Supporting Information

Iridium-catalyzed oxidative Ar-H/Ar-H cross-coupling of

primary benzamides with thiophenes

Guangying Tan, Chunhao Ran and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P.R.

> China E-mail: jsyou@scu.edu.cn

Table of Contents

I. General remarks	S2
II. General procedure for the heteroarylation of primary benzamides	S2
III. Procedure for the synthesis of 3a on 4 mmol scale	S2
IV. Intramolecular annulation of 3a	S3
V. Mechanistic study	S3
VI. Experimental data for the described substances	S10
VII. References	S23
VIII. Copies of ¹ H and ¹³ C NMR spectra	S24

I. General remarks

NMR spectra were obtained on an Agilent 400-MR DD2 spectrometer. The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ or DMSO- d_6 as the internal reference (CDCl₃: $\delta = 7.26$; DMSO- d_6 : $\delta = 2.50$). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ or DMSO- d_6 as the internal standard (CDCl₃: $\delta = 77.16$; DMSO- d_6 : $\delta = 39.52$). High-resolution mass spectra (HRMS) were obtained with a Shimadzu LCMS-IT-TOF (ESI). Melting points were determined with XRC-1 and are uncorrected.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. $IrCl_3 H_2O$ were purchased from Shanxi Kaida Chemical Engineering (China) CO., Ltd. Various primary benzamides and thiophenes were purchased from Adamas-beta Ltd.

II. General procedure for the heteroarylation of primary benzamides

A Schlenk tube with a magnetic stir bar was charged with $[IrCp*Cl_2]_2$ (8.0 mg, 10 µmol), Ag₂O (139.0 mg, 0.6 mmol), primary benzamides **1** (0.2 mmol, 1.0 equiv), and thiophenes **2** (0.6 mmol, 3.0 equiv) in HFIP (0.5 mL) under an air atmosphere. The resulting mixture was stirred at 120 °C for 6 h and then diluted with 3 mL of dichloromethane. The solution was filtered through a celite pad and washed with 10-20 mL of dichloromethane. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to provide the desired product **3** or **4**.

III. Procedure for the synthesis of 3a on 4 mmol scale

A Schlenk tube with a magnetic stir bar was charged with $[IrCp*Cl_2]_2$ (160 mg, 0.2 mmol), Ag₂O (2780 mg, 12 mmol), benzamide **1a** (484 mg, 4.0 mmol, 1.0 equiv), and benzothiophene **2a** (1608 mg, 12.0 mmol, 3.0 equiv) in HFIP (5.0 mL) under an air atmosphere. The resulting mixture was stirred at 120 °C for 10 h and then diluted with 10 mL of dichloromethane. The solution was filtered through a celite pad and washed

with 10-20 mL of dichloromethane. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to provide the desired product **3a** (627 mg, 62% yield).

IV. Intramolecular annulation of 3a¹

A Schlenk tube with a magnetic stir bar was charged with CuI (7.6 mg, 20 mol %), PPh₃ 40 (21.0,mol %), KO^tBu (44.9,2.0 equiv), and 2-(benzo[b]thiophen-2-yl)benzamide **3a** (50.6 mg, 0.2 mmol) in o-xylene (1.0 mL) under an O₂ atmosphere (1 atm). The resulting mixture was stirred at 120 °C for 30 h and then diluted with 10 mL of dichloromethane. The solution was filtered through a celite pad and washed with 10-20 mL of dichloromethane. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to provide the desired product 5 (23 mg, 47% yield) as a yellow solid. M.p.: > 250 °C. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 7.49-7.55$ (m, 2H), 7.60-7.64 (m, 1H), 7.82-7.88 (m, 2H), 8.06-8.10 (m, 1H), 8.35 (d, J = 7.6 Hz, 1H), 8.43-8.47 (m, 1H), 12.62 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 114.1, 121.8, 123.4, 123.7, 124.9, 125.1,$ 126.8, 127.4, 128.3, 130.1, 132.6, 133.1, 133.5, 137.4, 161.9 ppm. HRMS (ESI): calcd for C₁₅H₁₀NOS [M+H]⁺ 252.0483, found 252.0490.

V. Mechanistic study

(i) H/D exchange experiments

A Schlenk tube with a magnetic stir bar was charged with $[IrCp*Cl_2]_2$ (8.0 mg, 10 μ mol), Ag₂O (139.0 mg, 0.6 mmol), benzamide **1a** (24.2 mg, 0.2 mmol), and D₂O (72 μ L, 4.0 mmol) in HFIP (0.5 mL) under an air atmosphere. The resulting mixture was

stirred at 120 °C for 1 h and then diluted with 3 mL of dichloromethane. The solution was filtered through a celite pad and washed with 10-20 mL of dichloromethane. The filtrate was concentrated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc, 10/1, v/v) to provide $[D_n]$ -1a. The deuterated ratio was calculated from ¹H NMR analysis.

