 °C ~ 90 °C) (400 mL)): solid; m. p. 86.9-87.1 °C (*n*-hexane/diethyl ether) (lit¹⁴. 86-88 °C (*n*-hexane/ethyl acetate)); ¹H NMR (300 MHz, CDCl₃) δ 7.82-7.77 (m, 1H, ArH), 7.68-7.60 (m, 4H, ArH), 7.60-7.54 (m, 2H, ArH), 7.53-7.40 (m, 5H, ArH), 7.40-7.30 (m, 2H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ 141.8, 141.2, 129.2, 128.8, 127.4, 127.3, 126.2, 126.1; IR (KBr) v (cm⁻¹) 3057, 3028, 1596, 1569, 1495, 1474, 1438, 1403; MS (70 ev, EI) m/z (%) 231 (M⁺ + 1, 19.77), 230 (M⁺, 100).

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0046 g, 0.02 mmol), Gorlos-Phos'HBF₄ (0.0283 g, 0.06 mmol), B₂Pin₂ (0.6604 g, 2.6 mmol), KOAc (0.5890 g, 6 mmol), **1m** (0.2928 g, 2.6 mmol)/dioxane (4 mL) for the first step, K₂CO₃ (0.8399 g, 6 mmol), and **3b** (0.1474 g, 1 mmol)/dioxane (4 mL) for the second step, afforded **4mbm**¹⁶ (0.2010 g, 87%) (eluent: petroleum ether (60 °C ~ 90 °C) to petroleum ether (60 °C ~ 90 °C)/DCM = 40:1): solid; m. p. 211.0-212.7 °C (*n*-hexane/DCM) (lit¹⁵. 210-212 °C (hexane)); ¹H NMR (300 MHz, CDCl₃) δ 7.70-7.61 (m, 8H, ArH), 7.50-7.42 (m, 4H, ArH), 7.40-7.32 (m, 2H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ 140.7, 140.1, 128.8, 127.5, 127.3, 127.0; IR (KBr) v (cm⁻¹) 3060, 3034, 1595, 1576, 1481, 1455, 1404, 1340, 1259, 1192, 1169, 1133, 1075, 1028, 1004; MS (70 ev, EI) m/z (%) 231 ((M⁺ + 1), 19.27), 230 (M⁺, 100).

23. Synthesis of 1,2-diphenylbenzene 4mcm (dxy-2-057)

Following **Typical Procedure I**, the reaction of Pd(OAc)₂ (0.0047 g, 0.02 mmol), Gorlos-Phos'HBF₄ (0.0290 g, 0.06 mmol), B₂Pin₂ (0.6598 g, 2.6 mmol), KOAc (0.5875 g, 6 mmol), **1m** (0.2925 g, 2.6 mmol)/dioxane (4 mL) for the first step, K₃PO₄'3H₂O (1.5975 g, 6 mmol), and **3c** (0.1478 g, 1 mmol)/dioxane (4 mL) for the second step, afforded **4mcm**¹⁷ (0.1139 g, 49%) (petroleum ether (60 °C ~ 90 °C)(450 mL)): liquid; ¹H NMR (300 MHz, CDCl₃) δ 7.47-7.35 (m, 4H, ArH), 7.30-7.05 (m, 10H, ArH); ¹³C NMR (75 MHz, CDCl₃) δ 141.5, 140.5, 130.6, 129.9, 127.8, 127.5, 126.4; IR (neat) v (cm⁻¹) 3058, 3020, 1599, 1575, 1495, 1472, 1452, 1443, 1429, 1180, 1156, 1115, 1073, 1009; MS (70 ev, EI) m/z (%) 231 (M⁺ + 1, 18.66), 230 (M⁺, 100).

24. Synthesis of 4-methoxy-1,1':4',1''-terphenyl 4zbm (dxy-2-096, dxy-2-104)

Following Typical Procedure I, the reaction of $Pd(OAc)_2$ (0.0043 g, 0.02 mmol), Gorlos-Phos'HBF₄ (0.0290 g, 0.06 mmol), B₂Pin₂ (0.2540 g, 1.0 mmol), KOAc (0.2945 g, 3 mmol), 1z (0.1430 g, 1.0 mmol)/dioxane (2 mL) for the first step,

K₃PO₄·3H₂O (0.7989 g, 3 mmol), and **3b** (0.2206 g, 1.5 mmol)/dioxane (2 mL) for the second step, afforded **2zb**¹⁸ (0.1260 g, 57%) (eluent: petroleum ether (60 °C ~ 90 °C)): solid; 114.6-115.2 °C (*n*-hexane/DCM) (lit.¹⁷ 113-114 °C (EtOH)); ¹H NMR (300 MHz, CDCl₃) δ 7.53-7.42 (m, 4H, ArH), 7.40-7.33 (m, 2H, ArH), 6.97 (d, J = 8.7 Hz, 2H, ArH), 3.84 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 159.3, 139.2, 132.6, 132.4, 128.8, 128.0, 127.9, 114.3, 55.3; IR (KBr) v (cm⁻¹) 2963, 2933, 2840, 1607, 1524, 1486, 1397, 1308, 1291, 1264, 1201, 1180, 1133, 1102, 1038, 1014; MS (70 ev, EI) m/z (%) 220 (M⁺(³⁷Cl), 31.70), 218 (M⁺(³⁵Cl), 100).

To a flame-dried Schlenk tube were added Pd(OAc)₂ (0.0026 g, 0.011 mmol), Gorlos-Phos'HBF₄ (0.0153 g, 0.032 mmol), Ph-BPin (0.1402 g, 0.69 mmol)/dioxane (1 mL), K₃PO₄'3H₂O (0.4236 g, 1.59 mmol), and **2zb** (0.1151 g, 0.53 mmol)/dioxane (1 mL) sequentially under N₂ atmosphere. The resulting mixture was stirred at 110 °C in a preheated oil bath. After 18 h, the reaction was complete as monitored by TLC. The reaction mixture was cooled to room temperature and quenched with an aqueous solution of hydrochloric acid (3 M, 15 mL). The resulting mixture was extracted with DCM (20 mL × 3) and washed with an aqueous solution of NaHCO₃ (15 mL). The combined organic layer was dried over anhydrous Na₂SO₄. After filtration and evaporation, a white solid was obtained, which was then washed with petroleum ether (5 mL × 3) and dried under vacuum to afford **4zbm**¹⁹ (0.1183 g, 86%): solid; m. p. 225.3-225.8 °C (DCM) (lit.¹⁸ 224-225 °C (MeOH)); ¹H NMR (300 MHz, CDCl₃) δ 7.72-7.53 (m, 8H, ArH), 7.51-7.41 (m, 2H, ArH), 7.40-7.32 (m, 1H, ArH), 7.00 (d, J =8.7 Hz, 2H, ArH), 3.87 (s, 3H, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 159.2, 140.8, 139.7, 139.5, 133.2, 128.8, 128.1, 127.5, 127.2, 127.03, 126.99, 114.3, 55.4; IR (KBr) v (cm⁻¹) 3056, 3034, 3002, 2961, 2937, 2836, 1607, 1582, 1534, 1508, 1485, 1466, 1449, 1440, 1402, 1287, 1255, 1219, 1179, 1141, 1117, 1043, 1030; MS (70 ev, EI) m/z (%) 261 (M⁺ + 1, 21.36), 260 (M⁺, 100).