-6.358

A Schlenk tube with a magnetic stir bar was charged with $[IrCp*Cl_2]_2$ (8.0 mg, 10 µmol), Ag₂O (139.0 mg, 0.6 mmol), benzothiophene **2a** (26.8 mg, 0.2 mmol), and D₂O (72 µL, 4.0 mmol) in HFIP (0.5 mL) under an air atmosphere. The resulting mixture was stirred at 120 °C for 1 h and then diluted with 3 mL of dichloromethane. The solution was filtered through a celite pad and washed with 10-20 mL of dichloromethane. The filtrate was concentrated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc, 10/1, v/v) to provide [D]-**2a**. The deuterated ratio was calculated from ¹H NMR analysis.

A Schlenk tube with a magnetic stir bar was charged with $[IrCp*Cl_2]_2$ (8.0 mg, 10 µmol), Ag₂O (139.0 mg, 0.6 mmol), benzamide **1a** (24.2 mg), benzothiophene **2a** (80.4 mg, 0.6 mmol), and D₂O (72 µL, 4.0 mmol) in HFIP (0.5 mL) under an air atmosphere. The resulting mixture was stirred at 120 °C for 1 h and then diluted with 3 mL of dichloromethane. The solution was filtered through a celite pad and washed with 10-20 mL of dichloromethane. The filtrate was concentrated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc, 10/1, v/v) to provide [D_n]-**1a**, [D]-**2a** and **3a**. The conversion of **1a** and **2a** were 47% and 23%, respectively and the yield of **3a** was 34%. The deuterated ratio was calculated from ¹H NMR analysis.

 $\begin{array}{c} 7.302\\ 7.884\\ 7.884\\ 7.823\\ 7.827\\ 7.827\\ 7.827\\ 7.827\\ 7.327\\ 7.327\\ 7.327\\ 7.357\\ 7.357\\ 7.357\\ 7.343\end{array}$

(ii) Kinetic isotope experiments

A Schlenk tube with a magnetic stir bar was charged with $[IrCp*Cl_2]_2$ (8.0 mg, 10 µmol), Ag₂O (139.0 mg, 0.6 mmol), benzamide **1a** (24.2 mg) or deuterated benzamide $[D_5]$ -**1a** (25.2 mg), and benzothiophene **2a** (80.4 mg, 0.6 mmol) in HFIP (0.5 mL) under an air atmosphere. The resulting mixture was stirred at 120 °C for 1 h and then diluted with 3 mL of dichloromethane. The solution was filtered through a celite pad and washed with 10-20 mL of dichloromethane. The deuterated ratio was calculated from ¹H NMR analysis. The yield of **3a** was determined by ¹H NMR analysis of the crude product using dibromomethane (0.2 mmol, 14 µL) as internal standard. A kinetic isotope effect (KIE) value ($k_{\rm H}/k_{\rm D} = 1.12$) was obtained.

A Schlenk tube with a magnetic stir bar was charged with $[IrCp*Cl_2]_2$ (8.0 mg, 10 µmol), Ag₂O (139.0 mg, 0.6 mmol), benzamide **1a** (24.2 mg), and benzothiophene **2a** (80.4 mg, 0.6 mmol) or deuterated benzothiophene [D]-**2a** (81.0 mg, 0.6 mmol) in HFIP (0.5 mL) under an air atmosphere. The resulting mixture was stirred at 120 °C for 1 h and then diluted with 3 mL of dichloromethane. The solution was filtered through a celite pad and washed with 10-20 mL of dichloromethane. The deuterated ratio was calculated from ¹H NMR analysis. The yield of **3a** was determined by ¹H NMR analysis of the crude product using dibromomethane (0.2 mmol, 14 µL) as internal standard. A kinetic isotope effect (KIE) value ($k_H/k_D = 1.24$) was obtained.

VI. Experimental data for the described substances

2-(Benzo[b]thiophen-2-yl)benzamide (3a)

Following the general procedure. Benzamide **1a** (24.2 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **3a** as a yellow solid (35 mg, 70% yield). M.p.: 138-139 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.71$ (d, J = 48.4 Hz, 2H), 7.33-7.40 (m, 2H), 7.42-7.52 (m, 3H), 7.54-7.57 (m, 1H), 7.70 (dd, J = 7.6 Hz, 1.6 Hz, 1H), 7.78-7.80 (m, 1H), 7.84 (d, J = 7.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 122.3$, 124.0, 124.1, 124.82, 124.83, 128.8, 128.9, 130.5, 131.0, 132.0, 135.5, 140.3, 140.4, 141.2, 171.3 ppm. HRMS (ESI): calcd for C₁₅H₁₂NOS [M+H]⁺ 254.0640, found 254.0643.

2-(Benzo[b]thiophen-2-yl)-5-methylbenzamide (3b)

Following the general procedure. 3-Methylbenzamide **1b** (27.0 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **3b** as a yellow solid (36 mg, 68% yield). M.p.: 223-224 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.43 (s, 3H), 5.62 (d, J = 5.2 Hz, 2H), 7.30-7.29 (m, 4H), 7.44 (d, J = 8.0 Hz, 1H), 7.54 (s, 1H), 7.77-7.79 (m, 1H), 7.83 (d, J = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.4, 122.3, 123.9, 124.0, 124.7, 124.8, 129.2, 129.5, 131.7, 132.0, 132.6, 140.2, 140.4, 140.9, 141.4, 171.2 ppm. HRMS (ESI): calcd for C₁₆H₁₄NOS [M+H]⁺ 268.0796, found 268.0798.

2-(Benzo[b]thiophen-2-yl)-4-methylbenzamide (3c)

Following the general procedure. 4-Methylbenzamide **1c** (27.0 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **3c** as a yellow soild (35 mg, 65% yield). M.p.: 185-186 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.42 (s, 3H), 5.67 (d, *J* = 40 Hz, 2H), 7.25-7.27 (m, 1H), 7.33-7.39 (m, 4H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 7.2 Hz, 1H), 7.83 (d, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.4, 122.3, 123.9, 124.0, 124.7, 124.8, 129.2, 129.5, 131.7, 132.0, 132.6, 140.2, 140.4, 140.9, 141.4, 171.2 ppm. HRMS (ESI): calcd for C₁₆H₁₄NOS [M+H]⁺ 268.0796, found 268.0798.

2-(Benzo[b]thiophen-2-yl)-4-methoxybenzamide (3d)

Following the general procedure. 4-Methoxybenzamide **1d** (30.2 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **3d** as a yellow soild (41 mg, 72% yield). M.p.: 187-188 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.87 (s, 3H), 5.63 (d, *J* = 21.2 Hz, 2H), 6.97 (dd, *J* = 6.0 Hz, 2.4 Hz, 1H), 7.02 (d, *J* = 2.8 Hz, 1H), 7.34-7.41 (m, 3H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.79 (dd, *J* = 7.2 Hz, 2.0 Hz, 1H), 7.83-7.85 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.7, 114.2, 116.4, 122.3, 124.1, 124.2, 124.90, 124.92, 127.6, 131.3, 134.0, 140.1, 140.4, 141.3, 161.0, 170.6 ppm. HRMS (ESI): calcd for C₁₆H₁₄NO₂S [M+H]⁺ 284.0745, found 284.0743.

2-(Benzo[b]thiophen-2-yl)-4,5-dimethylbenzamide (3e)

Following the general procedure. 3,4-Dimethylbenzamide **1e** (29.8 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **3e** as a yellow soild (42 mg, 74% yield). M.p.: 198-199 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.33 (m, 6H), 5.65 (d, *J* = 38.8 Hz, 2H), 7.30 (s, 1H), 7.32-7.39 (m, 3H), 7.53 (s, 1H), 7.77 (dd, *J* = 6.8 Hz, 1.6 Hz, 1H), 7.82-7.84 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 19.6, 19.8, 122.2, 123.7, 123.9, 124.6, 124.8, 129.4, 130.3, 132.2, 132.6, 137.8, 139.6, 140.3, 140.4, 141.6, 171.3 ppm. HRMS (ESI): calcd for C₁₇H₁₆NOS [M+H]⁺ 282.0953, found 282.0958.

2-(Benzo[b]thiophen-2-yl)-4-ethylbenzamide (3f)

Following the general procedure. 4-Ethylbenzamide **1f** (29.8 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **3f** as a yellow soild (39 mg, 70% yield). M.p.: 152-153 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.28$ (t, J = 7.6 Hz, 3H), 2.69-2.75 (m, 2H), 5.67 (d, J = 41.2 Hz, 2H), 7.29 (dd, J = 8.0 Hz, 1.2 Hz, 1H), 7.33-7.40 (m, 4H), 7.66 (d, J = 8.0 Hz, 1H), 7.77-7.79 (m, 1H), 7.84 (d, J = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 15.4$, 28.8, 122.3, 123.9, 124.0, 124.7, 124.8, 128.4, 129.2, 130.6, 132.1, 132.8, 140.3, 140.4, 141.6, 147.1, 171.2 ppm. HRMS (ESI): calcd for C₁₇H₁₆NOS [M+H]⁺ 282.0953, found 282.0949.