Cytotoxicity Study

Human non-small cell lung cancer A549 cells were from ATCC (Manassas, VA) and cultured in RPMI 1640 supplemented with 10% FBS, 100 U/mL penicillin and 100 mg/mL streptomycin at 37 °C in humidified air containing 5% CO₂. The cells were seeded in 96-well plates at a density of 2000 cells/well and cultured overnight. Then the cells were treated with tested compounds at 10 μ M for 72 hr and the sulforhodamine B (SRB) assay was used to measure the cell mass. Briefly, the cells were fixed with 10% trichloroacetic acid for 1 hr at 4°C. After washed with deionized water and air-dried, the cells were stained with 0.1% SRB dissolved in 1% acetic acid for 30 minutes and subsequently washed four times with 1% acetic acid to remove unbound dye. The plates were left to dry at room temperature and 100 µl of 10 mM TRIS base was added to solubilize the protein-bound SRB. The absorbance at 540 nm was measured with a microplate reader (SpectraMax M2, Molecular Devices). Cytotoxicity was determined by inhibition of cellular growth with the following formula: inhibitory rate (%) = $(A_{540} \text{ of vehicle control} - A_{540} \text{ of treated cells}) / (A_{540} \text{ of }$ vehicle control – A₅₄₀ of blank control)*100.

Entry	References	Known compounds
1	B. Lü, P. Li, C. Fu, L. Xue, Z. Lin, and S. Ma, Adv. Synth. Catal., 2011, 353 , 100.	-
2	D. I. Fletcher, C. R. Ganellin, A. Piergentili, P. M. Dunnb and D. H. Jenkinsonb, <i>Bioorg. Med. Chem.</i> , 2007, 15 , 5457.	2ab
3	J. P. Wolfe, R. A. Singer, B. H. Yang and S. L. Buchwald, J. Am. Chem. Soc., 1999, 121 , 9550.	2bc
4	N. Kataoka, Q. Shelby, J. P. Stambuli and J. F. Hartwig, J. Org. Chem., 2002, 67, 5553.	2ad
5	B. Steiniger and F. R. Wuest, <i>J Label CompdRadiopharm.</i> , 2006, 49 , 817.	2ef
6	T. Cornilleau, P. Hermange and E. Fouquet, <i>Chem. Commun.</i> , 2016, 52 , 10040.	2bg
7	J. Zhao, D. Yue, M. A. Campo and R. C. Larock, <i>J. Am. Chem. Soc.</i> , 2007, 129 , 5288.	2hb
8	V. Percec, G. M. Golding, J. Smidrkal and O. Weichold, J. Org. Chem., 2004, 69, 3447	2ij
9	S. E. Denmark, R. C. Smith, W. T. Chang and J. M. Muhuhi, J. Am. Chem. Soc., 2009, 131 , 3104.	2kl
10	G. A. Molander and L. Iannazzo, J. Org. Chem., 2011, 76, 9182.	2mj
11	H. Min, H. Miyamura and S. Kobayashi, Chem. Lett. 2016, 45, 837.	2no
12	B. A. Marshall and W. A. Waters, J. Chem. Soc., 1959, 0 , 381.	2uq
13	M. Larhed, G. Lindeberg and A. Hallberg, <i>Tetrahedron Lett.</i> , 1996, 37 , 8219.	2uv
14	L. Ackermann, C. J. Gschrei, A. Althammer and M. Riederer, <i>Chem. Commun.</i> , 2006, 1419.	2xm

15	M. Chang, C. Chan, S. Lin and M. Wu, <i>Tetrahedron</i> , 2013, 69 , 9616.	4mam
16	O. V. Petrova, A, I. Mikhaleva, L. N. Sobenina and B. A. Trofimov, <i>Russ. J. Org. Chem.</i> , 2010, 46 , 452.	4mbm
17	C. Diebold, J. Becht, J. Lu, P. Toy and C. Drian, Eur. J. Org. Chem., 2012, 893.	4mcm
18	S. E. Denmark, R. C. Smith and S. A. Tymonko, <i>Tetrahedron</i> , 2007, 63 , 5730.	2zb
19	C. Cho, I. Kim and K. Park, <i>Tetrahedron</i> , 2004, 60 , 4589.	4zbm

¢

ι

ć

í

í

¢

ć

ć

¢

¢

ć

ſ

ć

í

ſ.

ſ

¢

.

ı

c

¢

£

¢

í

í

í

ć

,

٤.

í

í

ı

,

ſ

S78

6

¢

£

£

£

ŧ.

¢

í

C

6

ſ

ſ