2-(Benzo[b]thiophen-2-yl)-4-(*tert*-butyl)benzamide (3g)

Following the general procedure. 4-(*tert*-Butyl)benzamide **1g** (35.4 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **3g** as a yellow soild (48 mg, 78% yield). M.p.: 162-163 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.35 (s, 9H), 5.71 (d, *J* = 59.6 Hz, 2H), 7.33-7.41 (m, 3H), 7.48 (dd, *J* = 8.4 Hz, 2.0 Hz, 1H), 7.53 (d, *J* = 1.6 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.79 (dd, *J* = 7.2 Hz, 1.6 Hz, 1H), 7.84 (d, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 31.2, 35.0, 122.3, 123.9, 124.0, 124.7, 124.8, 126.0, 128.2, 129.0, 131.8, 132.6, 140.3, 140.4, 141.9, 154.0, 171.2 ppm. HRMS (ESI): calcd for C₁₉H₂₀NOS [M+H]⁺ 310.1266, found 310.1263.

2-(Benzo[*b*]thiophen-2-yl)-4-butylbenzamide (3h)

Following the general procedure. 4-Butylbenzamide **1h** (35.4 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **3h** as a yellow soild (46 mg, 74% yield). M.p.: 145-146 °C. ¹H NMR (400 MHz, CDCl₃): δ = 0.94 (t, J = 7.2 Hz, 3H), 1.33-1.42 (m, 2H), 1.59-1.67 (m, 2H), 2.67 (t, J = 7.6 Hz, 2H), 5.66 (d, J = 30.4 Hz, 2H), 7.27 (dd, J = 7.6 Hz, 1.6 Hz, 1H), 7.33-7.40 (m, 4H), 7.65 (d, J = 8.0 Hz, 1H), 7.78 (dd, J = 6.8 Hz, 1.6 Hz, 1H), 7.84 (d, J = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 14.0, 22.4, 33.4, 35.5, 122.3, 123.9, 124.0, 124.7, 124.8, 128.9, 129.1, 131.1, 132.0, 132.7, 140.3, 140.4, 141.6, 145.8, 171.3 ppm. HRMS (ESI): calcd for C₁₉H₂₀NOS [M+H]⁺ 310.1266, found 310.1267.

2-(Benzo[b]thiophen-2-yl)-5-ethoxybenzamide (3i)

Following the general procedure. 3-Ethoxybenzamide **1i** (33.0 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **3i** as a yellow soild (40 mg, 68% yield). M.p.: 195-196 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.44$ (t, J = 7.2 Hz, 3H), 4.08-4.13 (m, 2H), 5.68 (d, J = 27.6 Hz, 2H), 7.01 (dd, J = 8.4 Hz, 2.8 Hz, 1H), 7.23 (d, J = 2.8 Hz, 1H), 7.31-7.39 (m, 3H), 7.45 (d, J = 8.8 Hz, 1H), 7.75-7.77 (m, 1H), 7.82 (d, J = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.9$, 64.0, 114.2, 117.3, 122.2, 123.5, 123.9, 124.1, 124.6, 124.8, 132.4, 136.5, 140.3, 140.4, 141.3, 159.3, 170.1 ppm. HRMS (ESI): calcd for C₁₇H₁₆NO₂S [M+H]⁺ 298.0902, found 298.0904.

2-(Benzo[b]thiophen-2-yl)-6-fluorobenzamide (3j)

Following the general procedure. 2-Fluorobenzamide **1j** (27.8 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **3j** as a yellow soild (34 mg, 63% yield). M.p.: 122-123 °C. ¹H NMR (400 MHz, CDCl₃): δ = 5.89 (d, *J* = 90 Hz, 2H), 7.12-7.16 (m, 1H), 7.32-7.46 (m, 4H), 7.54 (s, 1H), 7.77-7.83 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 115.7 (d, *J* = 22 Hz), 122.2, 124.0 (d, *J* = 18 Hz), 124.1, 124.3, 124.8, 125.0, 126.2 (d, *J* = 3 Hz), 131.1 (d, *J* = 9 Hz), 134.0 (d, *J* = 3 Hz), 139.6 (d, *J* = 2 Hz), 140.2, 140.3, 159.4 (d, *J* = 248 Hz), 166.9 ppm. HRMS (ESI): calcd for C₁₅H₁₁FNOS [M+H]⁺ 272.0545, found 272.0544.

2-(Benzo[b]thiophen-2-yl)-4-chlorobenzamide (3k)

Following the general procedure. 4-Chlorobenzamide **1k** (31.0 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **3k** as a yellow soild (37 mg, 65% yield). M.p.: 179-180 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.65$ (d, J = 34.8 Hz, 2H), 7.36-7.44 (m, 4H), 7.54 (d, J = 2.0 Hz, 1H), 7.67 (d, J = 7.6 Hz, 1H), 7.80 (dd, J = 6.8 Hz, 2.8 Hz, 1H), 7.84-7.86 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 122.4$, 124.3, 124.7, 125.0, 125.2, 128.9, 130.5, 130.9, 133.7, 133.8, 136.5, 139.6, 140.1, 140.5, 170.1 ppm. HRMS (ESI): calcd for C₁₅H₁₁CINOS [M+H]⁺ 288.0250, found 288.0242.

Methyl 3-(benzo[b]thiophen-2-yl)-4-carbamoylbenzoate (3l)

Following the general procedure. Methyl 4-carbamoylbenzoate **11** (35.8 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **31** as a yellow soild (45 mg, 73% yield). M.p.: 173-174 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.95 (s, 3H), 5.81 (d, J = 54.8 Hz, 2H), 7.34-7.38 (m, 2H), 7.46 (s, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.78-7.81 (m, 1H), 7.83-7.85 (m, 1H), 8.07 (dd, J = 8.0 Hz, 1.6 Hz, 1H), 8.22 (d, J = 1.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 52.7, 122.3, 124.2, 124.5, 124.9, 125.1, 129.0, 129.6, 131.9, 132.0, 132.3, 139.3, 140.0, 140.2, 140.5, 166.0, 170.5 ppm. HRMS (ESI): calcd for C₁₇H₁₄NO₃S [M+H]⁺ 312.0694, found 312.0692.

2-(Benzo[b]thiophen-2-yl)-1-naphthamide (3m)

Following the general procedure. 1-Naphthamide **1m** (34.2 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **3m** as a yellow soild (40 mg, 66% yield). M.p.: 216-217 °C. ¹H NMR (400 MHz, CDCl₃): δ = 5.82 (d, *J* = 65.2 Hz, 2H), 7.34-7.42 (m, 2H), 7.54-7.62 (m, 2H), 7.65-7.69 (m, 2H), 7.82-7.90 (m, 3H), 7.94 (d, *J* = 8.8 Hz, 1H), 8.10 (d, *J* = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 110.2, 122.2, 124.2, 124.3, 124.8, 125.8, 127.1, 127.4, 127.9, 128.2, 128.8, 129.8, 130.1, 133.0, 133.2, 140.5, 141.3, 171.4 ppm. HRMS (ESI): calcd for C₁₉H₁₄NOS [M+H]⁺ 304.0796, found 304.0793.

3-(Benzo[*b*]thiophen-2-yl)-2-naphthamide (3n)

Following the general procedure. 2-Naphthamide **1n** (34.2 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **3n** as a yellow soild (44 mg, 72% yield). M.p.: > 250 °C. ¹H NMR (400 MHz, DMSO- d_6): δ = 7.36-7.43 (m, 2H), 7.60-7.63 (m, 4H), 7.86-7.88 (m, 1H), 8.00-8.09 (m, 5H), 8.17 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ = 132.2, 132.7, 133.8, 134.5, 134.7, 137.1, 137.4, 137.5, 137.9, 138.0, 139.0, 139.2, 141.8, 142.7, 145.5, 149.4, 150.1, 152.0, 180.8 ppm. HRMS (ESI): calcd for C₁₉H₁₄NOS [M+H]⁺ 304.0796, found 304.0796.

3-(Benzo[*b*]thiophen-2-yl)thiophene-2-carboxamide (30)

Following the general procedure. Thiophene-2-carboxamide **1o** (25.4 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **3o** as a yellow soild (30 mg, 59% yield). M.p.: 157-158 °C. ¹H NMR (400 MHz, CDCl₃): δ = 6.18 (s, 2H), 7.15 (dd, J = 5.2 Hz, 0.8 Hz, 1H), 7.38-7.44 (m, 2H), 7.46 (s, 1H), 7.52 (d, J = 5.2 Hz, 1H), 7.80-7.87 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 122.4, 124.2, 125.0, 125.1, 125.3, 129.6, 131.8, 134.8, 135.7, 136.3, 139.7, 140.6, 163.8 ppm. HRMS (ESI): calcd for C₁₃H₁₀NOS₂ [M+H]⁺ 260.0204, found 260.0193.

2-(Benzo[b]thiophen-2-yl)thiophene-3-carboxamide (3p)

Following the general procedure. Thiophene-3-carboxamide **1p** (25.4 mg, 0.2 mmol) and benzothiophene **2a** (80.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3p** as a yellow soild (23 mg, 44% yield). M.p.: 177-178 °C. ¹H NMR (400 MHz, CDCl₃): δ = 5.82 (d, *J* = 54.0 Hz, 2H), 7.34 (d, *J* = 5.2 Hz, 1H), 7.36-7.43 (m, 2H), 7.48 (d, *J* = 5.6 Hz, 1H), 7.55 (s, 1H), 7.80-7.84 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 122.3, 124.3, 125.1, 125.5, 125.9, 126.2, 130.0, 133.6, 140.0, 137.0, 139.7, 140.9, 165.4 ppm. HRMS (ESI): calcd for C₁₃H₁₀NOS₂ [M+H]⁺ 260.0204, found 260.0200.

2-(Thiophen-2-yl)benzamide (4a)

Following the general procedure. Benzamide **1a** (24.2 mg, 0.2 mmol) and thiophene **2a** (50.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **4a** as a yellow soild (27 mg, 67% yield). M.p.: 131-132 °C. ¹H NMR (400 MHz, CDCl₃): δ = 5.65 (d, *J* = 76.0 Hz, 2H), 7.07-7.09 (m, 1H), 7.20 (d, *J* = 2.8 Hz, 1H), 7.37-7.44 (m, 2H), 7.47 (d, *J* = 4.0 Hz, 2H), 7.69 (d, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 126.7, 127.3, 128.0, 128.3, 128.9, 130.5, 131.0, 132.1, 135.1, 141.1, 171.4 ppm. HRMS (ESI): calcd for C₁₁H₁₀NOS [M+H]⁺ 204.0483, found 204.0479.

2-(5-Methylthiophen-2-yl)benzamide (4b)

Following the general procedure. Benzamide **1a** (24.2 mg, 0.2 mmol) and 2-methylthiophene **2b** (58.8 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **4b** as a yellow soild (31 mg, 71% yield). M.p.: 116-117 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.51 (s, 3H), 5.71 (d, J = 64.4 Hz, 2H), 6.73 (d, J = 2.8 Hz, 1H), 6.98 (d, J = 3.6 Hz, 1H), 7.35-7.46 (m, 3H), 7.67 (d, J = 7.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 15.5, 126.2, 127.3, 127.9, 128.9, 130.4, 130.7, 132.4, 134.8, 138.6, 141.5, 171.6 ppm. HRMS (ESI): calcd for C₁₂H₁₂NOS [M+H]⁺ 218.0640, found 218.0638.

2-(5-Phenylthiophen-2-yl)benzamide (4c)

Following the general procedure. Benzamide **1a** (24.2 mg, 0.2 mmol) and 2-phenylthiophene **2c** (96.0 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **4c** as a yellow soild (34 mg, 61% yield). M.p.: 147-148 °C. ¹H NMR (400 MHz, CDCl₃): δ =

5.76 (d, J = 62.8 Hz, 2H), 7.18 (d, J = 3.6 Hz, 1H), 7.28-7.32 (m, 2H), 7.37-7.43 (m, 3H), 7.44-7.53 (m, 2H), 7.61-7.62 (m, 2H), 7.67-7.69 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 123.9$, 125.8, 127.9, 128.2, 128.3, 128.9, 129.1, 130.5, 130.6, 131.9, 134.0, 135.0, 140.3, 145.6, 171.6 ppm. HRMS (ESI): calcd for C₁₇H₁₄NOS [M+H]⁺ 280.0796, found 280.0798.

2-(5-Chlorothiophen-2-yl)benzamide (4d)

Following the general procedure. Benzamide **1a** (24.2 mg, 0.2 mmol) and 2-chlorothiophene **2d** (70.8 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **4d** as a yellow soild (27 mg, 58% yield). M.p.: 126-127 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.74$ (d, J = 85.2 Hz, 2H), 6.89 (d, J = 4.0 Hz, 1H), 6.98 (d, J = 4.0 Hz, 1H), 7.39-7.48 (m, 3H), 7.62-7.64 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 126.6$, 127.0, 128.6, 128.7, 130.6, 130.7, 131.0, 131.2, 135.2, 139.6, 171.2 ppm. HRMS (ESI): calcd for C₁₁H₉CINOS [M+H]⁺ 238.0093, found 238.0095.

2-(5-Hexylthiophen-2-yl)benzamide (4e)

Following the general procedure. Benzamide **1a** (24.2 mg, 0.2 mmol) and 2-hexylthiophene **2e** (100.8 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **4e** as a yellow soild (42 mg, 73% yield). M.p.: 67-68 °C. ¹H NMR (400 MHz, CDCl₃): δ = 0.89 (t, J = 7.2 Hz, 3H), 1.25-1.39 (m, 6H), 1.65-1.73 (m, 2H), 2.81 (t, J = 7.6 Hz, 2H), 5.72 (d, J = 71.2 Hz, 2H), 6.74 (d, J = 3.2 Hz, 1H), 6.99 (d, J = 3.2 Hz, 1H), 7.34-7.38 (m, 1H), 7.43 (d, J = 4.0 Hz, 1H), 7.67 (d, J = 3.6 Hz, 1H) ppm. ¹³C NMR

(100 MHz, CDCl₃): δ = 14.2, 22.7, 29.0, 30.3, 31.68, 31.71, 124.9, 127.0, 127.9, 128.9, 130.4, 130.7, 132.5, 134.8, 138.2, 147.7, 171.6 ppm. HRMS (ESI): calcd for C₁₇H₂₂NOS [M+H]⁺ 288.1422, found 288.1413.

2-(3-Methoxythiophen-2-yl)benzamide (4f)

Following the general procedure. Benzamide **1a** (24.2 mg, 0.2 mmol) and 3-methoxylthiophene **2f** (68.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **4f** as yellow oil (35 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃): δ = 3.81 (s, 3H), 5.90 (d, J = 33.2 Hz, 2H), 6.89 (d, J = 5.6 Hz, 1H), 7.28 (d, J = 5.2 Hz, 1H), 7.36-7.41 (m, 2H), 7.44-7.48 (m, 1H), 7.78-7.80 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 58.6, 116.6, 117.3, 124.5, 128.1, 129.4, 129.9, 130.6, 132.0, 135.7, 154.1 ppm. HRMS (ESI): calcd for C₁₂H₁₂NO₂S [M+H]⁺ 234.0589, found 234.0596.

2-(3-Bromothiophen-2-yl)benzamide (4g)

Following the general procedure. Benzamide **1a** (24.2 mg, 0.2 mmol) and 3-bromolthiophene **2g** (68.4 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **4g** as a yellow soild (35 mg, 63% yield). M.p.: 111-112 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.68$ (d, J = 104.8 Hz, 2H), 7.06 (d, J = 5.2 Hz, 1H), 7.38-7.42 (m, 2H), 7.47-7.54 (m, 2H), 7.83-7.85 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 110.9$, 126.9, 129.3, 129.5, 130.4, 130.67, 130.68, 132.2, 136.1, 136.4, 170.1 ppm. HRMS (ESI): calcd for C₁₁H₉BrNOS [M+H]⁺ 281.9588, found 281.9582.

2-(4,5-Dibromothiophen-2-yl)benzamide (4h)

Following the general procedure. Benzamide **1a** (24.2 mg, 0.2 mmol) and 2,3-dibromothiophene **2h** (144.0 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **4h** as a yellow soild (36 mg, 51% yield). M.p.: 172-173 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.73$ (d, J = 64.4 Hz, 2H), 7.04 (s, 1H), 7.39-7.48 (m, 3H), 7.61 (dd, J = 7.6 Hz, 1.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 112.0$, 114.5, 128.5, 129.1, 129.5, 130.4, 130.5, 130.7, 135.3, 142.4, 170.8 ppm. HRMS (ESI): calcd for C₁₁H₈Br₂NOS [M+H]⁺ 359.8693, found 359.8696.

2-(3,4-Dibromothiophen-2-yl)benzamide (4i)

Following the general procedure. Benzamide **1a** (24.2 mg, 0.2 mmol) and 3,4-dibromothiophene **2i** (144.0 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **4i** as yellow oil (37 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 5.68$ (d, J = 91.2 Hz, 2H), 7.36-7.39 (m, 1H), 7.45 (s, 1H), 7.50-7.56 (m, 2H), 7.78-7.82 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 114.0$, 114.4, 123.9, 129.0, 129.9, 130.6, 130.8, 132.1, 136.2, 137.6, 170.0 ppm. HRMS (ESI): calcd for C₁₁H₈Br₂NOS [M+H]⁺ 359.8693, found 359.8697.

2-(5-Chlorobenzo[b]thiophen-2-yl)benzamide (4j)

Following the general procedure. Benzamide **1a** (24.2 mg, 0.2 mmol) and 5-chlorobenzothiophene **2j** (100.8 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **4j** as a yellow soild (35 mg, 61% yield). M.p.: 124-125 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.71$ (d, J = 58.8 Hz, 2H), 7.31 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 7.36 (s, 1H), 7.41-7.60 (m, 4H), 7.67-7.69 (m, 1H), 7.73-7.81 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 123.1$, 123.3, 123.5, 125.2, 127.5, 128.8, 129.0, 130.6, 131.0, 131.6, 135.6, 138.5, 141.3, 143.3, 171.2 ppm. HRMS (ESI): calcd for C₁₅H₁₁CINOS [M+H]⁺ 288.0250, found 288.0255.

2-(3-Methylbenzo[b]thiophen-2-yl)benzamide (4k)

Following the general procedure. Benzamide **1a** (24.2 mg, 0.2 mmol) and 3-methylbenzothiophene **2k** (88.8 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **4k** as a yellow soild (36 mg, 67% yield). M.p.: 143-144 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.27 (s, 3H), 5.57 (d, *J* = 24.4 Hz, 2H), 7.38-7.47 (m, 3H), 7.50-7.58 (m, 2H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.96-7.98 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 12.4, 122.4, 122.6, 124.8, 125.1, 129.1, 130.0, 130.8, 130.9, 131.9, 132.1, 135.0, 135.6, 139.5, 140.4, 170.0 ppm. HRMS (ESI): calcd for C₁₆H₁₄NOS [M+H]⁺ 268.0796, found 268.0805.

2-(Thieno[3,2-b]thiophen-2-yl)benzamide (4l)

Following the general procedure. Benzamide **1a** (24.2 mg, 0.2 mmol) and thieno[3,2-*b*]thiophene **2l** (84.0 mg, 0.6 mmol) were used. Purification via column chromatography on silica gel (petroleum ether/EtOAc = 3/1, v/v) afforded **4l** as a yellow soild (29 mg, 56% yield). M.p.: 147-148 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 5.73$ (d, J = 61.6 Hz, 2H), 7.26-7.28 (m, 1H), 7.39-7.42 (m, 2H), 7.43-7.53 (m, 3H), 7.68 (dd, J = 8.0 Hz, 1.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 119.5$, 119.6, 127.6, 128.5, 128.8, 130.5, 130.9, 132.2, 135.3, 139.8, 142.7, 171.4 ppm. HRMS (ESI): calcd for C₁₃H₁₀NOS₂ [M+H]⁺ 260.0204, found 260.0191.

VII. References

(1) Q. Gui, Z. Yang, X. Chen, J. Liu, Z. Tan, R. Guo and W. Yu, *Synlett* 2013, 24, 1016.

7.852 7.834 7.834 7.797 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 6.959 6.959 6.959 6.959 5.595

110 f1 (ppm)

7.828 7.768 7.768 7.758 7.758 7.328 7.328 6.647 7.328 6.647 7.328 6.647 7.240 6.647 4.1128 4.076 4.076 4.076

130 110 f1 (ppm)

7.870 7.863 7.863 7.827 7.821 7.824 7.396 7.159 7.159 7.159

-163.78 139.68 135.72 135.72 135.72 135.72 135.72 135.72 135.72 135.72 135.72 135.72 135.72 125.03 125.03 125.03 122.35 122.35 77.48 76.84

230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

$\begin{array}{c} 7.802\\ \Gamma.7.785\\ 7.782\\ 0.7.389\\ 0.7.389\\ 0.889\\ 0.889\\ 0.889\\ 0.889\\ 0.889\\ 0.889\\ 0.25.942\\ 0.25.859\\ 0.25.8$

77.852 77.847 77.842 77.838 77.838 77.836 77.836 77.330 77.656 77.390 77.390 77.390 77.350 77.556 77.556

7.619 7.619 7.619 7.604 7.500 7.7.500 7.7.496 7.7.496 7.7.496 7.7.453 7.7.453 7.7.453 7.7.453 7.7.453 7.7.453 7.7.453 7.7.416 7.7.416 7.7.415 7.7.416 7.7.397 7.7.307 7.7.507 7.7.507 7.7.707 7.7.707 7.7.707 7.7.707 7.7.707 7.7.707 7.7.707 7.7.707 7.7.707 7.7.707 7.7.707 7.7.707 7.7.707 7.7.707 7.7.707 7.7.707 7.7.707 7.7.707 7.

S50

S51

